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Abstract 

In this review, we consider a quantum Coulomb fluid made of charged 
point particles (typically electrons and nuclei). We describe various for­
malisms which start from the first principles of statistical mechanics. These 
methods allow systematic calculations of the equilibrium quantities in some 
particular limits. The effective-potential method is evocated first, as well 
as its application to the derivation of low-density expansions. We also 
sketch the basic outlines of the standard many-body perturbation theory. 
This approach is well suited for calculating expansions at high density (for 
Fermions) or at high temperature. Eventually, we present the Feynman-Kac 
path integral representation which leads to the introduction of an auxiliary 
classical system made of extended objects, i.e., filaments (also called "poly­
mers"). The familiar Abe-Meeron diagrammatic series are then generalized 
in the framework of this representation. The truncations of the correspond­
ing virial-like expansions provide equations of state which are asymptotically 
exact in the low-density limit at fixed temperature. The usefulness of such 
equations for describing the inner regions of the sun is briefly illustrated. 

Abstract 

Dans cette revue, nous considerons un fluide coulombien quantique con-
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44 Alastuey: Statistical mechanics of quantum plasmas 

stitue de charges ponctuelles (typiquement des electrons et des noyaux). 
Nous decrivons differents formalismes s'appuyant sur les premiers principes 
de la mecanique statistique. Ces methodes permettent de calculer les quan-
tites d'equilibre de maniere systematique dans des limites particulieres. La 
methode des potentiels effectifs est d'abord evoquee, ainsi que son applica­
tion aux developpements a basse densite. Nous resumons aussi les grandes 
lignes de la theorie de la perturbation a N corps. Cette approche est bien 
adaptee au calcul des developpements a haute densite (pour des fermions) ou 
bien a haute temperature. Finalement, nous exposons la representation de 
Feynman-Kac qui conduit a l'introduction d'un systeme classique auxiliaire 
constitue d'objets etendus, i.e., les filaments (aussi appeles "polymeres"). 
Les series diagrammatiques de Abe et Meeron habituelles sont alors genera­
lises dans le cadre de cette representation. Les developpements correspon-
dants de type viriel, fournissent des equations d'etat qui deviennent asymp-
totiquement exactes dans la limite de basse densite a temperature donnee. 
L'utilite de telles equations pour decrire les regions internes du soleil est 
brievement illustree. 

3.1 Introduction 

In many situations, dense stellar matter can be described in terms of 
quantum plasmas made of electrons and nuclei. Beside its own conceptual 
interest, the study of the equilibrium properties of such systems turns then 
to be quite useful for astrophysics. Here, we review first principle formalisms 
with main emphasis on the path integral representation. 

First, we define the model and we recall the theorems which guarantee 
its thermodynamics stability. In Section 2, we describe few standard meth­
ods. In section 3, we present the Feynman-Kac representation which leads 
to the introduction of an equivalent system made of filaments (also called 
"polymers" in the literature). The corresponding formalism is applied to 
the derivation of low-density expansions of the thermodynamic functions in 
Section 4. It is shown that these expansions can be systematically inferred 
from diagrammatic series where the usual long-range Coulomb divergencies 
are resummed by a technique similar to what Meeron (1958) and Abe (1959) 
did in the purely classical case. As exposed in Section 5, the truncations 
of the expansion of the pressure provide analytic equations of state (EOS) 
which should be rather accurate at relatively low densities and high temper­
atures. For instance, these conditions are met in the core of the Sun which 
can be viewed, as a first approximation, as a three-component plasma made 
of electrons, protons and Helium nuclei. 
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This review is mostly dedicated to a qualitative description of the basic 
mechanisms and identities underlying the formalisms. A few results relative 
to exact expansions of the pressure are also presented. 

3.1.1 The model 

We consider a multicomponent system S, with an arbitrary number of 
species made of point particles. Each particle of species a (an electron or 
a nuclei in practical applications) has a mass ma and carries a charge ea 

and a spin aa. Two charges ea and ep separated by a distance r interact 
instantaneously via the usual two-body Coulomb potential eaeJguc(r) with 
vc(r) = 1/r. The corresponding Hamiltonian for N particles enclosed in a 
box with volume A is 

where i = [*] is a double index, while k runs from 1 to the number Na 

of charges of species a and a runs from 1 to the number ns of species 
(N = Y^ Na). The boundary conditions which define HN are of the Dirich­

ar 
let type, i.e. the eigenwavefunctions of HN vanish at the surface of the 
box. This non-relativistic Coulomb Hamiltonian is well-suited for practical 
applications where the mean velocity of the particles is small compared to 
the speed of light. 

Let the system be in thermal equilibrium at temperature T (/? = 1 / kBT). 
The grand-partition function of the finite system reads 

EA = TrAexp[-P(HN - 5>atf«)] 
or 

where fia is the chemical potential of species a. In the definition (2), the 
trace 7>A is taken over all the states satisfying the above boundary condi­
tions and symmetrized according to the statistics of each species. Note that 
the total charge ^ e« Na carried by each of these states may be different 

Or 

from zero. 

3.1.2 The Thermodynamic Limit 

Lieb and Lebowitz (1972) have shown that the thermodynamic limit (TL) 

(1) 

(2) 
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of the present system exists if and only if at least one species obeys Fermi 
statistics. The TL is defined as the infinite volume limit (A —> oo), while the 
chemical potential fia and the temperature T are kept fixed. The existence 
of the TL means that the thermodynamic quantities relative to the infinite 
system have the right extensive properties. In particular, the bulk pressure 
P given through 

/?P = l imi lnE A (3) 

is a well-behaved function of the intensive parameters fia and (3 which does 
not depend on the shapes of the finite boxes considered in the TL. If the 
fugacities za = exp (Pfia) are small enough (at given temperature), the 
system surely is in a fluid phase. The local density of any species a then 
becomes uniform in the TL and reduces to 

1 d 
Pa — Za~ TmAl n E Al' ; 9 ^ dza 

Furthermore, the infinite system is locally neutral, i.e. 

^2 eaPa = 0 (5) 
a 

for any set of fugacities. This is due to the fact that all the excess charges 
(associated to non-neutral states (Y^ ea Na^0) go to the boundaries in 

a 

order to minimize the electrostatic energy. Once the TL has been taken, 
these charges are rejected to infinity and the bulk region is neutral. 

The existence of the TL is guaranteed by the combination of several 
phenomena. First, the most probable microscopic configurations can be 
organized in ensembles of finite neutral clusters which are weakly coupled 
because of screening. This physical idea can be formulated in a precise math­
ematical way with the help of the cheese theorem and of the harmonicity 
of the Coulomb potential (see Lieb (1976) for a review). Of course, this 
screening mechanism requires the presence of charges with opposite sign 
(otherwise the system explodes). Second, the classical collapse between two 
opposite charges at short distances is avoided by the uncertainty principle. 
The latter ensures that the quantum density matrix remains finite, and con­
sequently integrable, at zero separations in configuration space. Third, the 
H-stability prevents the macroscopic collapse of all the matter into a big 
molecule. This property stipulates that the hamiltonian HN in the infinite 
volume is bounded below by an extensive constant (i.e. the groundstate of 
H^ is bounded below by est x N). Dyson and Lenard (1967, 1968) have 
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proved that the H-stability is enforced by Pauli's principle, which requires 
the presence of Fermions. 

The existence of the TL implies the stability of matter with respect to elec­
trostatic Coulomb interactions. It explains the usual aspect of the physical 
systems which can be reasonably described by the present model. Moreover, 
it justifies the calculation of bulk quantities in the infinite volume without 
any explicit consideration of boundary effects. 

3.2 First Principles Formalisms 

3.2.1 Effective potential method 

This very general method, not specific to Coulomb systems, is due to 
Morita (1959). It consists in introducing an equivalent classical system 
made of point objects with many-body effective interactions. For the sake of 
simplicity, we expose this method in the framework of Maxwell-Boltzmann 
(MB) statistics and we just mention how the exchange effects due to Fermi 
or Bose statistics can be included in a straightforward way. 

In configuration space, the MB grand-partition function reads 

rNa 

7Va=0 « i V « - J*N i 

x < RN\exp(-PHN)\RN > 

(6) 

with | RN > = ®i\Fi >. In (6), the contributions of the spins reduce to 
the trivial degeneracy factors (2<ra + 1) a because HN does not depend on 
the spins. The diagonal part < R^ | exp (—/3HN) \ Rjy > of the quantum 
density matrix can be always interpreted as a classical Boltzmann factor 
associated to an effective interaction y?jv such that 

< RN\ exv(-/3HN)\RN >= i-r./27rA?)3/2- exp(~/3Viv) (7) 

where A; = (/?7i2/m,) is the de Broglie wavelength associated to the i"1 

particle. Contrarily to the interaction part of HN, <PN does not reduce to 
a sum of two-body terms. This is a consequence of the non-commutativity 
between the kinetic and potential energies in quantum mechanics. However, 
it is convenient to split (p^ into a sum of two-body, three-body and higher 
order interactions. By specifying the identity (7) to the case of two particles 
i and j , one easily finds 
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<P2&,?i) = «!? = -kBT\n[{2K\}f<2(2*\}fl2 

1 (8) 
X < r ,r i |exp(-/?#2) | r ;f i > 

The total three-body effective interaction <p3(?i, fj, fk) between three par­
ticles i, j and k is then decomposed as 

with 

¥*(*, ** rk) = u™ + $ > + «!2) + ug> (9) 

u\fk = - fcflTlnj < rxr2r3\ exV(-(3H3)\nf2f3 > / [(2TTA2)3/2 

X (27rA2)3/2(27rA2)3/2 < fifjl expi-PHJftrj > (10) 

< fifk\exp(-/3H2)\fifk > < f ? - r j t | exp(-^2) | r i r f c > \ 

Similar decompositions of <pjv(N > 3) in terms of the two-, three-, ..., 
N-body u-interactions can be found recursively. The insertion of these de­
compositions in (7) and use of the configurational expression (6) for H^B 

lead to 

oo 9/T 4- 1 , N (2aa + l)J 

: - V T\z »~ ^ ^ } I f]df 

I- «<i t<j'<fc J 

This identity shows that the MB grand-partition function of the quan­
tum system S is identical to the one of an auxiliary classical system made 
of point objects interacting via two-, three-, ... and N-body effective in­
teractions. For Fermi or Bose statistics, the same equivalence holds with 
effective u-interactions defined in terms of the symmetrized matrix elements 
of exp (—/3HN)- The introduction of the above equivalent system allows to 
study the pressure, and consequently all the thermodynamic functions of 
S, within the usual methods of classical statistical mechanics. However, we 
stress that the difficulties inherent to quantum mechanics rely in the deter­
mination of the many-body effective interactions. In the limit h —> 0, uj • 
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Fig. 1.1 Solid line : the effective-potential t/j._(r) between two opposite 
charges (+e) and (—e) ; dashed line : the Coulomb potential — e2/r. 

goes to e< ej vc(\fi — fj\) while all the higher order effective interactions u ^ 
vanish. The effective-potential expression (11) then reduces to the classical 
grand-partition function of 5 , as it should be. 

The effective potential method has been first applied to quantum plasmas 
by Ebeling (1967) with the purpose of deriving low-density expansions of 
the thermodynamic functions. This method is indeed well-suited for such 
calculations for the following reason. By construction, the N-body effective 
interaction u^N^ goes to zero for any large separation of its arguments. 
So the configurations where u^N^ contributes to E A , are made of finite-
size clusters which all contain at least N particles. This suggests that the 
contributions of vlN) to the pressure should be at least of order pN (p is a 
generic notation for the particle densities). According to this simple rough 
argument, the density-expansion of the pressure up to the order pN included 
can be calculated exactly by omitting all the effective interactions vSM' with 
M > N. In particular, Ebeling and coworkers (see references in the book by 
Kraeft et al. (1986)) performed calculations up to the order p 5 / 2 by keeping 
only the two-body effective interactions u^h The potentials u^2) can be 
viewed as Coulomb interactions regularized at short distances. Indeed, at 
large distances u\ •' behaves as the Coulomb potential, i.e., e{ ej j |F» Jh 

,(2) while u\j' remains finite at zero separation because quantum diffraction 

smoothes out the 1/r-singularity at the origin. For fixing ideas, we have 

drawn in Figure 1 the effective interaction u\._(r) between two oppposite 

charge (+e) and (—e) separated by a distance r . 

The auxiliary classical system with the two-body Coulomb-like interac­

tions i r ' can be studied by various standard methods. In particular, the 
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density-expansion of the pressure may be readily obtained from Abe-Meeron 
diagrammatics. The corresponding graphs follow from systematic resumma-
tions of the convolution chains in the genuine Mayer graphs built with bonds 
(exp [—flu(2)] — 1). This procedure eliminates the divergencies induced by 
the Coulomb long-range part of u^, and make an integrable screened po­
tential appear. The definition of the screened potential in terms of «<2> is 
identical to the one of the familiar Debye-Hiickel potential in terms of the 
1/r-Coulomb potential. 

As it will be discussed with more details in Section 5, and contrarily to 
what was expected, the density expansions calculated by the above authors 
are correct only up to the order p2 included. In fact, the contributions of 
the three-body effective interactions u^ are of order p'l2 instead of p3. 
This is due to the fact that u^ is long ranged, i.e., not integrable at large 
distances. Of course the exact expression of the virial coefficient of order 
p5'2 might be obtained by the above method via a proper inclusion of the 
three-body effective interactions. 

3.2.2 Many-Body Perturbation 

This method consists in a perturbative treatment of the interaction part 
of the Hamiltonian HN given by (1). It allows systematic expansions of 
the equilibrium quantities in powers of the charges which characterize the 
strength of Coulomb interactions. The formalism is carefully presented in 
the book by Fetter and Walecka (1971). Here, we just describe the main 
steps of the method. 

The perturbative expansion is carried out in the framework of the grand-
canonical ensemble, at fixed temperature and fugacities (the corresponding 
expansion in the canonical ensemble is more cumbersome because of the 
so-called 1/N tails). The key starting identity is the Dyson series which 
represent the quantum Gibbs factor (i.e. the density matrix) as 

( " l ) r 

exv(-f3HN) = e x p ( - / ? # „ ) j 1 + E ^ ! 
n = l 

x / dn ... / drnTT 
Jo Jo 

(12) 

V° .V° 

where Ho and V are the kinetic and interaction parts of HN respectively. 
Moreover, V® is the imaginary-time evoluted operator. 
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VT° = exp(i-#o)Vexp(-r#0) (13) 

and TT is the familiar T-product which ranges all operators from left to 
right which decreasing "times" r . The insertion of the Dyson series (12) 
in the trace (2) leads to the required perturbative representation of any 
equilibrium function of S. Each term in these perturbative series obviously 
reduces to a statistical equilibrium average < ... >o calculated with the free-
particle Gibbs measure exp [—(3(Ho — ^ / i a Na)] / S A ^ . For instance, the 

a 
V-expansion of the pressure given by Eq. (3) involves 

<2V v° v° >o (14) 

Since V is diagonal in configuration space and reduces to a sum of two 
body terms, one easily guesses that the above averages may be expressed as 
multiple spatial integrals over products of two-body interactions weighted 
by equilibrium configuration distributions relative to the reference system 
So. Moreover these distributions reduce to products of one-body terms 
because the particles of «So are not coupled together. 

The precise structure of the perturbative terms, like (14) for instance, 
might be determined via suitable insertions of the familiar configurational 
Slater sums. However, this leads, at high orders in V, to complicated count­
ing problems of permutations. In order to circumvent these difficulties linked 
to statistics, it is particularly convenient to introduce the second quantiza­
tion representation defined in terms of the operators ^r

Q(r'<Tz) or ^(For*) 
which respectively annihilates or creates one particle of species a at position 
Fwith spin oz along a given z-axis. In the framework of the grand-canonical 
ensemble, this representation is in fact quite appealing since the total num­
ber of particles is not fixed. Furthermore, the bosonic or fermionic nature 
of each species is automatically taken into account via the commutation or 
anticommutation relations, 

*t(f>2)tfa(rV") ± ¥a(f>")*£(*>*) = **•.*" X *(?- n 
*£(* **)»£(*>") ± »£(*>"•)•£(*>*) = 0 
*«(r, <Tx)9a(r,<T") ± Vaifta'^air, O = 0 

while two operators associated to different species always commute. The 
second-quantized expressions of the operators of interest read 
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a,f3ff',az 

a <jz = -oa
 J L a . 

F = ? £ £ / < ^ / r f V « t ( F , , , « ) * t ( f > . . ) 

X e a e 0 v c ( | f - r" |)*/ 3(r ' ,(TI ')*Q(r,(Tj r) 

iV, 

(15) 

(16) 

(17) 

(now Na is the number-operator which counts the particles of species a ) . 

The averages like (14 ) appearing in the V"-expansions then involve traces 

over the Fock space of the products of (9^)T. and (^^)T. weighted by the 

free-particles measure 

^ e x p | - / 3 E E y r f V [ * t ( F , ^ ) ( _ _ ^ _ A ) M r - - , ^ 

(18) 

Since the measure (18) is Gaussian in the * ' s , and since all the ^ ' s commute 
or anticommute except for c-numbers, the above traces can be calculated 
with help of Wick's theorem. Similarly to the formula which relates any 
moment for a Gaussian distribution of real variables to the covariances, the 
free-particle average of any product of \?'s is identically equal to the sum over 
the products of all the possible corresponding two-operators contractions. 
The sole non-vanishing contractions are those which conserve the number of 
particles of each species. They reduce to the finite-temperature one-particle 
Green's functions of So, i.e. 

Ga,o(?,<rMS\?,<rM,T)=<TT ( * t ( f > * ) ) ° ( * a ( r V ) ) ^ >o(19) 

The second-quantization analysis of the F-expansions provides well-defined 
rules for interpreting each term as a Feynman graph similar to those which 
appear in field theory. Roughly speaking, the graphs are made of one-
particle fermionic or bosonic oriented loops connected by two-body interac­
tion lines. The two points linked by a given interaction line are affected of 
the same "time" r;. They may belong either to the same loop or to different 
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loops. Each loop contains an arbitrary number TIL of points f,- at time r,-. 
Its statistical weight is given by the product 

n^a ,o( r , ; f f*r i , f t + i<7*r t + 1 ) (20) 
i= l 

of the free-particle Green's function connecting two successive points on the 
loop (rnL+l = fi and r n £ + 1 = 7i). The weight of a loop containing only 
one point reduces to 

I , _ zaexp(-/?§^) 
Gt,,„(f1,^rI;n,^,n)=(^y*[ , ; , (21) 

<*W [2 o Cxp(-^)±l] 

which is nothing but pa )o / (2<ra + 1) with pafl the particle density of SQ 
(note that paio is different from the particle density pa of the interacting 
system S). In general, for the considered physical quantities, each graph is 
connected. For instance, in the case of the pressure, the disconnected graphs 
which appear in the expansion of E.\ are eliminated in the corresponding 
logarithm. In Figures (2a) and (2b), we have drawn two typical graphs 
which contribute to this quantity. The graph (2a) is of the exchange type 
since the interaction line links two points on the same loop. The graph 
(2b) is of the direct type since the interaction lines link points belonging 
to distinct loops. Note that if one sets h —* 0, all the exchange graphs 
disappear while all the loops are contracted in single points with statistical 
weights (2<rQ + l)za / (27rA^)3/2. One then recovers the classical graphs 
which can be inferred from the familiar Mayer graphs by expanding the 
Mayer bonds (exp [—/?e,- ey vc(rij] — 1) in Taylor series with respect to vc. 
The general structure of the Feynman graphs does not depend on the precise 
nature of the two-body interactions. In the present Coulomb case, part of 
these graphs (involving direct contributions) diverge because vc(r) is not 
integrable at large-distances. These long-range divergencies are similar to 
the ones which appear in the classical Mayer graphs. Like in the purely 
classical case, the divergencies in the pressure are eliminated by summing 
together the ring structures, as shown by Montroll and Ward (1958). For 
instance the divergent contribution of the graph (2b) is combined to the 
divergent contributions of all the ring graphs made of n loops connected 
by n interation lines with n > 3 (an example of such ring graphs is shown 
in Figure 3). The sum of all these ring contributions is finite. For the 
particle correlations, one must resum chain structures instead of rings (see 
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(D O-V.-G 
fa) (b) 

Fig. 1.2 a, 1.2b Two Feynman graphs which contribute to the e2-expansion 
of the pressure. Big oriented circles : fermionic or bosonic loops ; dashed 
lines : two-body interactions connecting pairs of points (small black circles) 
on the loops. 

Q--G 
Fig. 1.3 A typical ring graph. 

e.g. Cornu and Martin (1991)). All these mathematical recipes reflect the 
screening of the bare Coulomb interaction via many-body collective effects. 
The expansion parameter in the above perturbative series is the charge e, 
where e is a generic notation for the charges of the particles. The lowest 
order correction to the pressure PQ of the free gas So is given by the exchange 
graph (2a) which is of order e2 (the direct contribution of order e2 vanishes 
because of overall neutrality). The next correction is not of order e4 as 
a consequence of the long-range divergencies which prevent the pressure 
to be an analytic function of e2. This correction is given by the sum of 
all the ring graphs analogous to (2b) and (3) (physically, this contribution 
corresponds to the RPA mean-field approximation). The analytic evaluation 
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of the ring sum for any temperature and fugacities is quite cumbersome. To 
our knowledge, it has been done explicitely in two cases. 

First, for an electron gas (one-component plasma of fermions) at zero-
temperature, Montroll and Ward (1958) have shown that the ring contri­
bution to the internal energy per particle E/N is of order e4 lne2 . In fact, 
they recover the e2-expansion. 

E 35/3,4/3,2 * * 1 / V 

N 10m H 4x 1 / 3 P 

(1 — ln2 )m 4 , / e2m \ . is 

first derived by Gell-Mann and Brueckner (1957) in the framework of the 
adiabatic perturbation-switching formalism (the graphs introduced in this 
perturbative treatment of the ground state turn out to be quite similar 
to those described above). The expansion (22) can be rewritten in terms 
of the single dimensionless parameter rs defined as the ratio of the mean 
interparticle distance a = (3/471-p)1/3 by the Bohr radius ag = h / m e 2 . 
The appearance of rs is quite natural since rs is proportional to the ratio 
of the mean Coulomb energy (~ p1'3) divided by the Fermi kinetic energy 
(~ p2/3) . The expansion (22) should converge for small values of ra, i.e., at 
high densities. It can be also viewed as an asymptotic expansion in inverse 
powers of the density. 

The second analytic evaluation of the ring contribution has been per­
formed in the high-temperature limit. This contribution then becomes of 
order e3 and leads to the well-known classical Debye-term —K3^ / (247r) with 

1 /9 

KD = (47r (3 ^2a e2 pa) . The e2-expansion should be quite appropriate 
at high temperatures since the mean Coulomb energy e2/o then becomes 
small compared to the thermal kinetic energy kpT. Consequently, a natural 
by-product of these perturbative series is the derivation of high-temperature 
expansions. However, the reorganization of the e2-series in /3-series is not 
straightforward because both expansions involve several independent di­
mensionless parameters. Indeed, in addition to the coupling parameter 
/3e2 /a(~ (3) which measures the strength of Coulomb interactions, they 
depend on the quanticity parameter A/a(~ /J1/2) which controls diffraction 
and degeneracy effects. The /^-expansion of (3P up to the order /35/2 has 
been calculated by De Witt (1966) in the framework of Maxwell-Boltzmann 

(22) 

https://doi.org/10.1017/S0252921100026312 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026312


56 Alastuey: Statistical mechanics of quantum plasmas 

statistics. Keeping only the free term /?PQ a nd the ring sum, he found 

/̂  = E ^ - ^ E ^ ) 3 / > 2 
24* a 

*3/2 e 2 e 2 / i ( 2 3 ) 

+ ^77 E -^PaPefP*2 + W 3 In/3) 
«.0 ™aj3 

Notice that the exchange effects will give terms of orders /33'2 (the usual 
Fermi or Bose ideal term), /32 (contribution from the exchange graph (2a)), 
/ 3 5 / 2 and so on. Moreover, the /35'2-term arising from the /3-expansion of 
the ring sum is proportional to h. In fact, the higher order interaction terms 
in (23) involve any integer power of h, even or odd, positive or negative. 
This general singular structure with respect to h of the /^-expansions hold in 
particular for the OCP. In that case, the pressure (and the other thermody­
namic functions) may be also represented by the familiar Wigner-Kirkwood 
(WK) expansion in powers of h around the classical limit (the WK expan­
sion cannot be used for a multicomponent system because the collapse of 
opposite charges makes the classical limit singular). One then concludes 
that the (3- and W^if-expansions do not coincide. As argued by De Witt 
(1962), this a priori surprising result can be interpreted by noting that , 

in the high-temperature limit, the de Broglie wavelength A = ((3h / m) 
becomes much larger than the Landau length / = (3 e2 which is a classical av­
erage range of the Coulomb interactions. The validity of the WK-expansion 
requires, roughly speaking, A <C /, a criterion which is satisfied, on the 
contrary, at rather low temperatures. 

The e2-expansions also constitute the starting point of the so-called fu-
gacity expansions introduced by Rogers (1974). This author proposed a 
classical treatment of the ring resummations, combined to additional re-
summations of Ladder graphs of the type shown in Figure (4) with an arbi­
trary number of interaction lines. The latter amount to introduce Coulomb 
thermal propagators at short distances in order to take into account the 
contributions of bound states. In this procedure, some terms are left over 
since they are expected to be quantitatively small in the physical regimes 
considered by the author (i.e. at moderately high densities where com­
plex entities made of several charges may be formed). The corresponding 
calculations are reviewed in the present volume. 
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0"/£-:=0 
Fig. 1.4 A typical Ladder graph. 

3.3 The Feynman-Kac Representation 

3.3.1 The case of one particle 

For the sake of pedagogy, we first illustrate the Feynman-Kac representa­
tion for one particle with mass m submitted to an external potential V(f). 
According to the original path integral formulation introduced by Feynman 
(1965), the diagonal matrix element of exp[—/?(—^-A + V)] reads 

<f\exV[-P(-^A + V)]\f>= £ exp(-^))) (24) 
all paths \ / 

where S(f(t)) is the classical action in the potential —V, 

S«0) = jf*{f[Sf2r + V<*)>} <») 
for a path r (t) going from f to f in a "time" /3h. The summation in (24) is 
taken over all such paths. The variable changes t = s/3h and f(t) = f+\ £ (s) 

with A = ((3h2/m) in (24) and (25) lead to the so-called Feynman-Kac 
(FK) representation (see e.g. B. Simon (1979)) 

n 

with 

V*(r, 0 = fl dsV(f+ X((s)) (27) 
Jo 
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The factor exp[—/3V*(f*,f )] obviously arises from the potential part of the 
action S. The corresponding kinetic factor, i.e. exp[—^ f0 ds(2(s)], is ab-
sorbed in the normalized Gaussian measure Z>( £) which defines the func­
tional integration over all the dimensionless Brownian bridges £(s) subjected 
to the constraint f (0) = f (1) = 0. This measure is intrinsic, i.e. independent 
of all the physical parameters, and its covariance is given by 

/*(*(.)=<,x{;(
(;:;|; ; | ; (28) 

It is very natural to interpret exp[—(3V*( f,£)] as the Boltzmann fac­
tor associated to a classical closed filament located at r and with shape 
parametrized by £(s). The potential V* seen by this filament is the av­
erage of the genuine potential seen by the particle when it runs over the 
line f+ A £(s). The FK representation (26) stipulates that the Gibbs fac­
tor for the quantum point particle exactly reduces to the shape-average of 
this Boltzmann factor with the Gaussian measure 2>(f ). The de Broglie 
wavelength A controls the typical size of a filament: roughly speaking, the 
statistical weight of a filament with size R behaves as exp(—R2/X2). Note 
that the classical limit of the density matrix is immediately obtained from 
(26) by replacing V* by V(f) : in this limit, A goes to zero and the spatial 
extension of the filaments can be neglected in the calculation of V*( f, £). 

3.3.2 The system S with Maxwell-Boltzmann statistics 

First, we only consider MB statistics. The corresponding grand-partition 
function Sj^fl of S is given by the space-configurational expression (6). Sim­
ilarly to the expression (26), the FK representation of the diagonal matrix 
elements of exp(—(3Hiv) reads 

< RN\ exp(-(3HN)\RN >=J\ ( 2 7 r A ^ 3 N a /2 

X exp 
fl - - 1 ( 2 9 ) 

* TT- JO 

0 

where each Brownian bridge £i(s) parametrizes the trajectory of the ith 

particle in the genuine Feynman path integral, and is distributed according 
to the intrinsic Gaussian measure defined above. This representation sug­
gests to introduce the following auxiliary classical system «S* made of closed 
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£ J <? 
Fig. 1.5 A few closed filaments which belong to S*. The small black circles 
represent the positions of the filaments, while the closed curves attached 
to each of them represent their shapes parametrized by A£(s). 

filaments interacting via two-body forces. Each filament is characterized by 
its spatial position r and two internal degrees of freedom, the dimensionless 
path f(s) associated to its shape and the species index a which specifies 
its spatial extension Aa and the strength ea of its coupling with the other 
filaments. We note £ = ( a, r, f ) the state of such a filament. Two filaments 
in states £ and £' interact via the two-body potential eae<yi;(£, £') with 

v(£, £') = f1 dsvc(\F+ *«£(>) -f- Aa'fOOl) (30) 
Jo 

This potential is different from the electrostatic interaction energy between 
two uniformly charged filaments, because the average of vc is taken over po­
sitions at the same "time" s. However, it reduces to the Coulomb potential 
at large distances, i.e. 

v(€,e')~l/\r-?\ when | f - f | - > o o (31) 

since the filaments can then be replaced by points. A few filaments are 
drawn in Figure 5. 
The insertion of the FK representation (29) in the space-configurational 
expression (6) of Ej^B leads to a sum over the states of S* weighted by 
Boltzmann factors associated to the filaments interactions. In this sum, 
it is quite natural to define the phase-space measure d£ for a filament as 
d£="da"drD(() and to set z(£) = (2<ra + l)z0/(2*rX2

a)z/2 for its fugacity. 
The above sum is then identified as the grand-partition function E\ of S*, 
i.e. 

https://doi.org/10.1017/S0252921100026312 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026312


60 Alastuey: Statistical mechanics of quantum plasmas 

1 r ' 
Zr=ZX=^T- ft d£kz(£k) n i l + /(**,*!)], (32) 

7V=0 * J k-\ k<l 

where f(£k,£\) is the Mayer-bond associated to v(£k, £/), 

f(£k,£l) = exp[-/?eafceQ(v(£fc,£/)] - 1. (33) 

The identity (32) exemplifies the equivalence between the quantum sys­
tem SMB and the classical system «S* for studying equilibrium properties. 
In «S*, the quantum mechanical aspect of SMB is hidden in the complex 
nature of the filaments. In fact, these extended objects describe quantum 
fluctuations of the point particles. In the effective-potential method, the 
auxiliary classical system is still made of point objects while the quantum 
effects are taken into account in the two-body and higher order effective 
interactions. Here, we stress that the interactions between the filaments are 
strictly of the two-body type. 

3.3.3 Inclusion of Fermi or Bose statistics 

In order to take into account the exchange effects due to Fermi or Bose 
statistics, we express the trace (2) over the properly symmetrized states 
\RN&N >» in configuration and spin spaces. These states are defined via 
the usual Slater sums 

\RN<TZ
N > S = n (N m/aEII^")®' 1^(0^(0 > (34) na(Na\y/* Va a 

In (33), Va is a permutation of (l...iVa), Va(i) = CPa(k),a), and €a(Va) is 
either 1 if the particles of species a are bosons (aa integer) or the signature 
(±1) of Va in the fermionic case (<ra half-integer). Furthermore, ® means 
a tensioral product over the one-body states \faz > describing a particle 
localized at r with the projection of its spin along a given z-axis equal to 
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az (az may take (2 aa + 1) values). Using (34), we obtain 

°° n ?N<* 

^ " ^ o i n j i v . ! ) ] 2 

x £ Ue-CP-)ea(V'a)TtU
<CTV'a(i)\

crk(i)> (35) 

x / v II
rfF« < *V-(ol ®t I exp(-^7v)| ®t- |f>a(0 > 

J A" : 

Since the hamiltonian HN (equation (1)) does not depend on the spins, the 
spin-part of the matrix elements contributes the trivial degeneracy factor 
£<rf lit < av' (i)\ava(i)

 > which only depends on the pairs of permutations 

The Slater-sum representation (35) of EA alows a natural identification 
of the exchange effects. Indeed, the "square" terms (Va = Va for any 
a) , where the diagonal matrix elements of exp(—/3HJV) in configuration 
space appear, obviously correspond to MB statistics. A "rectangle" term 
(Va / V'a for at least one species) involves the exchange of n particles (n > 
2). The corresponding matrix elements of exp(—(3HJV) are off-diagonal with 
respect to the positions of the exchanged particles. The structure of the FK 
representation of these off-diagonal matrix elements can be interpreted in 
two ways which lead to different treatments of the exchange contributions. 

A first possible interpretation consists in introducing opened filaments 
T^ associated to the exchange of a particle a from position ffc to position 
fj. The shape of T^ is parametrized by 

uZ,(8) = (1 - s)fk + sfi + Xa((s) (36) 

which describes a path of the exchanged particle in the genuine Feynman 
path integral (uJfcj (0) = fjfc and (Ufc/ (1) = fj). The above closed filaments 
£ are again associated to the non-exchanged particles. For instance, if one 
considers the off-diagonal matrix element 

< r2fif3 .. .?N\ exp(-/3HN)\rif2T3 . . .Fjv > (37) 

which corresponds to the exchange of two particles, there appear two opened 
filaments T"2

 a n d F^x an(^ (N-2) closed filaments £3,..., EN- This situation is 
illustrated in Figure 6. By collecting together all the contributions with the 
same finite number n of exchanged particles, we are then left with a problem 
of impurities, the n opened filaments, immersed in the bath S* of closed 
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%> 7 f~ °@ 
Fig. 1.6 Two opened filaments T*2 and .F î surrounded by closed filaments 
of S*. 

filaments. This inhomogeneous situation can be dealt with along standard 
perturbative techniques where the reference system is the homogeneous bath 
S* described in section 3.2. 

The second interpretation of the exchange contributions is due to Brydges 
(private communication). Any permutation of n objects, which character­
izes the exchange of n particles, is the product of p cycles with p < n. 
Therefore, the corresponding n opened filaments may be always viewed as 
a set of p closed filaments. Each of these new closed filaments is made of q 
opened filaments, q > 1, and will be noted £(q\ It can be associated to a 
closed path described in a "time" q(3h. For instance, in the above example 
the union of T^ a n d -^n gives raise to £^2>. Therefore, the whole Slater 
representation (35) of EA is identified as the grand-partition function of a 
mixture of classical closed filaments £^ with q = 1,2,3...oo (the C^'s are 
the closed filaments £ introduced in section 3.2). The typical size of £<«> de­
pends on the "time" q/3h. Its activity incorporates a self-energy term arising 
from two-body interactions of the type (30) between the opened filaments 
which constitute £(q\ In the present approach, the MB and exchange ef­
fects are treated on an equal footing, while the previous interpretation leads 
to a perturbative treatment of the exchange contributions. 

3.3.4 Possible applications 

Within the above equivalences which follow from the FK representation, 
the equilibrium properties of the quantum system S can be studied by ap­
plying the usual methods of classical statistical mechanics to S*. Indeed, 
the system of closed filaments is isomorphic to an ordinary classical system 
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of point objects with two-body interactions. In «S*, the position r*is replaced 
by the generalized coordinate £. The familiar calculation rules remain un­
changed, apart from this simple substitution, because all the quantities of 
S* behave as commuting c-numbers (the operatorial structure of quantum 
mechanics "disappears" in the FK representation). 

The familiar Mayer series can be extended to S*. For systems with short-
range forces, Ginibre (1971) proved the convergence of the activity expan­
sions by exploiting the classical structure of the Mayer-like graphs. For the 
present Coulomb systems, the Mayer-like series for S* constitute a pow­
erful tool in the systematic derivation of density-expansions (see Section 
4). Aside from these exact calculations, one might introduce approximate 
methods by extending well-known integral equations (likeHNC) to the cor­
relations of S* (see e.g. Chandler (1981) for a review relative to systems with 
short-range forces). Although such extensions do not cause any trouble at a 
formal level, we stress that the explicit calculations might be rather difficult 
because of the functional integrations over the shapes of the filaments. 

3 .4 Virial-Like Expansions 

Like in the classical case, all the above Mayer-like graphs diverge be­
cause of the long-range Coulombic nature of the filament-filament potential. 
Alastuey, Cornu and Perez (1993) have shown that the corresponding series 
can be reorganized in series of finite resummed graphs. In this section, we 
just sketch the main steps of their method. First of all, they consider only 
MB statistics and the resummation procedure is applied to the Ursell func­
tion h(£a, £{,) of S*. The density expansions of the MB thermodynamic 
functions of SMB are then evaluated via standard identities. The exchange 
effects are included perturbatively within the impurities approach exposed 
in Section 3.3. 

3-4-1 Diagrammatic resummations 

The two-point Ursell function h(£a, £(,) of S* is defined as usual by 

p(£a)p(£b)h(£a,£b) = z{£a)z(£b)lnaJ^0^ (38) 

It can be represented by series of Mayer graphs T in terms of the filament 
density 
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Fig. 1.7 A typical graph T which contributes to the Mayer-like density-
expansion of h(Sa,£i). The closed filaments are drawn as in Figure 5, with 
the sole difference that the positions of the root filaments £a and £\, are 
representated by white circles. The tubes connecting the filaments are the 
Mayer bonds f(£a,£i) and f(£\,£b)-

The T's are defined via the familiar topological prescriptions, where the 
usual points are now replaced by filaments. Each graph is built with the two 
root filaments £a and £{, and n field filaments £\,...,£n which are integrated 
over. Each field filament Z\ has a statistical weight p{€i). Two filaments 
are linked by at most one f-bond (33). Each T is connected and does not 
contain articulation filaments. A typical graph T is drawn in Figure 7 and 
its contribution reads 

j dexP{Ex)f{£a,Ex)f{£x,£h) (40) 

Note that the filament density p(£\) cannot be factored outside the integral 
in (40) because it depends on the shape of the filament. 

The contribution of each graph T is divergent because of the non-integrable 
1/r-decay of the Mayer bond f associated to the Coulombic behaviour (31) 
of the potential v. For instance, the spatial integral over f\ involved in (40) 
is not convergent at large distances. The resummation procedure starts 
with the following decomposition 
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/(£,£') =fc(\?-f>\) + lf2
c(\?-?\) 

ri
 2 (41) 

+ / ds[\J(s).V + \a,?(s).V']fc(\r-r'\) + fT(£,t:') 
Jo 

where fc is the Coulomb shape-independent bond 

fc(\r - ?\) = -(3eQea,vc{\T - f | ) (42) 

This decomposition defines in fact the truncated bond fr- By construction 
fx decays as 1 / \f— r ' | when \f— r'\—+ oo. Inserting (41) in each graph 
T, we obtain a new representation of h(£a, £;,) in terms of graphs T built 
with bonds / which maybe either fc, / ? / 2, A £ . y / c or / T -

Since fT is almost integrable, the divergencies in the f-diagrams are in­
duced by the other non-integrable bonds / . They are of the same type as 
those encountered in the purely classical case, so they can be eliminated 
via the same mathematical recipe (first introduced by Mayer (1950) and 
Salpeter (1957)), i.e., the resummation of all the convolution chains built 
with the Coulomb bond / c . This procedure transforms the whole set of 
f-diagrams into a set of new graphs II built with resummed bonds. For ob­
taining the graphs II, one first distributes all the diagrams f in resummation 
classes characterized by given chain-structures. For instance in Figures 8a, 
8b and 8c we show three diagrams f belonging to the same class. The sum­
mation of all the f -diagrams in a given class, then amounts to suppress all 
the intermediate filaments C in the Coulomb convolution chains, while the 
remaining filaments V are linked by resummed bonds F which reduce to 
the sums of these chains. The graph II generated by the f-class illustrated 
in Figure 8, is drawn in Figure 9. The topological structure of the genuine 
graphs is conserved through the resummation process. 

As a remarkable consequence of a factorization property of the symmetry 
counting factors, the resummed bonds F are generic in the sense that they 
do not depend on the global structure of the graphs II. In fact, F(Vi,Vj) 
only depends on the chain structures inserted between Vx and Vj in the 
genuine f-diagrams. Only four kinds of F-bonds appear. The single chains 
with ending bonds which are either fc or ^i£i-S7ifc (^jtj- V; /c ) ) l e a d *° 
three resummed bonds Fp, (Af. V ^ b ) a ^ d F,ap. All the other structures, 
involving several chains and/or the bonds fa and / c / 2 , give raise to the 
fourth bond FR. All these cases are illustrated in Figures 8 and 9. The 
resummation procedure automatically excludes the convolutions FD * FJJ, 
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V^T^J ? 

6-
(o) h 

Fig. 1.8 a, 1.8b, 1.8c : Three f-diagrams which belong to the same resum-
mation class. For clarity, the shapes of the filaments are not represented. 
The big black circles are filaments V which remain fixed through the resum-
mation process. The small black circles are filaments C which are "eaten" 
by the resummation "machinery". Solid lines : bonds fc ; lines with one 
arrow : bonds A£.y/c (the arrow indicates the point with respect to which 
acts the gradient) ; double solid lines : bonds /,?/2 ; dashed lines : bonds 

Fig. 1.9 The El-graph generated by the f-class illustrated in Figures 8a, 
8b and 8c. Strings : bonds FD ; strings with one arrow : bonds X£.\JFD 
; strings with two opposite arrows 
FR. 

bonds Fdip ; hatched bubbles : bonds 

At &• VIFD * FD, FD* XJ (j. V j ^ b and A< | j . V i ^ b * A,-1}. V J F D between 
two filaments (Vi,Vj) in any graph II. 

The bonds F can be calculated explicitely in terms of the MB particle 
densities. Indeed, since the / c -bonds are shape-independent, the functional 
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integrations over the shapes of the intermediate filaments C in the chains 
lead to the replacement of each p(£) = pa( £ ) by the MB particle density 

1%'= J V&Paig) (43) 

Thus the summation of all the convolution chains can be performed in 

terms of the familiar Debye potential (j>D(r) — e x P (—nr)/r with K — 
1/2 

(4ir(3J2elPaB) • In particular, one finds 

a 

FD{Vi,Vj) = -PeQieQj<j>D(\ri - Fj\) (44) 
—• —• 

We stress that , contrarily to FD and A £. V ^ D which decay exponentially 
fast (like <f>D essentially), the bonds Fdip and FR are found to decay alge­
braically as 1/r3 when r —• oo. These behaviours are related to the effi­
ciency of the screening of the multipole-like interactions, which appear in 
the expansion of the bare filament-filament potential (33) in powers of £ and 
f'. The charge-charge and dipole-charge interactions are perfectly screened 
via the usual classical process while the screening of the higher order mul-
tipole interactions is inhibited by quantum fluctuations. The above slow 
decays should ultimately pollute the correlations with algebraic tails, in ac­
cord with the absence of exponential clustering predicted by Brydges-Seiler 
(1986), Alastuey-Martin (1988-1989) and Cornu-Martin (1991). Although 
the screening mechanisms are less efficient than in the classical case, they 
do eliminate the long-range Coulomb divergencies, i.e., each graph II does 
converge, as expected. 

The resummed diagrammatic expansion of the two-point correlations of 
SMB is immediately obtained by inserting the previous Il-representation of 
h(£a,£b) i n * n e identity 

p%B(aara;abrb) = J V((a)V(^)p(£a)p(Sb)h(£a,Sb) (45) 

In (45), each graph II is multiplied by />(£<,) p(£b) and integrated over the 
shapes fa and £b of the root filaments £a and £b. Note that if we set h —• 0, 
the bonds A £.\?FD and F^,p disappear, while the bond FR reduces to (exp 
(FD) — 1 — FD) and the statistical weights />(£) are replaced by the particle 
densities. The so-called nodal expansion of the classical correlations first 
derived by Meeron (1958) is then recovered. 
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3.4-2 The MB thermodynamic functions 

For evaluating the density expansions of the MB thermodynamic functions, 
it is convenient to start from the identity 

i*£L = 0Fj£ + £ £ | * <fo | drP?»(«0, (3r)eaepvc(r) ( 4 6 ) 
a,/3 ° 

which expresses the free-energy per unit of volume in terms of the two-point 
correlations. In (46), p™B *s calculated for a fictitious system Sg where all 
the interactions are multiplied by the dimensionless coupling parameter g. 
Moreover the temperature and the MB particle densities of Sg are identical 
to those of S. The insertion of the II-representation of p%B in (46) provides 
a diagrammatic expansion of the free-energy. 

At this level, the II-series for (/? FMB /A) do not constitute an explicit 
expansion with respect to the particle densities, because of the presence of 
the shape-dependent statistical weights pg(£)- In fact, the functional pg(£) 
can be itself expanded in powers of the p%B 's as follows. One starts from 
the familiar Mayer expansion of pg(£) in terms of the fugacities z{£) = z*. 
The corresponding set of divergent Mayer graphs G is then transformed 
into a set of convergent graphs P via a resummation process similar to 
the one described in Section 4.1. Now there appear five resummed bonds 
which can be expressed in terms of functions entirely scaled by KD<Z = 

(47r/3^Qe^za) and of fo scaled by the Landau and de Broglie lengths 
(these lengths depend only on the temperature). A scaling analysis with 
respect to KD,Z of the spatial integrals in the graphs P allows to express 
pg(£) as a double integer series in z*1/2 and Inz*. The half-integer powers 
come from KD,Z ~ z*1/2 while the logarithms arise from the l/r3-tail in / j . 
Eventually, the fugacities are eliminated in favor of the particle densities by 
using (43), and pg{£) is rewritten as a double integer series in (pMB) and 
lnpMB, the first terms of which read 

P8{€) =pM
a° + EPZBP"° fdrfv(^) 

exp(-/?#eae7 / dsvc(\f + A7£l(s) - Aa£(.s)|)j 
v Jo ' (4/ 

- Jv(0)exp[-/3eae^J dsvc(\r + A7£(s) - \aV(s)\j) 

+ 0(p5'2) 
After the replacement of the statistical weights pg(£) by their particle-
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densities expansions, it remains to determine the density dependence of the 
spatial integrals in the IT-graphs. This analysis is carried out via a scaling 
method similar to the one used for the P-graphs with KD in place of KD,Z-
Indeed, all the resummed bonds F can be expressed in terms of K^-scaled 
functions and /y . The final form of the density expansion of ((3FMB/A) is a 
double integer series in ( p ^ 8 ) 1 / 2 and lnpMB. The corresponding expansion 
of the pressure /3PMB derived from the identity 

has the same structure. 
We stress that the macroscopic instability of SMB does not cause any 

divergency in the virial coefficients of the above series. However, it should 
prevent their convergence. 

3.4-3 Exchange contributions 

The exchange effects are taken into account by inserting the Slater ex­
pansion (35) of HA in the grand-canonical expression (3) of f3P. This gives 

oo 

PP = [3PMB + £ En (49) 
n=2 

where En is the contribution of n exchanged particles. According to the im­
purities point of view, En may be expressed in terms of the density p(£a\?

:kl) 
of S* in presence of n opened filaments Tki- For instance, Ei reads 

x exp [-/? £ dg J d£aP(Ea\g; Jf2, .Fft)(«(£., ?&) + v(£a, ?£))] 

In (50), the first exponential represents the exchange contribution in the 
vacuum while the second one describes the many-body effects on the two-
particle exchange. The structure of all the other En's is similar to the one 
displayed in (50). 

The diagrammatical method exposed in Section 4.1 can be extended to 
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the inhomogeneous system «S* in presence of the .F's. This provides a rep­
resentation of p (Eal^ki)m terms of graphs made of the n opened filaments 
Tki and closed filaments. The statistical weight of a closed filament is the 
density p(£) of the homogeneous system. Two closed filaments are linked by 
at most one resummed bond F. A closed filament £ and an opened filament 
T are linked by at most one "external" Mayer bond (exp [—(3v(£,T)] — 1). 

The density expansion of En follows from use of the previous diagram­
matic representation of />(£(, I-̂ fcj)- The integrals over the positions of the 
opened and closed filaments can be evaluated via a scaling analysis with 
respect to KD. The resulting expression for En takes the general form zn 

1 /I 
multiplied by a double integer series in 

3-4'4 General structure of the density expansions 

The present method gives access first to the pressure. Use of the ex­
pansions of (3PMB and En in (52), allows to rewrite /3P as a triple integer 
series in z, (pMB) and \npMB. The fugacities and MB densities are 
then eliminated in favor of the real densities pa by combining the identi­
ties p%B = zad{pPMB)/dza and pa = zad(/3P) / dza (p^B differs from 
pa at given fugacities). The resulting virial expansion of the pressure is a 
double integer series in p1/2 and Inp. The density expansions of the other 
thermodynamic functions, obtained via the usual identities, have the same 
structure. 

According to the above scaling analysis, the contributions of a fully re-
summed graph of the Il-type to a given virial coefficient, reduce to subgraphs 
built with bonds / j , F p , fc, Af. V^D* ^£- V/c- The physical nature of 
these contributions can then be identified by inspection of the bonds and 
filaments which appear in the subgraphs according to the correspondance 
rules, 

- long-range classical interactions : bonds fc and FD 

- quantum diffraction : bonds A f. V / c a n < i A f. V ^ b 
- bound and scattering states : bonds fa 
- exchange : opened filaments 
In general, all these physical effects are coupled at high orders in p. We 

stress tha t , in the present formalism, all the corresponding contributions 
are treated simultaneously in a systematic and coherent way. 

Of course, the exact density expansions can be also derived in the frame­
work of the formalisms described in Section 2. However, the FK diagram­
matic method is well-suited for this purpose. In particular, all the long-
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range Coulomb divergencies are automatically eliminated at any order in 
the density via the introduction of the generic resummed bonds F. In the 
effective-potential method, it remains to treat the long-range part of the 
many-body effective interactions in a systematic way. Furthermore, the 
density is the natural expansion-parameter in the FK diagrammatics. In­
deed only a finite number of graphs II contributes to a given virial coefficient 
(roughly speaking the order in the density of II increases with the number 
of filaments and the number of bonds). On the contrary, the calculation of 
such a coefficient from many-body perturbation requires the collection of 
infinite sets of Feynman graphs with Ladder structures. Moreover, in this 
approach, the elimination of the fugacities in favor of the densities is more 
cumbersome than in the FK method where part of this transformation is 
automatically done. 

Although the FK representation is quite efficient for performing infinite 
resummations at a formal level, one has to keep in mind that, for practical 
calculations, the difficulty relies in the functional integration over the shapes 
of the filaments. The purely diffraction contributions, which only involve 
moments of the Gaussian measure 2)(£), are evaluated from the covariance 
(28) by using Wick's theorem. The contributions of bound and scattering 
states, which involve one or more bonds / y , cannot be so easily computed 
in the space of filaments. In fact, it is more convenient to express them in 
terms of matrix elements of exp (—^HN) by applying backwards the FK 
formula (26). The corresponding explicit calculations are then limited by 
the absence of exact solutions for the N-body quantum-mechanical problem, 
as soon as N is larger than two. Beside the complexity of the graphs, this 
problem intrinsic to quantum mechanics and which appear in any formalism, 
prevent a detailed knowledge of the virial coefficients at orders higher than 
phl2. 

3.5 Low-Density Equations of State 

3.5.1 the exact EOS at the order psl2 

The truncation of the above virial expansion of the pressure at the order 
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p$/i gives (Alas tuey and Perez (1992)) 

a 
•K 

24TT 

+ ^(ln2-l)J2/33ele3
0pQpp 

~ -^^PaPp^lpQ^ap) - ^3^2paPfiele3
0]n(K\aP) 

* ( - 1 ) 2 ^ 1 

+ V2^~(2^TT) aaPa { aa) 

- •£-fiPY2ea€PKPaPPx3*pQ(x°<p) 

•K a'P . (51) 
~ ^^PaPpe^epK\^{K\a0) 

a,13 

37T ^ ( - 1 ) ^ « + ] ; 3 2 2 
+ 2 ^ V (2<ra + 1) A - ^ c « K £ ( I a a ) 

+ 4 £ ^ ^ " V + *{\ - J In 2 + i In 3) £ 0 * 4 e $ K , o P / , 

+ ^1 $ Z ^eleie3rK~1PaPPPf 
a,P,y 

<x,Pn,s 

xl/2 with KD = ( 4 7 r ^ ^ e ^ / > Q ) , / a / 3 = f3eaep, mQp = Tnamp/(Tna+mp),\ai3 = 
a 

(Ph2/ma/3)
1/2, d = 15.205 ± . 001 , C2 = - 1 4 . 7 3 3 ± .001 and Euler-

Mascheroni ' s cons t an t C = . 5 7 7 2 1 6 . . . Moreover , Q{-y/2lapl\ap) is t h e 

so-called q u a n t u m second-vir ial coefficient first i n t roduced by Ebel ing 

while E( — y/2laa/Xaa) is t h e exchange in tegra l , 

(5! 
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E(-V2^) = (2v^) fdr< -r\e~lih<><' \r > (53) 

In (52) and (53), hap is the one-body Hamiltonian of the relative particle 
with mass map submitted to the Coulomb potential eaep/r. The functions 
Q and E only depend on the temperature via the single dimensionless pa­
rameter ( — y/2l/X). All the physical effects mentioned is Subsection 4.4 give 
contributions to (51), the structures of which require the following com­
ments. 

First, the classical contributions of the long-range part of the interactions 
are polynomials in the inverse temperature, the charges and the densities, 
which do not involve Planck's constant. The involved coefficients are evalu­
ated analytically or, like C\ and C2, by numerical computations of dimen­
sionless integrals. The lowest-order contribution is nothing but the familiar 
Debye-Htickel term in p3^2, and constitutes the leading correction to the 
MB ideal pressure in (51). By specifying (51) to the case of the classical 
OCP, it can be checked that the classical terms found here, up to the order 
p5/2, do coincide with those calculated by Cohen and Murphy (1971), as it 
should be. 

The contribution of quantum diffraction at large distances appears only 
at the order p$/2 and reduces to 

The occurence of this term shows that the long-range part of the interactions 
cannot be entirely treated at a classical level. This diffraction term is miss­
ing in the expressions obtained by the effective-potential method. In this 
formalism, it arises from the three-body interactions w-3' which are long-
ranged. Indeed, for large-triangular configurations, u\23 typically behaves 
as ((33 h2 e\ ez e^ / (12mi))ViVc(ri2)-Viuc(ri3) (apart from a sum over the 
permutations of 1, 2, 3). These slow l/r2-decays lead to screened contri­
butions which are of order phl2 instead of p3 ( a similar mechanism makes 
the Debye correction be of order p3!2 instead of p2). The diffraction correc­
tion (54) is merely proportional to h , because it arises from large distances 
where the quantum effects can be treated perturbatively "a la Wigner-
Kirkwood". By the way, the presence of this term is crucial for recovering 
from (51) the well-known h -correction (Hansen and Pollock (1973)) 
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^2e2R2h2
 ( 5 5 ) 

6m 

to the classical pressure of the OCP calculated by the WK method. In fact, 
the sole contributions to (55) do arise only from the />2-term in (51), while 
(54) exactly cancels the /i2-term which comes from p2nDQ. 

The term pa Pp ̂ pQi-Vzlap/^ap) 1S the total contribution from both 
bound and scattering states of two charges ea and ep. The truncation of 
< f\ exp (—Phap) | f > in the integral (52) denning Q ensures that this 
contribution is finite. This regularization in not an arbitrary mathematical 
artefact. It is directly related to the truncated stucture of the bond / T , 
and reflects the screening of the Coulomb interaction at large distances. For 
opposite charges such that eaep < 0, one may extract from Q a contribution 
of the bound states which reduces to the familiar Planck-Brillouin-Larkin 
(PBL) sum 

£ n2 [exp(-/fcSf) - 1 + 0c?] (56) 
n = l 

where e? = - e 2 e j map/(2 h2n2) are the energy levels of the hydrogenoid 
atom with Hamiltonian hap. However, other definitions of the bound states 
contributions can be introduced from (52) by using the basic properties of 
the trace. For instance, as shown by Bolle (1987), there exists an infinite set 
of arbitrary decompositions in terms of bound and scattering contributions 
of the PBL sum itself. So, as far as thermodynamic quantities are con­
cerned, only the total contribution of both bound and scattering states is 
an unambiguous quantity. The />5'2-contribution from bound and scatter­
ing states merely reduces to its p2 counterpart multiplied by (3eaepKD. This 
multiplicative factor arises from many-body effects which induce a constant 
shift —eaepKD on the energy levels of the two-particles states. 

The contribution p^tE(—V2laa/\aa) arises from the exchange of two 
charges ea in the vacuum. It is finite, independently of any screening ef­
fect, because the off-diagonal matrix elements < —r\ exp (—Phaa) \ f > 
are short-ranged. The magnitude of this contribution is smaller than the 
one relative to free particles because the repulsive potential e^/r inhibits 
the exchange. Similarly to what happens for the contributions of bound 
and scattering states, at the order ps'2, the many-body effects on the two-
particles exchange amount to lower the repulsive barrier e2 / r by the con­
stant — e^K]}. 
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Eventually, the high-temperature series can be recovered from (51) by 
expanding the virial-coefficients in powers of /?. Since //A is proportional to 
/31/2 , the /^-expansions of Q {—y/2l/\) and E { — y/21/X) coincide with their 
Taylor series in powers of //A. In agreement with DeWitt's observations, 
such series do involve singular powers of h because //A is also proportional to 
1/h. In fact, the expression (23) up to the order /35/2 is exactly recovered by 
inserting the /^-expansions of Q and E in (51). The calculation of the higher 
order terms from the virial expansion requires a suitable reorganization of 
the density series, similar to the one relative to the e2-series evocated in 
Section 2.2. 

3.5.2 Application to the Sun 

For practical applications, the range of validity of the truncated EOS 
(51) is determined by the conditions I < a and A < a (with a ~ p - 1 ' 3 ) , 
which mean respectively weak coupling and weak degeneracy. It turns out 
that these conditions are met in the inner regions of the Sun which can 
be viewed, in a first approximation, as a three-component plasma made of 
electrons, protons and Helium nuclei. Perez (private communication) has 
evaluated the various physical corrections appearing in (51) within a typi­
cal temperature- and density-profile. Moreover, he used representations of 
Q (Kraeft et al (1986)) and E (Jancovici (1978)) which allow simple and 
accurate numerical computations. His results are sketched in Table 1. As 
expected, the inner regions almost behave as an ideal MB gas, since the 
relative magnitudes of the above corrections do not exceed a few percent. 
In the core, the correction to the ideal MB pressure is positive and mainly 
due to the electronic exchange. In the outer layers, this correction becomes 
negative because the classical Debye term then dominates. In the inter­
mediate regions, the partial cancellation between the exchange and Debye 
terms increases the relative importance of the other contributions in (51), in 
particular those taking into account the recombinations between one nuclei 
and one electron in hydrogen atoms and He* ions. 

The previous results illustrate the usefulness of the truncated EOS (51) 
for helioseismology. The actual observations lead to very accurate determi­
nations of the speed of the sound and of adiabatic coefficients. For a proper 
interpretation of these data, one needs a reliable theoretical description of 
the small deviations from the ideal behaviour. The EOS (51) fullfills this 
requirement since it comes out from an exact expansion. Furthermore, its 
analytical character allows simple and consistent calculations of any ther­
modynamic coefficient via partial differentiations with respect to the density 
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Table 1.1. Relative deviations from the MB ideal pressure for the 
inner regions of the Sun, calculated from the truncated EOS (51). 
R represents the distance to the center. The magnitudes of all the 
physical corrections arising in (51) are also indicated 

R logp logT fiP/p-l Class. Bound/ Exch. Diff. 
Int. Scatt.St. 

[106]km g/cc (K) [10-2] [10-2] [10-2] [10-2] [10"2] 

0.62 -2.2 5.82 -0.698 -0.710 0.006 0.005 0.000 
0.15 1.5 6.95 0.110 -1.000 0.089 1.006 0.014 
0.00 2.2 7.19 1.446 -0.971 0.101 2.294 0.022 

or the temperature. This EOS should be quite efficient for describing the 
regions close to the core, where all the chemical species are almost fully 
ionized (the inclusion of the contributions of heavier nuclei, like F%6+, is 
straightforward). Near the surface, the validity of the />5/2-truncated EOS 
is limited by the presence of atoms (like He) and ions which result from 
recombinations between one nuclei and two or more electrons. In the virial 
expansions, the contributions of these entities enter in terms of order p3 (at 
least) which are not included in (51). 
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