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Re�iew

Statistical design and the analysis of gene expression

microarray data
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The Jackson Laboratory, Bar Harbor, Maine 04609 USA

Summary

Gene expression microarrays are an innovative technology with enormous promise to help

geneticists explore and understand the genome. Although the potential of this technology has been

clearly demonstrated, many important and interesting statistical questions persist. We relate certain

features of microarrays to other kinds of experimental data and argue that classical statistical

techniques are appropriate and useful. We advocate greater attention to experimental design issues

and a more prominent role for the ideas of statistical inference in microarray studies.

1. Introduction

Gene expression microarrays are an exciting new tool

in molecular biology (Brown & Botstein, 1999).

Geneticists are intrigued by the prospect of collecting

and mining expression data for thousands of genes.

Statisticians have taken a correspondingly enthusiastic

interest in the many quantitative issues that arise with

this technology. These issues begin with analyzing

scanned array images and extracting signal (Yang et

al., 2000a). After one has estimates of relative

expression in hand, there are problems in data

visualization, dimension reduction (Hilsenbeck et al.,

1999), and pattern recognition (Brown et al., 2000). In

the world of gene expression, a lot of attention has

been focused here, particularly on clustering tools. In

contrast, our focus is on the analysis that takes place

after image analysis and before clustering. Namely,

how does one get from fluorescence readings off an

array to valid estimates of relative expression, and

how does one put error bars on those estimates?

With the rush to embrace microarray technology

and its potential, we believe a number of fundamental

experimental principles have been neglected. In ad-

dition, we believe there are some common miscon-

ceptions about which quantitative issues with micro-

arrays are truly novel. Accordingly, we have somewhat

different ideas about the areas of statistical research
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that are key to improving microarray data analysis.

This article discusses spotted cDNA arrays because

this is the data we have the most experience with.

There are similar issues with oligonucleotide arrays,

but these are outside the scope of this article.

2. ‘‘ It’s all relative ’’

In the context of microarray technology, the word

‘‘spotted’’ refers to the process by which sequences of

DNA are attached to a glass slide or other surface. By

various mechanisms, a robotic arm with blocks of

pins places DNA strands as spots on an array. Any

given spot contains one particular DNA sequence,

although the same sequence may be spotted multiple

times per array. The mRNA samples under study are

reverse-transcribed into cDNA and a dye label is

incorporated. One sample is labeled with a ‘green’ dye

and the other with ‘red. ’ The samples are then mixed

and washed over the array, where the dye-labeled

cDNA strands can hybridize to their complementary

sequences on the array. Unhybridized cDNA is

washed off, and the green and red fluorescence are

measured from each spot on the array. There is little

information in a single fluorescence measurement

from a spot because there is poor control over the

amount of DNA target in each spot. What is

interesting is the relati�e fluorescence of red and green

from a spot, because the sample that contained more

transcript should produce the higher signal. This

makes the two-dye system integral to the process. An

alternative proposal is to use radioactive labeling in
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Table 1. Experimental designs to study three �arieties

of interest in three blocks of size two. Varieties A, B,

and C are of interest, while R represents a fourth

�ariety introduced to ser�e as a reference. The second

design is balanced in the sense that e�ery pair of

�arieties in the design appears together once.

Reference Design

Block 1 Block 2 Block 3

A B C
R R R

Balanced Design

Block 1 Block 2 Block 3

A B C
B C A

place of dye labeling (Friemert et al., 1989). However,

with single reads from each spot each measurement

becomes confounded with spot-to-spot variation. This

adds to error and can only be overcome with extensive

replication and careful randomization. As we will

discuss, spot effects can be accounted for with the

two-dye system. This results in greater precision and

more power to test for differences in expression.

Although there is no question that relative com-

parisons are the meaningful quantities, we disagree

with two common conclusions drawn from this fact.

The first is that all the relevant information is captured

in the ratio of the two signals from a spot. The second

is that the ‘relativeness ’ of microarray data is a novel

feature of this technology and thus traditional

statistical analyses are inadequate.

To the contrary, relative data is about as old as

statistics itself. The ‘grandfather ’ of statistics, R. A.

Fisher, worked with agricultural field trials. In

controlled experiments with clear objectives, scientists

sought to determine the productivity of different

varieties of a crop, for example different strains. They

recognized that there is no such thing in absolute

terms as the yield of a variety because productivity

depends on soil fertility, sunlight, rainfall, and myriad

other factors. They understood that the only mean-

ingful direct comparisons are for strains grown on the

same block of land. Consider a hypothetical ex-

periment to study three varieties. Suppose there are

three blocks of land available, but each block only has

room for two varieties. Table 1 gives possible

experimental plans. It is easily accepted that the yield

data contain information about the varieties grown in

the same block. However, there is a corresponding

fact relying on the same logic that can be overlooked.

Namely, there is also information about the blocks of

land because they have varieties in common. Fisher

recognized this duality and realized one could sim-

ultaneously estimate the relative yield of varieties and

the relative effects of the blocks of land. The

quantitative tool for doing this is a simple linear

model,

y
ij
¯µB

i
V

j
ε

ij
, (1)

where y
ij

is the measured yield for variety j grown on

block i, µ is the overall mean, the block effect B
i
is the

effect of block i, and V
j
is the effect of variety j. The

term ε represents random error. In a large experiment

with many varieties and blocks, unbiased yield

comparisons can be made, even for varieties not

grown on the same block of land.

Returning to microarrays, consider the spots for a

particular gene on different arrays (or reproduced

within arrays). The spots vary in size, shape, and

concentration, analogous to the variation in fertility

of blocks of land. Using the same principles as in the

agricultural experiment, we can simultaneously

measure the relative transcription level of the cor-

responding gene and the ‘fertility ’ of the spots.

However, this is only possible if we use all the

information in the data and do not reduce to ratios.

Of course, microarray experiments are considerably

more complicated than the simple agricultural ex-

periment just described. With the agricultural ex-

periment we can speak of the plots of land as the

experimental units, but with microarrays there are

different sizes of experimental units. Spots may be

organized into blocks or pin groups, which in turn are

nested within the slides themselves, which may also

belong to batches or print runs. The hypotheses that

motivate a particular experiment may also necessitate

a complex design structure to the mRNA samples.

For example, mRNA samples may be obtained from

tissues from different strains of mice and different

treatment conditions. We note, however, that the

comparisons of interest are across samples but within

genes. That is, one makes inferences about the relative

levels of expression for a gene in the different samples

but not about the level of expression of one gene with

respect to another. This is because hybridization

properties differ from sequence to sequence so that the

correspondence between fluorescent signal and any

kind of absolute measure of transcript level is

unknown. Because the meaningful comparisons are

within genes, the fundamental experimental units are

the spots.

3. Experimental design for microarrays

Once we recognize that microarray data contain

information about both expression and spot charac-

teristics, new possibilities arise for designing these

experiments. In particular, it is not necessary to use a

reference sample on every array. The logic behind
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using reference samples is that if the expression of a

gene is twice the level in sample 1 compared to the

reference, and six times higher in sample 2 compared

to the reference, then the expression is three times as

large in sample 2 compared to sample 1. However, the

same logic that allows these indirect comparisons also

allows one to consider experimental designs that only

include the samples of interest. Introducing a reference

as an intermediate step is unnecessary and generally

inefficient because it means fully half of the data are

dedicated to an extraneous sample. These precious

resources could be better allocated to gather more

information about the samples of interest so that they

may be compared with the best possible precision.

We return to the hypothetical agricultural ex-

periment to illustrate this idea. Consider the two

experimental plans in Table 1. To compare three

varieties of interest in three blocks of size two, the

‘reference’ design uses a fourth, arbitrary reference

variety in each block. This is analogous to a common

experimental strategy used with microarrays. An

alternative is the ‘balanced design, ’ which does away

with the reference variety. The balanced design

doubles the amount of data on the varieties of interest

without requiring any additional resources. Using the

model in (1) and assuming independent error with

constant variance, the least-squares estimate of the

yield difference for two varieties of interest will have

variance one-third as large for the balanced design

compared to the reference design. In other words, the

balanced design allows one to compare the varieties of

interest with much greater precision.

Although statistics is commonly viewed as primarily

dealing with post-experimental data analysis, stat-

istical experimental design is one of the oldest sub-

disciplines. Fisher (1951 ; p. 3) noted that ‘statistical

procedure and experimental design are only two

different aspects of the same whole, and that whole

comprises all the logical requirements of the complete

process of adding to natural knowledge by exper-

imentation. ’ With the two-dye system, microarrays

are effectively blocks of size two (Kerr & Churchill,

2000b). When there are more than two samples under

study, a microarray design is necessarily an incomplete

block design (Cochran & Cox, 1957). While it is not a

trivial task to find a good incomplete block design, the

topic has been under study for decades and there is a

body of research to help find efficient experimental

plans. The designs that are most suitable for any

particular experiment depend on the questions of

interest and the hypotheses to be investigated.

Adifferent aspect of gooddesign that is conceptually

simple to incorporate is replication. As Fisher noted,

replication serves two purposes. The first is to increase

the precision of estimation. The second purpose,

‘which there is no alternative method of achieving, is

to supply an estimate of error by which the significance

of these comparisons is to be judged’ (Fisher, 1951 ;

p. 60). Fisher lamented that ‘ it is possible, and indeed

it is all too frequent, for an experiment to be so

conducted that no valid estimate of error is available ’

(Fisher, 1951 ; p. 34). Without the ability to estimate

error there is no basis for statistical inference. One has

the experience of seeing some data and can look for

patterns, but there is no way to decide whether

patterns are real or spurious. As noted by Lee et al.

(2000), many microarray experiments are currently

completed without replication. Replication can be

incorporated at several levels : genes can be spotted

multiple times per array, mRNA samples can be used

on multiple arrays, and mRNA samples can be taken

from multiple specimens to account for inherent

biological variability. The last example represents true

replication while the others are probably more

accurately described as repeated measures.

In addition to finding a good pairing of samples on

arrays and incorporating replication, a third aspect of

design we recommend is balance with respect to dyes.

That is, we recommend each sample be labeled with

both the red and green dyes and both aliquots be

incorporated into the experimental plan. In multiple

datasets from different labs we have seen genes that

exhibit higher expression when labeled with one dye

or the other, regardless of the sample. This difference

is beyond any overall dye effect. If samples are only

labeled with one dye, not only can this phenomenon

not be corrected, it cannot be detected. Then, if these

effects are present, they will lead to biased estimates of

relative expression and misleading results. Although

we do not yet have a satisfactory explanation for these

gene-specific dye effects, at this stage we advocate

incorporating balance into designs until the issue is

resolved.

4. Microarray data analysis and statistical inference

The analysis of variance (ANOVA) is a natural tool

for studying data from experiments with multiple

categorical factors (Kerr et al., 2000). Borrowing

terminology from agriculture, the term �ariety refers

to the mRNA samples under study. Varieties can be

different strains, tissue types, timepoints in a biological

process, etc. Let y
ijkgr

be the signal on the appropriate

scale from the rth spot for gene g on array i for dye j

and variety k. A typical ANOVA model for a

microarray experiment is

y
ijkgr

¯µA
i
D

j
(AD)

ij
Gg(AG)

igr

(DG)
jg
(VG)

kgε
ijkgr

. (2)

Here, µ represents the average signal across all the

factors in the experiment. The ‘global ’ effects A
i
, D

j
,

and (AD)
ij

account for overall variation in arrays and

dyes. These terms saturate the design space of arrays

and dyes, indirectly accounting for overall effects of
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(a) Log Data

(b) Shift-Log Data
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Fig. 1. Difference vs. mean plots. A cDNA array used to compare a drug-treated with a control mouse liver sample. For
each spot on the array, the difference in the two signal intensities is plotted against the mean. Assuming there is a
uniform difference in the dyes and most genes are not differentially expressed, most points should fall along a horizontal
line. However, notable curvature at the low end is seen in plot (a) for the data on the log scale. This curvature is
removed by using a uniform shift in each channel before taking log, as seen in plot (b). Each gene was spotted with 4¬
replication on the array; like symbols were used for the four spots for the same gene (symbols had to be re-used).
Symbols tend to cluster in groups of four, but also show the inherent variability in the signal.

varieties. These effects are not of interest, but

accounting for them amounts to data normalization.

We advocate, as much as possible, normalizing data

as an integral part of the data analysis so that it is

done systematically and the degrees of freedom are

explicitly acknowledged. In addition to these ‘global ’

normalization terms, there are sources of variation to

consider at the level of individual genes. The gene

effects Gg account for the average signal for gene g

across arrays, dyes, and varieties. The (AG)
igr

terms in

the model are the ‘spot’ effects. These are analogous

to the block effects B in the agricultural experiment.

The (DG)
jg

terms are gene-specific dye effects. As

mentioned in the previous section, we did not

anticipate such effects, but they have appeared

repeatedly and are a potential source of bias if

ignored. The terms (VG )
kg account for the expression

of gene g specifically attributable to variety k.

Contrasts in the (VG )
kg for fixed g are the quantities

of interest.

A fundamental assumption of ANOVA is that there

exists a scale on which the various effects are additive.

We share with others a bias for the logarithmic scale.

Biological phenomena tend to be thought of in terms

of multiplicative effects, such as fold-changes in

expression. The log transforms these into additive

effects, providing interpretability that is a clear

advantage of the log. However, the log transform is

problematic with image analysis programs that pro-

duce non-positive data values. Ad-hoc ‘flooring’ gets

around the problem but produces undesirable artifacts

in the data. We have seen cases where ANOVA

modeling of the log data produced residual plots with

systematic trends. In some cases a simple shift in the

data before taking logs solves the problem (Kerr

et al., 2001). Figure 1 demonstrates this simple

adjustment, but a more complicated correction may

be required in some cases (Yang et al., 2000b).

Another problem that occurs is truncation at the high

end of the data, either because every probe molecule

is hybridized or because the dynamic range of the

scanner has been reached. We routinely use the

diagnostic plots shown in Figure 1 and advocated by

Yang et al. (2000b) to monitor for this phenomenon.

An additional issue is whether the error ε in the

model can reasonably be treated as homoscedastic. If
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Fig. 2. Temporal patterns of expression with bootstrap 99% confidence bounds. We analyzed the gene expression time
series data of Chu et al. regarding the yeast sporulation cycle using ANOVA. Confidence intervals on the estimates of
relative expression serve as a gauge for which changes in expression should be regarded as ‘real ’ and which changes are
attributable to noise. For example, there is strong evidence there is increased expression of YSW1 between 2 and 5
hours but little evidence for changes in expression between 5 and 12 hours.

not, one must consider the nature of the hetero-

scedasticity and its consequences for estimation and

statistical inference. In some data we have analyzed

there was no clear evidence against homoscedasticity

(Kerr et al., 2000; Kerr & Churchill, 2000a). In these

cases we used a straightforward application of

bootstrapping (Efron & Tibshirani, 1994) to produce

non-parametric confidence intervals for differences in

gene expression across samples (Figure 2). We have

observed heteroscedasticity in other data (Kerr et al.,

2001), although the nature of the heteroscedasticity

has not been obvious. For example, we are uncertain

whether the error variance depends on intensity or

is perhaps more particular to genes. In either case,

we prefer randomization techniques such as boot-

strapping over classical t-tests and F-tests because we

have consistently observed non-normality in residual

distributions.

A crucial issue with ANOVA for microarrays is

deciding whether effects should be treated as fixed or

random. Generally, fixed effects are those thought of

as unknown constants. In contrast, random effects are

thought to arise from some random process, such as

sampling from an effectively infinite population. We

have used fixed effect models as a starting point, but

agree with those who argue that random effects are

more appropriate in some cases (Wolfinger et al.,

2000). Our hesitation has been that the empirical

distributions of parameter estimates and residuals we

have seen have been decidedly non-normal, but

standard methods for random effects assume under-

lying normality. We believe this area is ripe for further

research.

Wolfinger et al. (2000) present a microarray data

analysis using ANOVA methods and random effects.

In line with classical techniques, they use random

effects for the ‘blocking effects ’ such as the spot

effects. We believe there is a case to be made to go a

step further and treat the gene effects and gene

interactions, including the effects of interest, VG, as

random. This may be appropriate because many

microarray experiments are exploratory. The genes

spotted on the arrays are not specifically suspected to

relate to the differences in the varieties under study.

Rather, they are a set of clones that happen to be

available. The result would be some ‘shrinkage’ in the

estimates of differential expression, reducing the bias

in the most extreme estimates. The prospect of treating

the effects of interest as realizations of a random

process is not without controversy. Robinson (1991)

provides an excellent discussion of the topic.

5. Discussion

The first microarray experiments demonstrated the

promise of the technology by estimating patterns of

gene expression and showing these patterns were in

good agreement with prior knowledge of the systems

under study (Chu et al., 1998; DeRisi et al., 1997).

This was a remarkable and noteworthy achievement.

As we move forward, the purpose of experiments is

not to confirm known properties of well-studied

genes. Rather, it is to acquire information about

unknown genes and unknown gene functions. To this

end, one cannot consider just the genes with large

changes in expression that are obvious to detect

without the aid of statistics. This practice overlooks

important genes that may have small, but repro-

ducible, changes in expression. In order to detect such

genes, scientists need statistically designed experiments

and data analyses that not only produce estimates

of relative expression but, in addition, error bars for

those estimates. Error bars provides a basis to decide

which features in the data likely represent interesting

biology and which are likely to have arisen by chance.

Measures of confidence should be incorporated
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whether one is simply looking to identify differentially

expressed genes or evaluating the results of higher-

order analyses such as clustering (Kerr & Churchill,

2000a).

Ignoring potential sources of experimental bias,

such as assuming the two dyes behave the same, can

yield misleading results. An advantage of model-

based data analysis such as ANOVA is that a model

helps the analyst explore the data. If one finds a model

inadequate, discovering why it is inadequate can help

the analyst identify sources of variation and bias. On

the other hand, sources of variation cannot be

measured if they are confounded by the experimental

design. Any finite body of data contains a limited

amount of information, which cannot be increased by

any amount of ingenuity expended by statisticians

(Fisher, 1951 ; p. 39).

Statistics has a long-standing relationship with

biology, probably more than with any other natural

science. Biological data is inherently variable, and

statistical inference is required in order to draw

conclusions from data and add to the body of

knowledge. Collecting data and acquiring knowledge

are not the same thing. Good design and sound

statistical inference will be a crucial factor in deter-

mining whether microarrays fulfill their potential.
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