ONE-RELATOR GROUPS WITH CENTER

Dedicated to the memory of Hanna Neumann
STEPHEN MESKIN,* A. PIETROWSKI and ARTHUR STEINBERG

(Received 14 June 1972)
Communicated by M. F. Newman

Abstract. Many one-relator groups with center have been shown to be of the form $\left\langle x_{1}, x_{2}, \cdots, x_{t+1} ; x_{1}^{P_{1}}=x_{2}^{Q_{t}}, x_{2}^{P_{2}}=x_{3}^{Q_{2}}, \cdots, x_{t}^{P_{t}}=x_{t+1}^{Q_{t}}\right\rangle$. A necessary and a sufficient condition for the sequence ($P_{1}, Q_{1}, P_{2}, Q_{2}, \cdots, P_{t}, Q_{t}$) are given in order for groups of the above form to be one-relator groups.

1. Introduction

One relator groups with center have been discussed in [1], [2] and [4]. Recently Pietrowski [5] has shown that any non-abelian one-relator group G with a non-trivial center such that G / G^{\prime} is not free abelian of rank 2 can be presented by

$$
\begin{equation*}
G=\left\langle x_{1}, x_{2}, \cdots, x_{t+1} ; x_{1}^{P_{1}}=x_{2}^{Q_{1}}, x_{2}^{P_{2}}=x_{3}^{Q_{2}}, \cdots, x_{t}^{P_{t}}=x_{t+1}^{Q_{t}}\right\rangle . \tag{1}
\end{equation*}
$$

The groups G with G / G^{\prime} free abelian of rank 2 imbed those of the form (1) in a natural way. Conversely, groups of the form (1) do have non-trivial centers. Thus we are now faced with a new problem; i.e., which of the groups (1) are one-relator groups.

In this note we present two partial results giving respectively a necessary and a sufficient numerical condition on the ordered set of integers ($P_{1}, Q_{1}, P_{2}, Q_{2}, \cdots$, P_{t}, Q_{t}) for (1) to be a one-relator group. The gap between these results can be illustrated by the ordered set ($2,2,5,5,3,3$, for which the authors cannot decide whether (1) is a one-relator group or not.

It will be convenient to assume in the discussion below that all the integers P_{i} and Q_{i} are strictly greater than 1.

The authors would like to thank the following people for their assistance: John Cossey, B.B. Newman, Abe Karrass and Donald Solitar.

[^0]
2. A necessary condition

In [4] it is shown that if the group G in (1) is a one-relator group then G can be generated by two of its elements. The following theorem translates this necessary condition into a numerical condition.

Theorem 1. Let G be presented by (1). Then the following statements are equivalent.
(a) G is a two generator group.
(b) $\operatorname{gcd}\left(Q_{i}, P_{j}\right)=1$ for all $i, j, \quad 1 \leqq i<j \leqq t$.
(c) $G=<x_{1}, x_{t+1} ; x_{1}^{P_{1} P_{2} \cdots P_{t}}=x_{t+1}^{Q_{1} Q_{2} \cdots Q_{t}},\left[x_{1}^{P_{1} P_{2} \cdots P_{k-1}}, x_{t+1}^{Q_{k} \cdots Q_{t}}\right]=1$, $k=2, \cdots, t>$.
Proof. (c) \Rightarrow (a) is obvious.

$$
(b) \Rightarrow \text { (c). First of all (b) is equivalent to }
$$

$$
\begin{equation*}
g c d\left(Q_{1} Q_{2} \cdots Q_{k-1}, P_{k} \cdots P_{t}\right)=1, k=2, \cdots, t \tag{2}
\end{equation*}
$$

Thus for each k there exists integers a_{k} and b_{k} such that

$$
\begin{equation*}
1=a_{k} Q_{1} Q_{2} \cdots Q_{k-1}+b_{k} P_{k} \cdots P_{t} \tag{3}
\end{equation*}
$$

The relations in (1) thus imply for $k=2, \cdots, t$

$$
x_{k}=x_{k}^{a_{k} Q_{1} Q_{2} \cdots Q_{k}-1} x_{k}^{b_{k} P_{k} \cdots P_{t}}=x_{1}^{a_{k} P_{1} P_{2} \cdots P_{k-1}} x_{t+1}^{b_{k} Q_{2} \cdots Q_{t}}
$$

The relations in (1) also imply

$$
\begin{equation*}
\left[x_{1}^{P_{1} P_{2} \cdots P_{k-1}}, x_{t+1}^{Q_{k} \cdots Q_{t}}\right]=1, k=2, \cdots, t \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}^{P_{1} P_{2} \cdots P_{t}}=x_{t+1}^{Q_{1} \cdots Q_{t}} \tag{6}
\end{equation*}
$$

By using Tietze transformations (see [3], page 48), we can add relations (4), (5) and (6) to the relations in (1). We can now delete the original relations in (1), $x_{i}^{P_{i}}=x_{i+1}^{Q_{i}}, i=1,2, \cdots, t$, if we can show that they are implied by (4), (5), and (6). Having done this the relations (4) and the generators x_{2}, \cdots, x_{t} may be deleted leaving us with the presentation (c).

We prove inductively that for each integer $n, 1 \leqq n \leqq t$, (4), (5) and (6) imply

$$
\begin{equation*}
x_{i}^{P_{i}}=x_{i+1}^{Q_{1}} \text { for all } i<n \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n}^{P_{n} P_{n+1} \cdots P_{t}}=x_{t+1}^{Q_{n} \cdots Q_{t}} \tag{8}
\end{equation*}
$$

The result we wish is the case $n=t$.

Statements (7) and (8) clearly hold when $n=1$.
Suppose that $n>1$. Then by induction we have

$$
x_{1}^{P_{1} P_{2} \ldots P_{n-2}}=x_{n-1}^{Q_{1} Q_{2} \cdots Q_{n-2}} \quad \text { and } \quad x_{n-1}^{P_{n-1} P_{n} \ldots P_{t}}=x_{t+1}^{Q_{n}-1 \cdots Q_{t}}
$$

Using these in connection with (3), (5) and (4) we have

$$
x_{n-1}^{P_{n}-1}=x_{n-1}^{a_{n} Q_{1} \ldots Q_{n-1} P_{n-1}} x_{n-1}^{b_{n} P_{n}-, P_{1} \ldots P \cdot}=\left(x_{1}^{a_{n} P_{1} P_{2} \ldots P_{n-1}-1} x_{t+1}^{b_{n} Q_{1} \ldots Q_{t}}\right)^{Q_{n-1}}=x_{n}^{Q} \quad 1
$$

In a similar manner

$$
x_{n}^{P \ldots P_{t}}=x_{1}^{a_{1} P_{1} P_{2} \ldots P_{t}} x_{+1}^{b_{n} Q_{1} \ldots Q_{t} P_{r} \ldots P_{r}}=x_{t+1}^{\left(a_{n} Q_{1} Q_{2} \ldots Q_{n}+b_{1} P_{n} \ldots P_{t}\right) Q_{r} \ldots Q_{t}}=x_{t+1}^{Q_{1} \ldots Q_{t}} .
$$

This completes the induction and the proof that $(b) \Rightarrow$ (c).
(a) \Rightarrow (b). Again we proceed inductively and show that for each integer n, $1 \leqq n \leqq t$,

$$
\begin{equation*}
\operatorname{gcd}\left(Q_{\imath}, P\right)=1 \text { for all } i, j, \quad 1 \leqq i<j \leqq n \tag{9}
\end{equation*}
$$

Again the result we are after is the case $n=t$.
Statement (9) holds vacuously when $n=1$.
Suppose that $n>1$. Then by induction and by using (b) \Rightarrow (c) we see thaı G can be presented by

$$
\begin{align*}
G=<x_{1}, x_{n}, x_{n+1}, \cdots, x_{t+1} ; & x_{1}^{P_{1} P_{2} \ldots P_{n-1}}=x_{n}^{Q_{1} \cdots Q_{n-1}}, \tag{10}\\
& x_{n}^{P_{n}}=x_{n+1}^{Q_{n}}, \cdots, x_{t}^{P_{t}}=x_{t+1}^{Q_{i}}, \\
& {\left[x_{1}^{P_{1} P_{2} \ldots P_{k-1}}, x_{n}^{Q_{k} \cdots Q_{n-1}}\right]=1, k=2, \cdots, n-1>. }
\end{align*}
$$

Now we add to (10) the relations $x_{1}^{P_{1}}=1$ and $x_{n+1}=x_{n+2}=\cdots=x_{t}=1$ and obtain a homomorphic image \bar{G} of G which is the free product of three groups

$$
G_{1}=\left\langle x_{1} ; x_{1}^{P_{1}}=1\right\rangle, G_{2}=\left\langle x_{n} ; x_{n}^{Q_{1} Q_{2} \ldots Q_{n-1}}=1, x_{n}^{P \cdot}=1\right\rangle
$$

and

$$
G_{3}=\left\langle x_{t+1} ; x_{t+1}^{Q_{t}}=1\right\rangle .
$$

Since G is a two generator group so is \bar{G}. But the number oi generators needed for G is the sum of the numbers needed for G_{1}, G_{2} and G_{3} (see [3], page 192). Since G_{1} and G_{3} are clearly non-trivial, G_{2} must be trivial which implies $\operatorname{gcd}\left(Q_{1} Q_{2} \cdots Q_{n-1}, P_{n}\right)=1$. The result follows and Theorem 1 is proved.

3. A sufficient condition

We will show in Lemma 2 that for $t=2$ the necessary condition above is also sufficient.Using that as a starting point we can, by using Lemma 1 , add new generators one at a time to (1) to obtain new one-relator groups.

Lemma 1. Suppose $x^{P}=y^{2}$ in the one-relator group $\langle x, y ; R(x, y)=1\rangle$, $P_{0}= \pm 1 \bmod Q, Q_{0}$ is any integer, and

$$
\begin{equation*}
G=\left\langle x, y, z ; R(x, y)=1, y^{P_{0}}=z^{Q_{0}}\right\rangle \tag{11}
\end{equation*}
$$

Then $x^{P P_{0}}=z^{Q Q_{0}}$ in G and for some integer n,

$$
\begin{equation*}
G=\left\langle x, z ; R\left(x, x^{n P} z^{ \pm Q_{0}}\right)=1\right\rangle \tag{12}
\end{equation*}
$$

i.e., G is also a one-relator group.

Proof. Since $1= \pm P_{0}+n Q$ for some integer n, it follows that

$$
\begin{gather*}
y=y^{n Q} y^{ \pm P_{0}}=x^{n P} z^{ \pm Q_{0}} \tag{13}\\
R\left(x, x^{n P_{z} \pm Q_{0}}\right)=1 \tag{14}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(x^{n P_{z}} z^{ \pm \varrho_{0}}\right)^{P_{0}}=z^{\varrho_{0}} \tag{15}
\end{equation*}
$$

are relations in G. Hence, we can adjoin (13), (14) and (15) to the relations in (11) We may now delete the original relations from (11) and then (13) along with the generator y. If we can show that (14) implies (15) then (15) can also be deleted and we will have the presentation (12).

Since $R(x, y)=1$ implies $x^{P}=y^{Q}$, it follows that (14) implies

$$
\begin{equation*}
x^{P}=\left(x^{n P_{z} z^{ \pm} Q_{0}}\right)^{Q} \tag{16}
\end{equation*}
$$

Now (16) implies that x^{P} is a power of $x^{n P_{z} \pm Q_{0}}$. Therefore x^{P} commutes with $x^{n P} z^{ \pm Q_{0}}$ and hence also with $z^{Q_{0}}$. Thus, from (16) we obtain $x^{P(1-n Q)}=z^{ \pm \varrho Q_{0}}$; hence $x^{P P_{0}}=z^{Q Q_{0}}$. However (15) is just a rearrangement of $x^{n P P_{0}}=z^{n 2 Q_{0}}$ $=z^{Q_{0}\left(1^{F} P_{0}\right)}$ and the conclusion follows.

Suppose that $\operatorname{gcd}(L, M)=1$. In the free group on free generators a and b, let $p_{L, M}(a, b)$ be the unique primitive, up to conjugacy, with exponent sum L on a and M on b. Thus $\left\langle a, b ; p_{L, M}(a, b)=1\right\rangle$ is infinite cyclic. Hence $p_{L, M}(a, b)=1$ implies that a and b commute and thus $p_{L, M}(a, b)=1$ also implies $a^{L}=b^{-M}$. Conversely $[a, b]=1$ and $a^{L}=b^{-M}$ imply $p_{L, M}(a, b)=1$.

Now suppose G is as in with (1) $t=2$ and $\operatorname{gcd}\left(Q_{1}, P_{2}\right)=1$. Then by Theorem 1

$$
G=\left\langle x_{1}, x_{3} ; x_{1}^{P_{1} P_{2}}=x_{3}^{Q_{1} Q_{2}},\left[x_{1}^{P_{1}}, x_{3}^{Q_{2}}\right]=1\right\rangle
$$

By the above discussion it follows that

$$
G=\left\langle x_{1}, x_{3} ; p_{Q_{2}, Q_{1}}\left(x_{1}^{P_{1}}, x_{3}^{-Q_{2}}\right)=1\right\rangle
$$

Thus we have proved
Lemma 2. If G is given by (1) and $t=2$ then G is a one relator group if and only if gcd $\left(Q_{1}, P_{2}\right)=1$.

By combining Lemmas 1 and 2 we have

Theorem 2. Suppose G is given by (1). Then G is a one-relator group if there exists a sequence of pairs of integers,

$$
\left(\lambda_{1}, \mu_{1}\right), \cdots,\left(\lambda_{t-1}, \mu_{t-1}\right), \lambda_{i}, \mu_{i} \in\{l, \cdots, t\} \text { for all } i=1, \cdots, t-1
$$

such that

$$
\lambda_{1}+1=\mu_{1} \text { and } \operatorname{gcd}\left(Q_{\lambda_{1}}, P_{\mu_{1}}\right)=1
$$

and if $t>2$ then for each $i=1, \cdots, t-2$,
either

$$
\lambda_{+1}=\lambda_{i}-1, \mu_{i+1}=\mu_{i} \text { and } Q_{\lambda_{1+1}}= \pm 1 \bmod \left(P_{\lambda_{i}} P_{\lambda_{i}+1} \cdots P_{\mu_{i}}\right)
$$

or

$$
\lambda_{i+1}=\lambda_{i}, \mu_{t+1}=\mu_{i}+1 \text { and } P_{\mu_{+1}}= \pm 1 \bmod \left(Q_{\lambda_{i}} Q_{i_{i}+1} \cdots Q_{\mu_{i}}\right)
$$

References

[1] G. Baumslag, and T. Taylor, 'The centre of groups with one defining relator', Math. Ann. 175 (1968), 315-319.
[2] A. Karrass, W. Magnus, and D. Solitar, 'Elements of finite order in groups with a single defining relation', Comm. Pure Appl. Math. (1960), 57-66.
[3] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Pure and Appl. Math., Vol. 13 (Interscience, New York, 1966).
[4] K. Murasugi, 'The center of a group with a single defining relation', Math. Ann. 155, (1964), 246-251.
[5] A. Pietrowski, Thesis (in preparation). (University of Toronto).
Department of Mathematics
The University of Connecticut
Storrs, Conn. 06268
U. S. A.

Department of Mathematics
University of Toronto
Canada.
Department of Mathematics
Queens College CUNY
Flushing, New York, 11367
U. S. A.

[^0]: * Research conducted while the author was a Research Fellow at the Australian National University.

