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Self-sustained thermoacoustic oscillations as observed in low-emission combustion-
involved gas turbines and aero-engines involve complicated thermal fluid–acoustics
interaction and rich nonlinear dynamics. Such pulsating oscillations are known as
thermoacoustic instability. When it occurs, large-amplitude limit cycle oscillations
(LCOs) of thermodynamic parameters are frequently observed. These LCOs could cause
overheating, flame flashback, and even engine failures. Thus it is critical to understand and
predict the generation mechanisms and nonlinear dynamics behaviours, and then develop
corresponding control approaches to prevent or control the onset of such instabilities.
In this work, we develop and extend the classical van der Pol oscillators by integrating
a physics-informed neural networks (PINNs) algorithm with a modelled nonlinear
Rijke-type thermoacoustic combustor. The theoretical Rijke tube system (with Galerkin
expansion and modified King’s law implemented) and a CFD simulation model are
applied to provide ‘training/calibration data’ for the extended van der Pol (EVDP)-PINNs
model. The optimized EVDP oscillators are confirmed to be capable of capturing the key
nonlinear characteristics by comparing the transient growth behaviours of thermodynamic
perturbations and LCO amplitude and frequency. Further investigations are conducted
to obtain Hopf bifurcation and amplitude death (AD) characteristics. Comparison is
then made to the coupled EVDP systems. Quite similar Hopf bifurcation features, but
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differences in regions of AD, are observed. In general, we demonstrate an applicable
approach to intelligently ‘learn’ a nonlinear thermoacoustic system and to create reliable
EVDP oscillator systems, which have great potential to contribute to the development and
testing of control approaches, such as the coupling described in this work, which may
replace costly experimental tests.

Key words: aeroacoustics, noise control, nonlinear instability

1. Introduction

Thermoacoustic instabilities are self-sustained oscillations (Balasubramanian & Sujith
2008; Liu, Cheng & Du 2022) where acoustic waves and unsteady heat release compose
a positive feedback loop (Bragg 1964; Dowling 1995; Lyu, Fang & Wang 2023).
These fluctuations can become intense and cause performance degradation, emission
deterioration (Zhang et al. 2023), severe noise (Su, Yang & Morgans 2022), lifespan
reduction, structural damage, and even catastrophic machine failure in propulsive systems
or power generation units. Thus acquiring control methods to prevent or restrict such
undesirable high-amplitude oscillations of the self-excited system is of great significance
(Juniper & Sujith 2018; Sun et al. 2022).

Many studies (Dowling & Morgans 2005; Zhao & Li 2015; Guan et al. 2023) have
underlined the importance of suppressing pressure oscillations. Passive control methods,
such as perforated liners, baffles, and half- and quarter-wave tubes, have been employed
to dissipate pressure fluctuations effectively (Zhao & Morgans 2009; Zhao 2023b).
Active control (Zhang et al. 2020; Naji et al. 2023), such as feedback control (Zhao &
Reyhanoglu 2014), open (Wu et al. 2019) or close-loop active control (McManus, Poinsot
& Candel 1993; Zhao 2023a), and adaptive control (Zhao 2023a), can suppress undesired
instabilities through activatable devices. Their practical implementation is limited by the
installation of feedback devices (Balusamy et al. 2015; Biwa et al. 2016). Therefore,
a recently proposed approach, which controls pressure oscillations in coupled systems,
attracted the authors’ attention. Based on the amplitude death (AD) theory, which has been
validated against experiments (Zhao et al. 2015; Sahay et al. 2021), coupling two systems
using a needle valve and a vinyl tube can entirely suppress the unwanted oscillations
(Biwa, Tozuka & Yazaki 2015; Thomas et al. 2018; Srikanth et al. 2022). For the design
of coupled systems, the description of the non-normality and nonlinearity characteristics
(Yang, Pang & Li 2021; Wu et al. 2023) by partial differential equations (PDEs) is
essential. However, the complexity of engineering systems challenges the derivation of
PDEs for such applications.

The van der Pol (VDP) equation is a reliable alternative to formulate deterministic
system descriptions, which has been studied extensively (Nbendjo & Yamapi 2007;
Yamapi, Nana Nbendjo & Kadji 2007; Vinod & Balaram 2023) owing to its capacity to
mimic the nonlinear thermoacoustic instability behaviour on account of its adherence to
the Liénard theorem (Perko 2013). According to Guan et al. (2021), the low-order oscillator
model consisting of two simple VDP oscillators can reproduce many synchronization
phenomena, including AD characteristics. Next, once the VDP equation is established,
the unknown parameters need to be determined from the available data. The recently
developed physics-informed neural networks (PINNs) model solves PDEs via deep
learning (Raissi, Perdikaris & Karniadakis 2017a,b; Lu et al. 2021; Wang et al. 2023),
and has been applied to fluid mechanics and thermoacoustics problems (Mariappan, Nath
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& Karniadakis 2023; Ozan & Magri 2023). Thereby, novel perspectives opened up to
determine the unknown parameters of inverse problems. That is, incomplete PDEs can
be predicted using relatively few experimental measurements (Aliakbari et al. 2023; Xu
et al. 2023) to replace prohibitively expensive methods in inverse flow problems (Cai et al.
2021).

The horizontal Rijke tube is a simplistic and thermoacoustic unstable system where
PDEs can describe its behaviour. On the contrary, the thermoacoustic behaviour of
engineering systems – e.g. thermoacoustic engines (TAEs), afterburners, Ramjet engines,
and rocket motors – can be assessed only by experimental measurements. The derivation of
specific PDEs for controlling strategy estimation of such complex systems is impossible.
Thus we present a methodology based on the PINNs algorithm to determine a system
instability behaviour by precise differential equations. The proposed extended VDP
(EVDP)-PINNs method is validated against theoretical and simulation data, exhibiting
acceptable errors. Additionally, the Hopf bifurcation and AD characteristics of the
coupled EVDP systems are computed and compared with the coupled theoretical Rijke
tube systems. Thereby, the physical significance of the EVDP system in the field of
thermoacoustics is shown. Combining the results of the averaging method and the
generalized scaling method with the AD boundary analysis provides each term in the
EVDP system with a physical significance.

2. Methods

2.1. The EVDP system
The dimensionless pressure perturbation of a combustion system, as plotted in figure 1(a),
exhibits a pronounced non-normal system behaviour, where a high-amplitude limit cycle
establishes from an initially small perturbation. To replicate such system characteristics,
the VDP equation is selected (Nbendjo & Yamapi 2007; Yamapi et al. 2007; Vinod &
Balaram 2023). The non-conservative oscillator with nonlinear damping can be written in
its basic form without source term as

ψ̈ − μ(1 − ψ2)ψ̇ + ψ = 0, (2.1)

where ψ is the investigated quantity, the dot over the variable represents the temporal
derivative, and μ is a parameter defining the nonlinearity and damping strength. The
classical VDP oscillator with μ = 0.2 resembles the dimensionless pressure perturbation
as shown in figure 1, proving that the classical VDP equation can mimic the behaviour of
combustion system instabilities.

To enhance the applicability of the classical VDP equation to thermoacoustic
instabilities, we decompose the first-order differential term and add a time scaling
parameter μ3 to reformulate (2.1) into

ψ̈ − μ1μ3ψ̇ + μ2μ3ψ
2ψ̇ + μ2

3ψ = 0. (2.2)

Equation (2.2) still satisfies the properties of the Liénard theorem, providing a unique
and stable limit cycle. Observing the shape of the oscillation depicted in figure 1, the
fundamental characteristics are the time required for the initial perturbation to evolve into
a limit cycle, and the resulting limit cycle amplitude. Figure 2 visualizes the extension
of the parameter space, introducing further parameters, thereby improving the expressive
capacity compared to the one-dimensional diagonal line (μ1 = μ2).
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Figure 1. Instability of a combustion system obtained (a) experimentally (Li et al. 2016a) and (b) with the
classical VDP equation.
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Figure 2. Contour plots of (a) the limit cycle amplitude (Alc), and (b) the time duration to reach a limit cycle
(�tlc, where the value zero indicates an unexcited oscillator).

To further characterize the dynamics described in (2.2), the Krylov–Bogolyubov method
of averaging is applied (Krylov & Bogolyubov 1947; Nayfeh 2000). Therefore, (2.2) is
rewritten as

ψ̈ + μ2
3ψ = εaμ3ψ̇(μ1 − μ2ψ

2). (2.3)

Here, εa is introduced as a placeholder with a small value to facilitate the averaging
procedure. Making this assumption implies weak nonlinearity (small μ1 and μ2), causing
the oscillator to behave as one undergoing sinusoidal oscillations, which is common for
thermoacoustic applications. Therefore, this solution is valid only in the region where μ1
and μ2 are small, a condition utilized throughout this paper. In fact, setting μ1 = μ2 = εa
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and μ3 = 1 recovers the classical VDP oscillator. Proceeding, the solution is assumed to
have the form

ψ(t) = a(t) cos
(
μ3t + θ(t)

)
, (2.4)

where a(t) and θ(t) are time-varying. However, they vary slowly compared to the period
of oscillations due to the assumption made previously on εa in (2.3). This leads to the
following two equations for the amplitude and phase responses, respectively:

da
dt

= − εa

2μ3
F(a) (2.5)

and
dθ
dt

= − εa

2aμ3
G(a), (2.6)

where F(a) and G(a) represent coefficients of the Fourier expansion of the right-hand side
of (2.3). They can be expressed as

F(a) = 1
4 a(−4μ1 + a2μ2)μ

2
3 (2.7)

and

G(a) = 0. (2.8)

As a result, the phase remains constant, and the amplitude is further described as

a(t) = 2 exp(1
2εaμ1μ3t)

√
μ1√

4μ1

a2
0

+ μ2
(
exp(εaμ1μ3t)− 1

) , (2.9)

with the initial condition a(0) = a0 already included. Using this equation for amplitude,
we find the limit cycle oscillation as

lim
t→∞ a(t) = 2

√
μ1√
μ2
. (2.10)

This formulation has a remarkable resemblance to figure 2. It is apparent that a strong
agreement with the numerical integration of (2.2) is obtained.

2.1.1. The PINNs model for inverting a thermoacoustic oscillations problem
Estimating unknown variables based on the experimental measurements or available data
from theoretical models constitutes a typical inverse problem. Therefore, the PINNs
algorithm for solving inverse problems is highly suitable for addressing this system
generalization task, as outlined in figure 3. Here, the integration of PDEs and available
data is accomplished seamlessly by incorporating new PDE loss terms into the loss
function of the neural network (Yazdani et al. 2020; Karniadakis et al. 2021; Yu et al.
2022). As depicted in (2.11) below, the total loss consists of the supervised data loss and
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Figure 3. The PINNs architecture for the inverse thermoacoustic problem. Here, MSEdata and MSEPDE
represent the mean square error of the data and the PDE, respectively.

unsupervised PDEs loss (EVDP equation here):

L = ωdataLdata + ωPDELPDE, (2.11)

where

Ldata = 1
Ndata

Ndata∑
i=1

[ψ(ti,µ)− ψ(ti)]2 , (2.12)

LPDE = 1
Ndata

Ndata∑
j=1

[
ψ̈(tj)− μ1μ3 ψ̇(tj)+ μ2μ3 ψ

2(tj) ψ̇(tj)+ μ2
3 ψ(tj)

]2
. (2.13)

Here, ωdata and ωPDE are the loss weights of the supervised loss Ldata and the unsupervised
PDE loss LPDE, respectively, Ndata represents the number of the training data, and ψ(ti)
and ψ(ti,µ) are the ith training node and its fitting value.

The neural network parameters and unknowns, µ can be determined simultaneously by
minimizing the loss function L through a gradient-based optimizer (the Adam optimizer
was applied in the present work). In the features layer, employing m functions of the form
e(·) to construct m features e(t) for specific solution patterns of the PDEs is efficient.
Trigonometric functions are used due to the oscillation periodicity in this study. The
training is performed using all the data (including the exponentially growing period and
the saturating period) with default hyperparameters and learning rate 10−3. Additionally,
a two-stage training strategy is employed to accelerate the network convergence, which
involves initial training with only supervised losses, and further training considering all
losses. The algorithm is implemented in Python using the open-source library DeepXDE
(Lu et al. 2021). The unknown variables are acquired when stabilizing with the neural
network time step.

2.2. Thermoacoustic waves generation and propagation
An analytically traceable system is selected to validate the aforementioned method’s
effectiveness in obtaining deterministic descriptions. Among various prototypical
thermoacoustic systems, the horizontal Rijke tube with acoustically compact heat sources
(Rayleigh 1878; Raun et al. 1993) is suitable and considered in this work. The heat release
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is modelled by the modified King’s law theory (Heckl 1990). The dimensionless governing
equations are

∂u
∂t

+ ∂p
∂x

= 0, (2.14)

∂p
∂t

+ ∂u
∂x

+ ζp − β

{∣∣∣∣1
3

+ uf (t − τ1)

∣∣∣∣
1/2}

δD(x − xf ) = 0, (2.15)

where the flow parameters u, p and ρ represent the fluctuation components of velocity,
pressure and density, respectively. Here, ζ is a damping coefficient, τ1 is a time delay
between the velocity preoccupation and the heat source response, xf is the location of
the hot wire, and δD is the Kronecker delta. Also, β is the dimensionless heater power
containing all hot-wire parameters:

β = 1
p0

√
u0

γ − 1
γ

2Lw(Tw − T0)

S
√

3

(
πλ0cvρ0

dw

2

)1/2

, (2.16)

where Lw, dw and Tw represent the length, diameter and temperature of the hot wire,
respectively. Here, S is the cross-sectional area of the Rijke tube, λ0 is the heat
conductivity, cv is the specific isochoric heat capacity, and ρ0, p0, u0 and T0 are the
density, pressure, velocity and temperature at the inlet.

Substituting the pressure perturbations expanded as a Galerkin series (Nagaraja, Kedia
& Sujith 2009; Juniper 2011) into (2.14) gives

p =
N∑

n=1

η̇n(t) ϕn(x), (2.17)

u = −
N∑

n=1

ηn(t) ϕ′
n(x), (2.18)

where N denotes the mode number, the overdot denotes the time derivative, the prime
denotes the spatial derivative, and the functions ϕn(x) are the eigensolutions of the
homogeneous wave equation for the Rijke tube. Because the Rijke tube has pressure nodes
at both ends, the mode shapes ϕn(x) corresponding to the nth mode are illustrated as

ϕn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sin
(
ωnL
c̄1

x
)
, x ∈ [0, xf ],

sin
(
ωnL
c̄1

xf

)

sin
(
ωnL
c̄2

xf

) sin
[
ωnL
c̄2

(1 − x)
]
, x ∈ [xf , 1],

(2.19)

which satisfy the orthogonality condition. Here, L is the length of the Rijke tube, and c̄1
and c̄2 are the speed of sound upstream and downstream of the hot wire. Substituting the
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Galerkin expansion into (2.14) and (2.15) leads to

dη̇n(t)
dt

+ (ωn)
2 ηn(t)+ ζn η̇n(t) = β

En
ϕn(xf )

{∣∣∣∣1
3

− ϕ′
n(xf ) ηn(t − τ1)

∣∣∣∣
1/2

−
(

1
3

)1/2}
,

(2.20)

where ωn are the eigenfrequencies calculated from the pressure and velocity continuity
over the heat source (Backhaus & Swift 1999; Zhao & Reyhanoglu 2014; Karniadakis
et al. 2021), En are the integral constants (refer to the condition of orthogonality that is
described mathematically in (32) of the previous work, Zhao 2012), and ζn are the damping
coefficients (Nagaraja et al. 2009; Li et al. 2016b), accounting for all damping effects such
as energy losses due to radiation, or viscous dissipation. The damping coefficient can be
related to the eigenfrequency by

ζn = 1
π
ωn

(
ξ1
ωn

ω1
+ ξ2

√
ω1

ωn

)
, (2.21)

where ξ1 and ξ2 account for the energy losses due to radiation at the open ends as well as
dissipation within the acoustic viscous and thermal boundary layers at the walls.

According to Bonciolini et al. (2021), only one dominant eigenmode is needed
to approximate the system stability, including the limit cycle, although the unstable
modes are coupled via nonlinear heat release rates. Thus the one-mode Galerkin
expansion is employed in this study. The thermoacoustic Rijke tube system is represented
by the coefficient values selected from previous studies (Backhaus & Swift 1999;
Balasubramanian & Sujith 2008), which are listed in Appendix B. The initial conditions
[η(0), η′(0)] are assigned randomly, and kept consistent for the theoretical Rijke tube and
EVDP system. As shown in figure 4, the system oscillations in terms of η(t) and η̇(t) decay
with low heater power or are excited to limit cycles (triggering) with high heater power.
The Hopf bifurcation diagram in figure 4(a) shows that the limit cycle amplitude of the
system behaves asymptotically as a function of β. Crossing the Hopf point (βHopf = 1.17)
through the forward path, the system undergoes a Hopf bifurcation, which leads to an
amplitude rise. In the reverse path, β needs to be decreased significantly below the Hopf
point to return the system to a stable state (known as the saddle point (βsaddle = 1.01).
A typical subcritical bifurcation with a hysteresis region (bistable region) (Subramanian,
Sujith & Wahi 2013; Biwa et al. 2015) is observed. In this region, the system can exhibit
either a fixed stable point or a stable limit cycle, depending on the initial perturbations
(Sujith & Unni 2020; Liu et al. 2023). These interpretations are consistent with previous
studies (Thomas et al. 2018), indicating that the theoretical Rijke tube model generates
reliable input data for the PINNs model to fit the unknown parameters of the EVDP
equation.

Equation (2.20) can be rewritten for the first mode:

d2η(t)
dt2

+ ζ̄ω

π
η̇(t)+ ω2 η(t) = β

E
ϕ(xf )

{∣∣∣∣1
3

− ϕ′(xf ) η(t − τ1)

∣∣∣∣
1/2

−
(

1
3

)1/2}
. (2.22)

An approximate solution may be found by applying the generalized scaling method
(Nayfeh 2000). This method, related to the multiple scales technique, allows examination
of both the amplitude response and the time scales of the problem. A small scaling
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Figure 4. Rijke tube system. (a) Subcritical bifurcation diagram of the limit cycle amplitudes versus β.
(b) Unexcited oscillation with small β = 0.5, AD – the amplitude tends to zero with time. (c) Excited oscillation
with large β = 2.1, limit cycle oscillation – the amplitude tends to a non-zero stable value with time.

parameter ε = 1/ω is inserted into (2.20):

ε2 d2η(t)
dt2

+ ε
ζ̄

π
η̇(t)+ η(t) = ε2 β

E
ϕ(xf )

{∣∣∣∣1
3

− ϕ′(xf ) η(t − τ1)

∣∣∣∣
1/2

−
(

1
3

)1/2}
.

(2.23)

Although an approximate solution can be derived, it is quite cumbersome. Substituting
the heat release term with an alternative formulation (Zhao et al. 2023) leads to

ε2 d2η(t)
dt2

+ ε
ζ̄

π
η̇(t)+ η(t) = ε2K ϕ(xf ) ϕ

′(xf ) (η − τ1η̇), (2.24)
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where K is the heat correlation strength parameter. A time scale expansion is introduced
with a slow and a fast time scale to aid the understanding of the underlying physics:

t0 = t, t1 = g0(t0)
ε

+ g1(t0)+ ε g2(t0)+ · · · , (2.25a,b)

where gi will be determined through solvability conditions during the analysis. The
temporal derivatives are also expanded:

d
dt

= ∂

∂t0

dt0
dt

+ ∂

∂t1

dt1
dt0

dt0
dt

= ∂

∂t0
+

(
g′

0
ε

+ g′
1 + εg′

2 + · · ·
)
∂

∂t1
(2.26)

and

d2

dt2
= ∂2

∂t20
+ 2

(
g′

0
ε

+ g′
1 + εg′

2 + · · ·
)

∂2

∂t0 ∂t1

+
(

g′′
0
ε

+ g′′
1 + εg′′

2 + · · ·
)
∂

∂t1
+

(
g′

0
ε

+ g′
1 + εg′

2 + · · ·
)2
∂2

∂t21
. (2.27)

Also, the time-varying coefficient η can be expanded as a function of the two coordinates:

η = η0(t0, t1)+ ε η1(t0, t1)+ ε2 η2(t0, t1)+ · · · . (2.28)

Therefore, an approximate solution may be achieved with the relevant slow and fast time
scale separation, which will aid in the understanding of the physics present. The three
equations at different orders to be solved are given as

(
g′

0
)2 ∂

2η0

∂t21
+ ζ̄

π
g′

0
∂η0

∂t1
+ η0 = 0 (2.29)

for the leading order,

(
g′

0
)2 ∂

2η1

∂t21
+ ζ̄

π
g′

0
∂η1

∂t1
+ η1 + Kτ1 ϕ(xf ) ϕ

′(xf ) g′
0
∂η0

∂t1

+ ζ̄g′
1

π

∂η0

∂t1
+ g′′

0
∂η0

∂t1
+ 2g′

0g′
1
∂2η0

∂t21
+ ζ̄

π

∂η0

∂t0
+ 2g′

0
∂2η0

∂t1 ∂t0
= 0 (2.30)

for the first order, and

(
g′

0
)2 ∂

2η2

∂t21
+ ζ̄

π
g′

0
∂η2

∂t1
+ η2 − K ϕ(xf ) ϕ

′(xf ) η0 + ζ̄g′
2

π

∂η0

∂t1
+ Kτ1 ϕ(xf ) ϕ

′(xf ) g′
1
∂η0

∂t1

+ Kτ1 ϕ(xf ) ϕ
′(xf ) g′

0
∂η1

∂t1
+ g′′

1
∂η0

∂t1
+ ζ̄g′

1
π

∂η1

∂t1
+ g′′

0
∂η1

∂t1

+ (
g′

1
)2 ∂

2η0

∂t21
+ 2g′

0g′
2
∂2η0

∂t21
+ 2g′

0g′
1
∂2η1

∂t21
+ ζ̄

π

∂η1

∂t0
+ 2g′

1
∂2η0

∂t1 ∂t0

+ 2g′
0
∂2η1

∂t1 ∂t0
+ ∂2η0

∂t20
+ K ϕ(xf ) ϕ

′(xf ) τ1
∂η0

∂t0
= 0 (2.31)

for the second order. As is typical with perturbation expansions, the homogeneous
part of the equations has a common form, which can be described physically as a
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damped oscillator. Equation (2.29) may be solved readily as

η0(t0, t1) = A(t0) exp
(−ζ̄ −

√
ζ̄ 2 − 4π2

2π g′
0(t0)

t1

)
+ B(t0) exp

(−ζ̄ +
√
ζ̄ 2 − 4π2

2π g′
0(t0)

t1

)
.

(2.32)

As (2.30) and (2.31) have the same form as (2.29), the form of the homogeneous solution
part should also be the same. Hence

η1(t0, t1) = C(t0) exp
(−ζ̄ −

√
ζ̄ 2 − 4π2

2π g′
0(t0)

t1

)
+ D(t0) exp

(−ζ̄ +
√
ζ̄ 2 − 4π2

2π g′
0(t0)

t1

)
(2.33)

and

η2(t0, t1) = E(t0) exp
(−ζ̄ −

√
ζ̄ 2 − 4π2

2π g′
0(t0)

t1

)
+ F(t0) exp

(−ζ̄ +
√
ζ̄ 2 − 4π2

2π g′
0(t0)

t1

)
.

(2.34)

The solutions are of eikonal form, which has two roots and is typical for wave propagation.
The scales g0 and g1 along with coefficients A and B can be expressed in closed form
from (2.29) and (2.30). To accomplish this, the first scale g0 can be solved. Hence the
exponential factor may be examined as

γ (t0) = −ζ̄ ±
√
ζ̄ 2 − 4π2

2π g′
0(t0)

. (2.35)

To ensure a bounded solution, the derivative of γ (t0) must be zero (Nayfeh 2000).
Therefore, the following ordinary differential equations (ODEs) are solved:

γ1 = −ζ̄ −
√
ζ̄ 2 − 4π2

2π g′
0(t0)

, γ2 = −ζ̄ +
√
ζ̄ 2 − 4π2

2π g′
0(t0)

, (2.36a,b)

where γ1 and γ2 are constants. The solutions for the scales can be written as

g0,1(t0) = − t0ζ̄
2π

−
√
ζ̄ 2 − 4π2

2π
t0, g0,2(t0) = − t0ζ̄

2π
+

√
ζ̄ 2 − 4π2

2π
t0. (2.37a,b)

To determine the conjugate functions A and B, the terms corresponding to exp(γ1t1) and
exp(γ2t1) are gathered and set to zero. Due to this constraint, singularities are suppressed,
and two ODEs are obtained for A and B:

dA
dt0

(
ζ̄ + 2πγ1g′

0,1
) + [

π + γ1g′
0,1

(
ζ̄ + πγ1g′

0,1
)]

C(t0)

+ {
2πγ 2

1 g′
0,1g′

1,1 + γ1
[
ζg′

1,1 + π
(
g′

0,1
(
Kτ1 ϕ(xf ) ϕ

′(xf )
) + g′′

0,1
)] }

A(t0) = 0
(2.38)

and
dB
dt0

(
ζ̄ + 2πγ2g′

0,2
) + [

π + γ2g′
0,2

(
ζ̄ + πγ2g′

0,2
)]

D(t0)

+ {
2πγ 2

2 g′
0,2g′

1,2 + γ2
[
ζg′

1,2 + π
(
g′

0,2
(
Kτ1 ϕ(xf ) ϕ

′(xf )
) + g′′

0,2
)] }

B(t0) = 0.
(2.39)
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The solutions can be written as

A(t0) = a0 exp
(

−1
2

Kt0

(
ζ̄√

ζ̄ 2 − 4π2
+ 1

)
τ1 ϕ(xf ) ϕ

′(xf )− g1,1(t0)
)
,

B(t0) = b0 exp
(

1
2

Kt0

(
ζ̄√

ζ̄ 2 − 4π2
− 1

)
τ1 ϕ(xf ) ϕ

′(xf )− g1,2(t0)
)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.40)

The first-order scale g1 appears in both coefficients. The scale may be set to zero without
loss of generality as it disappears from the expansion regardless of its value (Nayfeh 2000).
The natural cancellation of this scale prevents interaction and overlapping scales with
regard to t0. From this specification, (2.29) and (2.30) are solved completely. The solution
of (2.31) provides the coefficients C and D, along with the slow scale g2. First, the terms
corresponding to exp(γ1t1) and exp(γ2t1) are gathered and set to zero to suppress any
singularity behaviour. The ODE for C is

dC
dt0

+ {E(t0)[π + γ1g′
0,1(ζ̄ + πγ1g′

0,1)] + πγ1 C(t0)[Kτ1 ϕ(xf ) ϕ
′(xf ) g′

0,1 + g′′
0,1]}

(ζ̄ + 2πγ1g′
0,1)

− [a0Kπϕ(xf ) ϕ
′(xf )(π

2(4 + Kτ 2
1 ϕ(xf ) ϕ

′(xf ))− ζ̄ 2)

− a0γ1(4π2 − ζ̄ 2)(ζ̄ + 2πγ1g′
0,1)g

′
2,1]

× 1
(4π2 − ζ̄ 2)(ζ̄ + 2πγ1g′

0,1)
exp

(
−1

2
Kt0

(
ζ̄√

ζ̄ 2 − 4π2
+ 1

)
τ1 ϕ(xf ) ϕ

′(xf )

)
= 0,

(2.41)

with D having a similar formulation. The solution can be written as

C(t0) = c0 exp
(

−1
2

Kt0

(
ζ̄√

ζ̄ 2 − 4π2
+ 1

)
τ1 ϕ(xf ) ϕ

′(xf )

)

+ exp
(

−1
2

Kt0

(
ζ̄√

ζ̄ 2 − 4π2
+ 1

)
τ1 ϕ(xf ) ϕ

′(xf )

)

×
[

a0Kπϕ(xf ) ϕ
′(xf )

(
π2 (

4 + Kτ 2
1 ϕ(xf ) ϕ

′(xf )
) − ζ̄ 2)(

ζ̄ 2 − 4π2
)3/2 t0 − a0γ1g2,1

]
(2.42)

and

D(t0) = d0 exp
(

1
2

Kt0

(
ζ̄√

ζ̄ 2 − 4π2
− 1

)
τ1 ϕ(xf ) ϕ

′(xf )

)

+ exp
(

1
2

Kt0

(
ζ̄√

ζ̄ 2 − 4π2
− 1

)
τ1 ϕ(xf ) ϕ

′(xf )

)

×
[
−b0Kπϕ(xf ) ϕ

′(xf )(π
2(4 + Kτ 2

1 ϕ(xf ) ϕ
′(xf ))− ζ̄ 2)

(ζ̄ 2 − 4π2)3/2
t0 − b0γ2g2,2

]
.

(2.43)
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The slow scale can be solved by eliminating the last part of the amplitude as

g2,1(t0) = Kπϕ(xf ) ϕ
′(xf )

[
4π2 − ζ̄ 2 + Kπ2τ 2

1 ϕ(xf ) ϕ
′(xf )

]
γ1

(
ζ̄ 2 − 4π2

)3/2 t0, (2.44)

g2,2(t0) = −Kπϕ(xf ) ϕ
′(xf )

[
4π2 − ζ̄ 2 + Kπ2τ 2

1 ϕ(xf ) ϕ
′(xf )

]
γ2

(
ζ̄ 2 − 4π2

)3/2 t0. (2.45)

The time scale of the first wave can be written as

t0 = t,

t1 = −ωt0(ζ̄ +
√
ζ̄ 2 − 4π2)

2π

+ Kπϕ(xf ) ϕ
′(xf )

[
4π2 − ζ̄ 2 + Kπ2τ 2

1 ϕ(xf ) ϕ
′(xf )

]
ω

(
ζ̄ 2 − 4π2

)3/2 t0 + · · · ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.46)

while the time scale of the wave travelling in the opposite direction is

t0 = t,

t1 = ωt0(−ζ̄ +
√
ζ̄ 2 − 4π2)

2π

− Kπϕ(xf ) ϕ
′(xf )

[
4π2 − ζ̄ 2 + Kπ2τ 2

1 ϕ(xf ) ϕ
′(xf )

]
ω

(
ζ̄ 2 − 4π2

)3/2 t0 + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.47)

The terms γ1 and γ2 have been set to 1 without loss of generality. Such a time scale analysis
can also be performed employing the Wentzel–Kramers–Brillouin (WKB) approach. The
derivation of the solutions is demonstrated in Appendix A, showing and thereby verifying
that the WKB approach scales align with the generalized scaling approach.

Several conclusions can be drawn from this solution and its respective scales. First,
the solution takes the form of hyperbolic cosine and sine waves travelling in opposite
directions, resembling the response of a damped oscillator. The heater power influences the
amplitude of these waves. Additionally, factors such as time delay and acoustic intensity
at the heater location contribute to the amplitude response. For the transient response, the
damping primarily controls the fast oscillatory scale, while heat release, delay and acoustic
intensity at the heater location influence the slower time scale.

2.3. Method validation
Figure 5 compares the theoretical Rijke tube data with the EVDP equation results. While
minor phase lag deviations can be observed during the initial transient, the limit cycle
prediction is reasonably accurate. The limit cycle amplitude, frequency, and the time
required to reach the limit cycle agree well between the models. The statistical error of the
EVDP system and the input system, the limit cycle amplitude and frequency, are chosen
as the specific, quantifiable metrics, which are 1.4 % and 1.8 %, respectively, in figure 5.

Further validation is conducted on a modelled standing-wave thermoacoustic system
with heat exchangers applied (aiming to create temperature gradient across the stack). The
modelled systems consist of Navier–Stokes governing equations (PDEs). The modelled
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Figure 5. Comparison of the Rijke tube model and the EVDP model (μ1 = 0.016, μ2 = 0.472, μ3 = 4.515),
for (a) oscillations and (b) frequency.

standing-wave TAE is three-dimensional. It is a simplified cylindrical tube with the left
end rigidly closed (acoustic velocity node) and the right end open (acoustic pressure
node). The TAE system is simulated numerically with standing k-ε of the WALE-LES
turbulence model, and resolved in the computational fluid dynamics (CFD) solver ANSYS
Fluent 19.0. More details like boundary conditions, computational settings (turbulence
model) and validations can be found in previous work (Guo et al. 2023). The pressure
fluctuations generated from the modelled TAE system are shown in figure 6(a). Before
the limit cycle oscillations (LCOs) are generated, the flow disturbances decay rapidly first
and then grow gradually. The decay behaviour is due to the initial energy dissipation. (The
energy dissipates when pressure oscillation is not in phase with the unsteady heat release
perturbations according to the Rayleigh criterion.) Therefore, the perturbations in the red
circle (describing the rapid decay process) are neglected and deleted. The rest time series
is non-dimensionalized to get the input data (figure 6b). After training the PINNs model,
μ1 = 0.0303, μ2 = 0.00648 and μ3 = 1.72 are obtained. As shown in figures 6(c) and
6(d), the oscillations predicted from EVDP with variables obtained from PINNs fit well
with the CFD model, and the error of the frequency and the limit cycle amplitude are
0.02 % and 0.05 %, respectively.

In general, the errors between these two data sets are acceptable. The validations of
the two cases consisting of both ODE and PDE modelled thermoacoustic systems provide
convincing evidence supporting the effectiveness and correctness of the proposed model
to describe the nonlinear system reliably. Further investigations and comparisons can
be conducted to examine the bifurcation characteristics of the coupled thermoacoustic
systems.
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Figure 6. Validation of the PINNs-EVDP model with CFD data: (a) original data; (b) data processing;
(c,d) comparison with the EVDP system.

3. Results

To illustrate the proposed model capabilities, the suppression of the hazardous
thermoacoustic instability by the coupling method is demonstrated in this section.
The amplitude reduction effect is verified in Appendix C based on the coupled simulation
model mentioned before. Additionally, previous work (Biwa et al. 2015; Thomas et al.
2018; Ghosh, Mondal & Sujith 2022) showed that the governing equations describing the
coupled dynamics of the thermoacoustic systems ‘a’ and ‘b’ can be expressed as

dη̇a

dt
+ ω2

aη
a + ζ η̇a = βa

Ea
ϕa(xf )

{∣∣∣∣1
3

− ϕ′
n(xf ) η

a(t − τ1)

∣∣∣∣
1/2

−
(

1
3

)1/2}

+ Kd(η̇
b − η̇a)+ Kτ [η̇b(t − τ2)− η̇a(t)] (3.1)
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for coupled theoretical Rijke tubes, and

dη̇a

dt
− μa

1μ
a
3η̇

a + μa
2μ

a
3(η

a)2η̇a + (μa
3)

2ηa = Kd(η̇
b − η̇a)+ Kτ [η̇b(t − τ2)− η̇a(t)]

(3.2)

for coupled EVDP systems (where the equations for the coupled thermoacoustic system b
can be obtained by alternating the superscripts). The coefficients Kd and Kτ represent the
strength of the dissipative and time-delay coupling effects, respectively, which could be
controlled by a needle valve and a vinyl tube (Biwa et al. 2015). The dissipative coupling
strength (Kd), detuning (the frequency ratio Rω = ω1/ω2), time-delay coupling strength
(Kτ ) and time delay (τ2) are four control parameters that need to be determined. All ODEs
are solved numerically by a fourth-order Runge–Kutta scheme.

3.1. Effect of time-delay coupling
Due to the time required for a signal to travel from one system to another, the coupling
process involves time delays. The time-delay coupling effects are illustrated in figure 7,
based on the oscillator located on the right-hand side of the Hopf point (which can be seen
in figure 4a) without considering dissipative coupling and detuning. The bifurcation curves
shown in figure 7(d), delineating the parameter plane into regions of AD and LCO, exhibit
a consistent pattern for both coupled systems at small time delays. The one-parameter
bifurcation diagrams plotted in figures 7(a) and 7(c) reveal a small discrepancy in point
A with Kτ = 0.2 and τ2 = 0.2. The coupled oscillation is depicted in figure 8(a) and
demonstrates a faster decay towards AD in the theoretical, coupled Rijke tube systems
compared to the coupled EVDP systems. The oscillation amplitude in the EVDP systems
decreases more slowly, but AD will be reached when sufficient simulation time is
provided. In conclusion, the coupled systems based on the proposed EVDP approach
can accurately predict the time-delay coupling effects when the time delay is smaller
than the central point. The central point, identified as the point around which the AD
occurs most efficiently, is found to be near ωτ2 = 0.815π in the current study. The central
point was found to be ωτ2 = π in Thomas et al. (2018), and ωτ2 = π/2 in Biwa et al.
(2015). The amplitude reduction may be attributed to the negative feedback resulting from
self-sustained oscillations and phase-lagged oscillations of the feedback signal (Thomas
et al. 2018).

Upon passing the central point, the differences in the predictions become evident.
Figure 7(b) shows that the EVDP systems require a smaller time-delay coupling strength to
achieve AD at large time delays (τ2 > 0.7). At point B (as shown in figure 8b), the coupled
EVDP systems decay to AD, while the theoretical, coupled Rijke tube systems experience
a decrease in amplitude before settling into a low-amplitude steady state. This observation
suggests that the theoretical and dynamic differences between these two systems are not
the same. Comparing (2.2) and (2.22), using the EVDP equation as the alternative system,
transfers the nonlinearity from the source term to the damping term, which makes the
strong nonlinear system a weaker nonlinear system. Due to this transfer of nonlinearity,
the bifurcation difference is unavoidable. Therefore, when time delay τ2, which influences
the nonlinearity of the system, is small, the differences of the AD region are small, while
when time delay τ2 increases, the difference is intensified as shown in figure 7(d). This
divergence of AD results in the coupled proposed alternative system exhibiting a slightly
wider AD region. Hence the proposed method will be more reliable with a small τ2
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Figure 7. Effects of coupling strength (Kτ ) and time delay (τ2) in the coupling Rijke tube system and
the EVDP system symbolized by the amplitude of the end cycle. (No dissipative coupling and detuning
effects with Kd = 0 and Rω = 1.) One-parameter bifurcation diagrams with (a) τ2 = 0.2, (b) τ2 = 1.1, (c)
Kτ = 0.2. (d) Two-parameter bifurcation diagram in the parameter plane. The points A, B, C in figure 7(d) are
correspondingly plotted in the time domains in figure 8(a), (b) and (c), respectively. Here, Alc represents the
amplitude of the limit cycle when it is stabilized.

value for a controller strategy, when using the alternative EVDP system to determine the
coupling parameters.

3.2. Effect of dissipative coupling
To investigate the impact of dissipative coupling, two non-identical Rijke tubes (with
natural frequency ratio Rω = 0.878) are designed with the theoretical model for coupling
by adjusting the temperature gradient across the heat source. The temporal perturbations
are then used to learn the proposed EVDP model. Figure 9 shows the model results
when weak and strong dissipative coupling effects are applied without time-delay coupling
(Kτ = 0). The coupled EVDP oscillators exhibit almost identical behaviour regardless of
the dissipative coupling strength. For low dissipative coupling strength, the oscillators
settle into a low-amplitude LCO state. The coupled oscillation amplitudes exhibit periodic
variations attributed to the weak interaction effects between the coupled oscillators with
close but unequal natural frequencies. The oscillation amplitudes diminish to AD with
sufficiently high dissipative coupling strength (Kd = 0.18 in figure 9b).

One-parameter bifurcation plots, shown in figure 10, illustrate the effect of the natural
frequency ratios on the oscillation amplitudes. The coupled oscillators exhibit LCO
behaviour only when the frequency ratio is close to 1, regardless of the coupling strength.
Hence the theoretical Rijke tube and EVDP systems need substantial natural frequency
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Figure 8. Coupling oscillations of the coupling systems at the following points: (a) A with τ2 = 0.2 and
Kτ = 0.2; (b) B with τ2 = 1.1 and Kτ = 0.2; (c) C with τ2 = 1.2 and Kτ = 0.2.
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Figure 9. Coupling oscillations when the dissipative coupling is applied: (a) weak dissipative coupling;
(b) strong dissipative coupling. For these cases, Kτ = 0 and Rω = 0.878.

differences to approach AD states. The bifurcation characteristics of these two systems are
similar, but the EVDP system predicts wider AD regions.

The two-parameter bifurcation diagram for the theoretical, coupled Rijke tube systems
is plotted in figure 11(a) to explain the change of the AD region with increasing Kd. The
blue areas represent the AD phenomenon, i.e. the limit cycle amplitude approaches zero.
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Figure 10. One-parameter bifurcation diagrams varying the natural frequency ratio, where Kτ = 0:
(a) Kd = 0.10, and (b) Kd = 0.18.
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Figure 11. Two-parameter bifurcation diagram with varying Rω and Kd for the Rijke tube system for
(a) β = 2.11, (b) β = 4.11, with the bifurcation curves plotted for different β values.

The system cannot approach AD regardless of the detuning strength until the dissipative
strength of the coupling reaches a 0.083 bifurcation value. At this critical point, an
important region of AD emerges suddenly. The AD region gradually decreases as the
dissipative strength continues increasing beyond this point. This is consistent with the
results shown in figure 10. Biwa et al. (2015) also reported that the oscillation amplitudes
controlled by the heater power value (β) impacted the coupling. Hence diagrams with
different β values are presented in figure 11(b), showing that higher heater power values
require higher dissipative coupling or detuning strength to attain AD. Thus a rising β value
amplifies the limit cycle amplitude and reduces the AD region.
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Figure 12. Two-parameter bifurcation diagram illustrating variations in Rω and Kd for the EVDP system
(μ3 = 4.5), for (a) μ1 = 0.016, μ2 = 0.5, (b) μ1 = 0.016, μ2 = 0.2, (c) μ1 = 0.032, μ2 = 0.5, with the
bifurcation curves plotted for different μ1 values.

The two-parameter bifurcation analysis is also carried out for the coupled EVDP
systems. Figure 12(a) reveals that the two-parameter plane is divided into two distinct
regions resembling the pattern observed in figure 11. Comparing figures 12(a) and 12(b)
(where μ2 is decreased and μ1 is equal) reveals only a minor amplitude decrease with an
unchanged bifurcation boundary. Hence μ2 damps the oscillation amplitude, and changes
of μ2 have negligible effects on the dissipative coupling. However, changing the μ1 value
causes a distinct behaviour, as shown in figure 12(c) (where μ2 is held constant and μ1 is
increased). Here, μ1 and β have similar properties, i.e. higher parameter values increase
the limit cycle amplitude and extend the LCO region. These observations suggest that the
parameter μ1 in the EVDP model mimics the heating power β in the theoretical Rijke-type
thermoacoustics system. Thus, the EVDP equation can be rearranged such that the ‘source’
term with coefficient μ1 is on the right-hand side of the equation:

ψ̈ + μ2μ3ψ
2ψ̇ + μ2

3ψ = μ1μ3ψ̇. (3.3)
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Figure 13. Theoretically predicted bifurcation diagrams from our coupled EVDP oscillators (μ3 = 4.5).
Regions (I) and (II) denote high-amplitude oscillation and AD, respectively.

The EVDP equation can be interpreted physically. Based on (2.10), the amplitude of the
EVDP system is facilitated by raising μ1 and decreasing μ2, while according to Euler’s
formula, the real part of the exponent influences the amplitude of the oscillation, and the
imaginary part determines the frequency of the function. Therefore, based on the results
(2.40) and (2.46) from such a generalized scaling method, the amplitude of η is influenced
by the heating power (enhancing it) and damping (diminishing it), which is consistent
with the results obtained from (2.10) as shown in figure 2. According to the comparison
of the two-parameter bifurcation diagram, the variable μ1 contributes the same efforts
of the heating power to the Rijke tube system, and the variable μ2 corresponds to the
damping term, which have the same contributions to the amplitude of coupled EVDP
systems. More accurately, the rising μ1 enhances the oscillations and leads to the same
type of AD boundary, while the increasing μ2 diminishes the amplitude, which is visually
evident from figure 12(a) with figure 12(b). Thus we can draw the physical relevance of
these variables and get the one-to-one correspondence between (2.20) and (2.2) from the
EVDP system to the Rijke-type thermoacoustic system: the coefficient term μ2 represents
the system damping, the coefficient term μ3 integrates the frequency information of the
thermoacoustic system, and the coefficient term μ1 can be regarded as the source term of
the system, representing the instability intensity introduced by the nonlinear heat source.

As for the oscillations observed from the single TAE system, the coupling bifurcation
characteristics for the coupled EVDP systems need to be further validated based on either
experimental tests or numerical simulations. As reported in previous work (Biwa et al.
2015), the classical VDP system can reproduce the experimental systems. Therefore, the
bifurcation investigation of coupled EVDP systems is conducted and shown in figure 13.
As depicted in figure 13, cases 1 and 2 are coupled solely by the dissipative coupling, while
cases 3 and 4 involve both the dissipative and time-delay couplings. Additionally, cases 1
and 3 represent the EVDP system (when μ1 = μ2), and cases 2 and 4 represent the EVDP
system (when μ1 /=μ2). In other words, the EVDP system has the potential to replicate
the experimental thermoacoustic system, although the hydrodynamic equations governing
thermoacoustic oscillators are far more complicated. Selecting a proper EVDP system
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to be the alternative system for the system identification is appropriate for the coupling
method as discussed in the present work.

Looking forward, while the EVDP system effectively captures the stable periodic
solution oscillation or coupling bifurcation, it lacks the subcritical bifurcation features
as observed in the Rijke tube system depicted in figure 4 due to its singular bifurcation
point (μ1 = 0). Additionally, the conversion of such nonlinearity from the source term to
the damping term results in a weakened nonlinearity, leading to non-negligible differences
in the AD region for coupled systems. Consequently, there is potential to explore better
alternative systems for enhancing the PINNs model to yield the characters above. For
instance, based on the PINNs model, one may utilize the classical VDP oscillator with a
forcing term, the Rijke tube theoretical model, or incorporate multiple modes; all of which
may aid in capturing the subcritical bifurcation characteristics of uncoupled system and the
AD characteristics of the coupled system. This exploration could significantly enhance the
predictive capabilities and further advance our understanding of such complex nonlinear
dynamics related to the large-amplitude thermoacoustic instability.

4. Discussion and conclusions

We proposed an approach to find descriptions of the instability behaviour of
thermoacoustic systems by exact PDEs, which can be utilized for control strategy analysis.
Therefore, the van der Pol (VDP) equation was reformulated, and the unknown parameters
were determined using PINNs to solve the inverse problems. The proposed extended VDP
(EVDP) model was validated in terms of oscillation and bifurcation characteristics against
CFD data of a thermoacoustic engine (TAE) system and a horizontal Rijke tube modelled
by the Galerkin series with the modified King’s law. Further, the system coupling effect
was explored, and control parameters were derived for coupled Rijke tube systems and the
coupled EVDP systems. The main findings can be summarized as follows.

(1) The reformulated, nonlinear VDP equation with fitted coefficients by the PINN
approach was shown to be capable of replicating the thermoacoustic system
instability behaviour. The frequency, limit cycle amplitude, and the time required to
reach the limit cycle of the Rijke tube system and the CFD simulation TAE system
were predicted accurately. The validation provides evidence for the method’s ability
to obtain reliable alternative deterministic system descriptions.

(2) The coupled system becomes more prone to AD near a central point with varying
time-delay coupling strength. The coupled EVDP systems exhibit almost identical
bifurcation characteristics to the coupled Rijke tube system for short time delays
on the left-hand side of the central point. For larger time delays, the nonlinear
differences between the two systems are amplified, leading to a wider region of
AD for the coupled EVDP systems. The differences are unavoidable due to the
nonlinearity shift from the source term to the damping term when the EVDP system
is used as the alternative system.

(3) The coupled EVDP systems and the coupled Rijke tube systems can attain AD,
when the dissipative coupling strength reaches sufficiently high levels or when the
natural frequency differences between the coupled systems are significant. As the
coupling strength increases, the AD region emerges at specific bifurcation values
and diminishes subsequently.

(4) The variable μ1 was shown to affect the two-parameter bifurcation character
similarly as the heater power parameter β, which supports assigning the EVDP
model physical significance. The terms with coefficients μ1, μ2 and μ3 can be
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interpreted as source term, damping term, and term containing the frequency
information, respectively.
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Appendix A. The WKB approach

In order to verify the results from the generalized scaling method, the WKB approximation
is carried out. First, the solution η is assumed to have the exponential form

η = exp
(

S0(t)
ε

+ S1(t)+ ε S2(t)+ · · ·
)
. (A1)

The derivatives may be derived easily as

η′ =
(

S′
0(t)
ε

+ S′
1(t)+ ε S′

2(t)+ · · ·
)
η (A2)

and

η′′ =
[(

S′′
0(t)
ε

+ S′′
1(t)+ ε S′′

2(t)+ · · ·
)

+
(

S′
0(t)
ε

+ S′
1(t)+ ε S′

2(t)+ · · ·
)2]

η. (A3)

Inserting these expressions into (2.24), a series of three ordinary equations may be derived.
The first equation, corresponding to the fast variations in the wave propagation, is the
eikonal equation, which is very similar to the equation derived in the generalized scaling
method. The next equation is the transport equation, controlling mainly the amplitude of
oscillations. Finally, the slow scale S2 may be resolved. Mathematically, these equations
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may be written as (
dS0

dt

)2

+ ζ̄

π
v

dS0

dt
+ 1 = 0, (A4)

with

ζ̄

π

dS1

dt
+ 2

dS0

dt
dS1

dt
+ K ϕ(xf ) ϕ

′(xf ) τ1
dS0

dt
+ d2S0

dt2
= 0 (A5)

and

ζ̄

π

dS2

dt
+ 2

dS0

dt
dS2

dt
+ K ϕ(xf ) ϕ

′(xf )

(
τ1

dS1

dt
− 1

)
+

(
dS1

dt

)2

+ d2S1

dt2
= 0. (A6)

For the purposes of verifying the generalized scaling method, initial conditions will not
be applied in order to compare the results. First, (A4) may be solved, which is both
nonlinear and quadratic with respect to the scale S0. This matches the same physical
explanation given in the generalized scaling method where two waves are moving in
opposite directions. The solution may be written as

S0,1 = − ζ̄

2π
t −

√
ζ̄ 2 − 4π2

2π
t, S0,2 = − ζ̄

2π
t +

√
ζ̄ 2 − 4π2

2π
t, (A7a,b)

which reveals the same scales achieved earlier, S0 = g0. Next, (A5) is solved for S1 and
may be described as

S1,1 = −1
2

Kt
(

ζ̄√
ζ̄ 2 − 4π2

+ 1
)
τ1 ϕ(xf ) ϕ

′(xf ),

S1,2 = 1
2

Kt
(

ζ̄√
ζ̄ 2 − 4π2

− 1
)
τ1 ϕ(xf ) ϕ

′(xf ),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A8)

which corresponds to the exponential argument presented in (2.40). Finally, the scale S2
may be written as

S2,1 = Kπϕ(xf ) ϕ
′(xf )

[
4π2 − ζ̄ 2 + Kπ2τ 2

1 ϕ(xf ) ϕ
′(xf )

]
(
ζ̄ 2 − 4π2

)3/2 t,

S2,2 = −Kπϕ(xf ) ϕ
′(xf )

[
4π2 − ζ̄ 2 + Kπ2τ 2

1 ϕ(xf ) ϕ
′(xf )

]
(
ζ̄ 2 − 4π2

)3/2 t,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A9)

which is equal to (2.45), i.e. S2 = g2. In conclusion, the WKB approach scales align with
the generalized scaling approach.

Appendix B. Parameters and corresponding values for the modelled system

The critical parameters used in the modelled Rijke tube system in figure 5 in § 2.3 are
summarized in table 1.
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Parameter Symbol Value

Mean inlet temperature T1 300
Heater power β 2.11
Tube length L 1
Mean temperature gradient T2/T1 2.8
Heat source time delay τ 0.02
Damping parameter 1 ζ1 0.03
Damping parameter 2 ζ2 0.003

Table 1. Critical parameters of the dimensionless variable for the modelled Rijke tube system.

Tc
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dConnecting tube

Th Tc

LB

Th

Figure 14. Numerically modelled coupled TAE (standing-wave thermoacoustic engines) systems based on
previous experiments (Hyodo & Biwa 2019) in the presence of a connecting tube. Here, LA = 860 mm, LB =
920 mm, Tc = 300 K, Th = 425 K, L = 800 mm, d = 80 mm.
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Figure 15. Our CFD simulation results of amplitude reduction for the coupled TAE systems via the connecting
tube: (a) time evolution of pressure before and after coupling; (b) pressure spectra before coupling; (c) pressure
spectra after coupling at t = 2.45 s.

Appendix C. Verification of the amplitude suppression effect on the coupling method
based on the CFD simulation model

Two numerically modelled TAE systems are coupled by a connecting tube in our CFD
simulations, as shown in figure 14. This is an effective coupling method as validated
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in previous experiments (Hyodo & Biwa 2019). The numerically predicted amplitude
reduction from the modelled TAE systems is observed when L = 800 mm, d = 80 mm, as
depicted in figure 15. The pressure perturbations are attenuated from LCOs with amplitude
5800 Pa to oscillations with maximum amplitude 2900 Pa via a beating behaviour.
Correspondingly, the pressure spectra as shown in the frequency domain reveal that the
perturbations with a single dominant frequency at 103.7 Hz are changed to those with
two dominant frequencies at 95.9 Hz and 105.0 Hz, with a much lower amplitude. All this
confirms that the amplitude reduction could be achieved in the modelled coupled TAE
systems.
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