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Abstract. Let A be an invertible operator on a complex Banach space X . For a
given α ≥ 0, we define the class Dα

A (�) (resp. Dα
A (�+)) of all bounded linear operators

T on X for which there exists a constant CT > 0, such that

‖AnTA−n‖ ≤ CT (1 + |n|)α ,

for all n ∈ � (resp. n ∈ �+). We present a complete description of the class Dα
A (�) in

the case when the spectrum of A is real or is a singleton. If T ∈ DA (�)
(= D0

A (�)
)
,

some estimates for the norm of AT − TA are obtained. Some results for the class
Dα

A (�+) are also given.

2010 Mathematics Subject Classification. 47A11, 46Hxx, 30D20.

1. Introduction. Let X be a complex Banach space and let B (X) be the algebra
of all bounded linear operators on X . As usual, K (X) will denote the ideal of compact
operators on X. By σ (T), r(T), and R (z, T) := (zI − T)−1 (z /∈ σ (T)), respectively, we
denote the spectrum, the spectral radius, and the resolvent of T ∈ B (X) . Throughout,
[α] denotes the integer part of α ∈ �.

Let H be a separable Hilbert space and let A be an invertible operator on H. In
[6], Deddens introduced the set

BA :=
{

T ∈ B (H) : sup
n≥0

∥∥AnTA−n
∥∥ < ∞

}
.

Notice that BA is an algebra (not necessarily closed) with identity which contains the
commutant {A}′ of A. In [6], Deddens showed that if A is a positive operator with
the spectral measure E (·) , then BA coincides with the nest algebra associated with the
nest {E [0, λ] : λ ≥ 0} (recall that every nest algebra arises in this manner). In the same
paper, Deddens conjectured that in the infinite dimensional Hilbert case, the equality
BA = {A}′ holds if the spectrum of A is reduced to {1} . In [16], Roth gave a negative
answer to Deddens conjecture. He showed the existence of a quasinilpotent operator
V (the Volterra integration operator) for which BI+V 	= {I + V}′ . In [18], Williams
proved that if the spectrum of A ∈ B (X) is reduced to {1} and if T ∈ B (X) satisfies
the condition supn∈� ‖AnTA−n‖ < ∞, then AT = TA. In [7], Drissi and Mbekhta
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improved Williams result by replacing his condition on A−1 by the weaker condition
‖A−nTAn‖ = o(eε

√
n) (n → ∞), for every ε > 0 (see also [8] and [12]).

In this paper, for an invertible operator A ∈ B (X) and α ≥ 0, we define the class
Dα

A (�) (resp. Dα
A (�+)) of all operators T ∈ B (X) for which the growth of ‖AnTA−n‖ is

at most polynomial in n ∈ � (resp. n ∈ �+) , explicitly, there exists a constant CT > 0,

such that

‖AnTA−n‖ ≤ CT (1 + |n|)α ,

for all n ∈ � (resp. n ∈ �+) . Clearly, both Dα
A (�) and Dα

A (�+) contains the commutant
of A. In the case when α = 0, instead of D0

A (�) and D0
A (�+) we will use the notations

DA (�) and DA (�+) , respectively. Notice also that DA (�) and DA (�+) are algebras
(not necessarily closed) with identity.

The main results of the paper can be summarized as follows.
In Section 2, we give a complete characterization (Theorem 2.1) of the class Dα

A (�)
in the case when the spectrum of A is real or is a singleton. It is shown (Theorem 2.8) that
if σ (A) = {λ} and K (X) ⊂ Dα

A (�+) , then A = λI + N, where N is nilpotent of degree
≤ [α] + 1. It is shown (Theorem 2.9) also that if σ (A) = {λ1, . . . , λn} and K (X) ⊂
Dα

A (�+) (0 ≤ α < 1) , then |λ1| = · · · = |λn| and there exist pairwise disjoint (bounded)
projections P1, . . . , Pn such that P1 + · · · + Pn = I and A = λ1P1 + · · · + λnPn.

In Section 3, in the case when T ∈ DA (�) , some estimates for the norm of AT −
TA are given (Theorem 3.2).

2. The class Dα
A (�). The first main result of this section is the following.

THEOREM 2.1. Assume that the spectrum of an invertible operator A ∈ B (X) lies on
the real line and 0 /∈ σ (A) + σ (A) . Then,

Dα
A (�) =

{
T ∈ B (X) :

k∑
i=0

(−1)i
(

k
i

)
Ak−iTA−k+i = 0

}
,

where k = [α] + 1. In particular, if 0 ≤ α < 1, then Dα
A (�) = {A}′ .

For the proof, we need some preliminary results.
For arbitrary T ∈ B (X) and x ∈ X , we define ρT (x) to be the set of all λ ∈ � for

which there exists a neighbourhood Oλ of λ with u (z) analytic on Oλ having values
in X , such that (zI − T) u (z) = x for all z ∈ Oλ. This set is open and contains the
resolvent set ρ (T) of T . By definition, the local spectrum of T at x, denoted by σ T (x) ,

is the complement of ρT (x) , so it is a compact subset of σ (T). This object is most
tractable if the operator T has the single-valued extension property (in abbreviation
SVEP), i.e., for every open set U in �, the only analytic function f : U → X for which
the equation (zI − T) f (z) = 0 holds, is the constant function f ≡ 0. In that case, for
every x ∈ X, there exists a maximal analytic extension of R (z, T) x to ρT (x). It follows
that if T has SVEP, then σ T (x) 	= ∅, whenever x 	= 0. It is easy to see that an operator
T ∈ B (X) having spectrum without interior points has the SVEP (see, [5] and [13]).

Let ω = (ωn)n∈� be a sequence of real numbers with ωn ≥ 1 and ωn+m ≤ ωnωm for
all n, m ∈ �. We say then that ω is a weight on �. The Beurling algebra Aω, defined by
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the weight ω, is the set of all functions

f (ζ ) =
∑
n∈�

f̂ (n) ζ n (|ζ | = 1) , with ‖f ‖ω =
∑
n∈�

∣∣̂f (n)
∣∣ωn < ∞.

Notice that Aω is a commutative, semisimple Banach algebra with respect to pointwise
multiplication. For arbitrary ϕ ∈ A∗

ω, we will write ϕ = {̂ϕ (n)}n∈�, where ϕ̂ (n) = ϕ (ζ n)
(n ∈ �). We have

‖ϕ‖ω := sup
n∈�

|̂ϕ (n)|
ωn

< ∞.

The duality being implemented by the formula

〈ϕ, f 〉 =
∑
n∈�

ϕ̂ (n) f̂ (n)
(
ϕ ∈ A∗

ω, f ∈ Aω

)
.

We say, the weight ω is regular if∑
n∈�

log ωn

1 + n2
< ∞.

For example, the weight ωn = (1 + |n|)α (α ≥ 0) is regular and it is called polynomial
weight. If ω is a regular weight, then

lim
n→∞ ω

1
n
n = lim

n→∞ ω
1
n−n = 1. (1)

Consequently, the maximal ideal space of the algebra Aω can be identified with 
 :=
{z ∈ � : |z| = 1} [10, Chapter III]. Moreover, the algebra Aω is regular in the Shilov
sense [10, Chapter III and 1, Chapter XII] if and only if the weight ω is regular. Below,
we will assume that ω is a regular weight.

If I is a closed ideal of Aω, the hull of I is the set

hull (I) = {ξ ∈ 
 : f (ξ ) = 0, ∀f ∈ I} .

If ϕ ∈ A∗
ω, then

Iϕ := {f ∈ Aω : ϕ · f = 0}

is a closed ideal of Aω, where ϕ · f is a functional on Aω, defined by

〈ϕ · f, g〉 = 〈ϕ, fg〉, g ∈ Aω.

Recall that the support of ϕ ∈ A∗
ω is defined as follows. For ξ ∈ 
, we let ξ /∈suppϕ iff

there is a neighbourhood Oξ of ξ such that 〈ϕ, f 〉 = 0 for all f ∈ Aω with suppf ⊂ Oξ .

An equivalent definition for suppϕ is that ξ ∈suppϕ iff ϕ · f = 0 implies f (ξ ) = 0. It
follows that

suppϕ = hull
(
Iϕ

)
, ∀ϕ ∈ A∗

ω.
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Given a closed subset S of 
, there are two distinguished closed ideals of Aω with
hull equal to S, namely

Jω (S) := {f ∈ Aω : suppf ∩ S = ∅}

is the smallest closed ideal whose hull is S and

Iω (S) := {f ∈ Aω : f (ξ ) = 0, ∀ξ ∈ S}

is the largest closed ideal whose hull is S. The set S is a set of synthesis for Aω if
Jω (S) = Iω (S) . This is equivalent to the existence of a unique closed ideal I of Aω

whose hull is S. It is well known [10, Chapter VI, Section 41] that if ω = (ωn)n∈� , where
ωn = (1 + |n|)α (0 ≤ α < 1) , then each point of 
 is a set of synthesis for Aω.

Let ϕ ∈ A∗
ω be given. Since |̂ϕ (n)| ≤ ‖ϕ‖ω ωn (n ∈ �) , it follows from (1) that

limn→∞ |̂ϕ (n)| 1
n ≤ 1 and limn→∞ |̂ϕ (−n)| 1

n ≤ 1.

Recall that the Carleman transform of ϕ is defined as the analytic function � (z) on
��
 given by

� (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
n=0

ϕ̂ (n)
zn

, |z| > 1;

−
∞∑

n=1

ϕ̂ (−n) zn, |z| < 1.

We know (see, [2, Theorem 3.3] and [17, Lemma 3]) that ξ ∈suppϕ if and only if the
Carleman transform � (z) of ϕ has no analytic extension to a neighbourhood of ξ .

Let T be an invertible operator on a Banach space X and let ω = (ωn)n∈� be a
weight on �. We put

Eω
T := {

x ∈ X : ∃C > 0,
∥∥Tnx

∥∥ ≤ Cωn, ∀n ∈ �
}
.

Clearly, Eω
T is a linear (in general, non-closed) subspace of X. If x ∈ Eω

T , then for
arbitrary f = ∑

n∈� f̂ (n) ζ n ∈ Aω, we can define xf ∈ X by

xf =
∑
n∈�

f̂ (n) Tnx.

Then, f �→ xf is a bounded linear map from Aω into X ;

‖xf ‖ ≤ C ‖f ‖ω , ∀f ∈ Aω.

Further, from the identity

Tmxf =
∑
n∈�

f̂ (n) Tn+mx,
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we can write ∥∥Tmxf
∥∥ ≤

∑
n∈�

∣∣̂f (n)
∣∣ ∥∥Tn+mx

∥∥
≤ C

∑
n∈�

∣∣̂f (n)
∣∣ωn+m

≤ C ‖f ‖ω ωm, ∀m ∈ �.

This shows that xf ∈ Eω
T for every f ∈ Aω. It is easy to check that if x ∈ Eω

T , then

(xf )g = xfg for all f, g ∈ Aω.

It follows that if x ∈ Eω
T , then

Ix := {f ∈ Aω : xf = 0}

is a closed ideal of Aω.

For a given x ∈ Eω
T , consider the function

u (z) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
n=0

Tnx
zn+1

, |z| > 1;

−
∞∑

n=1

zn−1T−nx, |z| < 1.

It follows from (1) that u (z) is an analytic function on ��
 and

(zI − T) u (z) = x (|z| 	= 1) . (2)

It follows that σ T (x) ⊂ 
. Now, assume that T has SVEP. We claim that σ T (x) consists
of all ξ ∈ 
 for which the function u (z) has no analytic extension to a neighbourhood
of ξ . Assume that v (z) is the analytic extension of u (z) to a neighbourhood Oξ of ξ ∈ 
.

It follows from the identity (2) that the function w (z) := (zI − T) v (z) − x vanishes
on O+

ξ := {
z ∈ Oξ : |z| > 1

}
and on O−

ξ := {
z ∈ Oξ : |z| < 1

}
. By uniqueness theorem,

w (z) = 0 for all z ∈ Oξ . So we have (zI − T) v (z) = x for all z ∈ Oξ . This shows that
ξ ∈ ρT (x) . Now, assume that ξ ∈ ρT (x) ∩ 
. Then, there exists a neighbourhood Oξ

of ξ with v (z) analytic on Oξ having values in X such that (zI − T) v (z) = x for all
z ∈ Oξ . In view of the identity (2), (zI − T) (u (z) − v (z)) = 0 for all z ∈ O+

ξ and z ∈ O−
ξ .

Since T has SVEP, we have u (z) = v (z) for all z ∈ O+
ξ and z ∈ O−

ξ . This shows that the
function u (z) can be analytically extended to a neighbourhood of ξ .

Let x ∈ Eω
T be given. For arbitrary ϕ ∈ X∗, define a functional ϕx on Aω, by

〈ϕx, f 〉 = 〈ϕ, xf 〉.

We have ∣∣〈ϕx, f 〉∣∣ ≤ C ‖ϕ‖ ‖f ‖ω , ∀ f ∈ Aω,
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and ϕ̂x (n) = ϕ (Tnx) (n ∈ �). Consequently, we can write

z〈ϕ, u (z)〉 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
n=0

ϕ̂x (n)
zn

, |z| > 1;

−
∞∑

n=1

znϕ̂x (−n) , |z| < 1.

This shows that the function z → z〈ϕ, u (z)〉 (|z| 	= 1) is the Carleman transform of ϕx.

It follows that ⋃
ϕ∈X∗

suppϕx⊆σ T (x) .

To show the reverse inclusion, assume that ξ 0 ∈ 
 and

ξ 0 /∈
⋃

ϕ∈X∗
suppϕx.

Then, there exists f ∈ Aω such that f (ξ 0) 	= 0 and f vanishes in a neighbourhood of
suppϕx, for every ϕ ∈ X∗. Consequently, there exists a neighbourhood Oξ 0

of ξ for
which f (ξ ) 	= 0 for all ξ ∈ Oξ 0

and ϕx · f = 0. Therefore, Oξ 0
⊂ 
\suppϕx. This shows

that the function z → 〈ϕ, u (z)〉 can be analytically extended to Oξ 0
for every ϕ ∈ X∗.

It follows that u (z) can be analytically extended to Oξ 0
. Consequently, ξ 0 /∈ σ T (x) .

Thus, we obtain ⋃
ϕ∈X∗

suppϕx = σ T (x) .

On the other hand, from the identity

〈ϕx · f, g〉 = 〈ϕx, fg〉 = 〈ϕ, xfg〉 (f, g ∈ Aω) ,

we can deduce that

Ix =
⋂

ϕ∈X∗
Iϕx

.

Now, it follows from the general theory of Banach algebras that

hull (Ix) =
⋃

ϕ∈X∗
hull

(
Iϕx

) =
⋃

ϕ∈X∗
suppϕx = σ T (x) .

Hence, we have the following.

PROPOSITION 2.2. Let ω = (ωn)n∈� be a regular weight on � and let T be an invertible
operator on a Banach space X with the SVEP. If x ∈ X satisfies the condition ‖Tnx‖ ≤
Cωn for all n ∈ � and for some constant C > 0, then

σ T (x) = hull (Ix) .

As a consequence of Proposition 2.2, we have the following.
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PROPOSITION 2.3. Let ω = (ωn)n∈� be a regular weight on � and let T be an invertible
operator on a Banach X with the SVEP. Assume that x ∈ X satisfies the condition
‖Tnx‖ ≤ Cωn for all n ∈ � and for some constant C > 0. Then, the following assertions
hold for f ∈ Aω :

(a) If xf = 0, then f vanishes on σ T (x) .

(b) If f vanishes in a neighbourhood of σ T (x) , then xf = 0.
(c) If f = 1 in a neighbourhood of σ T (x) , then xf = x.
(d) σ T

(
xf

) ⊂ σ T (x) ∩suppf.
(e) σ T (x) ∩ {ξ ∈ 
 : f (ξ ) 	= 0} ⊂ σ T

(
xf

)
.

Proof. By Proposition 2.2, we can write

Jω (σ T (x)) ⊂ Ix ⊂ Iω (σ T (x)) .

The assertions (a) and (b) follows from this relation.
(c) Since f − 1 vanishes in a neighbourhood of σ T (x) , by (b), xf = x.

(d) If g ∈ Ix, then xg = 0. As

(xf )g = xfg = (xg)f = 0,

we have g ∈ Ixf . Hence, Ix ⊂ Ixf which implies hull(Ixf ) ⊂hull(Ix). By Proposition 2.2,
σ T (xf ) ⊂ σ T (x). On the other hand, if g ∈ Aω vanishes on suppf, then fg = 0. This
implies

(xf )g = xfg = 0.

Consequently, Iω(suppf ) ⊂ Ixf , so that hull (Ixf ) ⊂suppf. By Proposition 2.2,
σ T (xf ) ⊂suppf. Thus, we have σ T (xf ) ⊂ σ T (x)∩suppf.

(e) Assume that ξ ∈ σ T (x) , f (ξ ) 	= 0, and ξ /∈ σ T
(
xf

)
. Since the algebra Aω is

regular, there exists g ∈ Aω such that g (ξ ) 	= 0 and g vanishes in a neighbourhood
of σ T

(
xf

)
. Consequently, g belongs to the smallest closed ideal of Aω whose hull is

σ T
(
xf

)
. By Proposition 2.2, g ∈ Ixf and so

xfg = (xf )g = 0.

By (a), fg vanishes on σ T (x) . It follows that f (ξ ) = 0 which contradicts f (ξ ) 	= 0. �
Next, we have the following.

PROPOSITION 2.4. Let ω = (ωn)n∈� , where ωn = (1 + |n|)α (α ≥ 0) . Assume that an
invertible operator T on a Banach space X and x ∈ X satisfies the following conditions:

(i) ‖Tnx‖ ≤ Cωn for all n ∈ � and for some constant C > 0.

(ii) T has SVEP.
If σ T (x) = {ξ} , then for every f ∈ Aω, we have

xf = f (ξ ) x + f ′ (ξ )
1!

(T − ξI) x + · · · + f (k) (ξ )
k!

(T − ξI)k x,

where k = [α] . In particular, we have (T − ξI)k+1 x = 0.
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Proof. We know [10, Chapter, Section 41] that if f ∈ Aω, then the first k derivatives
of f exist and

Jω ({ξ}) = {
f ∈ Aω : f (ξ ) = f ′ (ξ ) = · · · = f (k) (ξ ) = 0

}
,

where k = [α]. Recall that Jω ({ξ}) is the smallest closed ideal of Aω whose hull is {ξ} .

On the other hand, by Proposition 2.2, hull(Ix) = {ξ} . Therefore, we have Jω ({ξ}) ⊂ Ix.

Now, for a given f ∈ Aω, consider the function

h (ζ ) = f (ζ ) − f (ξ ) − f ′ (ξ )
1!

(ζ − ξ ) − · · · − f (k) (ξ )
k!

(ζ − ξ )k
.

As

h (ξ ) = h′ (ξ ) = · · · = h(k) (ξ ) = 0,

we have h ∈ Jω ({ξ}) , so that h ∈ Ix. Thus, we obtain xh = 0 and so

xf = f (ξ ) x + f ′ (ξ )
1!

(T − ξI) x + · · · + f (k) (ξ )
k!

(T − ξI)k x.

By taking in the preceding identity f (ζ ) = (ζ − ξ )k+1
, we get

(T − ξI)k+1 x = 0.

�
For a given A ∈ B (X) , by LA and RA, respectively, we denote the left and right

multiplication operators on B (X) ;

LAT = AT, RAT = TA, T ∈ B (X) .

By Lumer–Rosenblum theorem [15, Theorem 10], for arbitrary A, B ∈ B (X) ,

σ (LARB) = {λμ : λ ∈ σ (A) , μ ∈ σ (B)} .

Now, we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. If T ∈ Dα
A (�) , then we can write∥∥(LARA−1 )n T
∥∥ ≤ C (1 + |n|)α , ∀n ∈ �.

As we have noted above, in that case

σ LARA−1 (T) ⊂ 
.

On the other hand, the Lumer–Rosenblum theorem mentioned above and the condition
0 /∈ σ (A) + σ (A) implies that

σ LARA−1 (T) ⊂ σ (LARA−1 ) ⊂ �� {−1} .

Consequently, the operator LARA−1 has SVEP and σ LARA−1 (T) ⊂ {1} . Since LARA−1

has SVEP, σ LARA−1 (T) 	= ∅. So we have σ LARA−1 (T) = {1} . Applying now Proposition
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2.4 to the operator LARA−1 on the space B (X) , we get

(LARA−1 − I)k T = 0,

where k = [α] + 1. This clearly implies

k∑
i=0

(−1)i
(

k
i

)
Ak−iTA−k+i = 0.

For the reverse inclusion, assume that T ∈ B (X) satisfies the last equation. Since

(LARA−1 − I)k T = 0 (k ≥ 1) ,

we can write∥∥AnTA−n
∥∥ = ∥∥(LARA−1 )n T

∥∥
=

∥∥∥∥T +
(

n
1

)
(LARA−1 − I) T + · · · +

(
n

k − 1

)
(LARA−1 − I)k−1 T

∥∥∥∥
= O (1 + n)k−1

.

As (LA−1 RA − I)k T = 0, similarly we have
∥∥A−nTAn

∥∥ = O (1 + n)k−1
. Hence,∥∥AnTA−n

∥∥ = O (1 + |n|)k−1 (n ∈ �) . �
COROLLARY 2.5. If the spectrum of an invertible operator A ∈ B (X) consists of one

point, then the conclusion of Theorem 2.1 remains true.

Proof. Assume that σ (A) = {λ} , where λ 	= 0. If T ∈ Dα
A (�) , then T ∈ Dα

B (�) ,

where B = A
λ
. Since σ (B) = {1} , by Theorem 2.1, we obtain as required. �

It follows from Corollary 2.5 that if σ (A) consists of one point and 0 ≤ α < 1,

then Dα
A (�) = {A}′ . Note that if α ≥ 1, then Dα

A(�) 	= {A}′, in general. To see this, let

A = ( 1 0
1 1 ) and T = ( 0 0

0 1 ) be 2 × 2 matrices on 2−dimensional Hilbert space. We have

σ (A) = {1} and

AnTA−n = [I + n (A − I)] T [I − n (A − I)] =
(

0 0
−n 1

)
(n ∈ �) .

Similarly, A−nTAn = ( 0 0
n 1 ) (n ∈ �). So we have

∥∥AnTA−n
∥∥ = (

1 + |n|2) 1
2 (n ∈ �) .

This shows that T ∈ D1
A (�) , but AT 	= TA.

Recall that an invertible operator T acting on a Banach space is called doubly
power bounded if supn∈� ‖Tn‖ < ∞. Well-known Gelfand’s theorem [9] states that if T
is doubly power bounded with σ (T) = {1} , then T = I.

We include here the following result, which seems to be unnoticed.

PROPOSITION 2.6. Let ω = (ωn)n∈� , where ω (n) = (1 + |n|)α (0 ≤ α < 1). Assume
that an invertible operator T on a Banach space X and x ∈ X satisfies the following
conditions:
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(i) ‖Tnx‖ ≤ Cω (n) for all n ∈ � and for some constant C > 0.

(ii) T has SVEP.
If σ T (x) = {

ξ 1, . . . , ξk
} (

ξ i 	= ξ j, i 	= j, i, j = 1, . . . , k
)
, then

x ∈ ker (T − ξ 1I) ⊕ · · · ⊕ ker (T − ξkI) .

Proof. Let U1, . . . , Uk be disjoint neighbourhoods of ξ 1, . . . , ξk, respectively. Let
Vi be a neighbourhood of ξ i such that Vi ⊂ Ui (i = 1, . . . , k) . Since the algebra Aω

is regular, there exist functions f1, . . . , fk in Aω such that fi = 1 on Vi and fi = 0
outside Ui (i = 1, . . . , k) . We put f := f1 + · · · + fk. Since f = 1 in a neighbourhood
of σ T (x) , by Proposition 2.3 (c), xf = x. So we have x = x1 + · · · + xk, where xi = xfi

(i = 1, . . . , k) . Further, it follows from Proposition 2.3 (d) and (e) that

{ξ i} ⊂ σ T (xi) ⊂ σ T (x) ∩ suppfi = {ξ i}.

Consequently, we have σ T (xi) = {
ξ i

}
. Now, it remains to show that if x ∈ Eω

T with
σ T (x) = {ξ} , then Tx = ξx. By Proposition 2.2, hull(Ix) = {ξ} . Since {ξ} is a set of
synthesis for Aω, we have Ix = I

ω
({ξ}) , so that

{f ∈ Aω : xf = 0} = {f ∈ Aω : f (ξ ) = 0} .

If we put in this identity f (ζ ) = ζ − ξ, then we have Tx = ξx. �

Let ω = (ωn)n∈� be a regular weight. Assume that an invertible operator T on a
Banach space satisfies the condition ‖Tn‖ ≤ Cω (n) for all n ∈ � and for some constant
C > 0. As we have noted above, in that case σ (T) ⊂ 
 and therefore T has SVEP.

The following result is an immediate consequence of the preceding proposition.

COROLLARY 2.7. Assume that 0 ≤ α < 1 and T ∈ B (X) satisfies the condition
‖Tn‖ ≤ C (1 + |n|)α for all n ∈ � and for some constant C > 0. If

σ (T) = {ξ 1, . . . , ξ k} (ξ i 	= ξ j, i 	= j, i, j = 1, . . . , k),

then there exist pairwise disjoint (bounded) projections P1, . . . , Pk such that P1 + · · · +
Pk = I and

T = ξ 1P1 + · · · + ξkPk.

(in fact, Pi = 1
2π i

∫

i

R (z, T) dz, where 
i is an appropriate contour around {ξ i}).
Another application of Proposition 2.4 is the following.

THEOREM 2.8. Assume that the spectrum of A ∈ B (X) consists of one point λ 	= 0.
If K (X) ⊂ Dα

A (�+) , then the operator A has the form A = λI + N, where N is nilpotent
of degree ≤ [α] + 1.

Proof. We have

‖AnTA−n‖ = ‖(LARA−1 )nT‖ ≤ CT (1 + n)α,
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for all T ∈ K (X) and n ∈ �. Applying uniform boundedness principle to the sequence
of operators

Bn := 1
(1 + n)α

(LARA−1 )n
,

we obtain that there exists a constant C > 0 such that

‖AnTA−n‖ ≤ C(1 + n)α‖T‖,

for all T ∈ K (X) and n ∈ �. For a given x ∈ X and ϕ ∈ X∗, let x ⊗ ϕ be the one
dimensional operator on X defined by

x ⊗ ϕ : y �→ ϕ (y) x (y ∈ X) .

As x ⊗ ϕ ∈ Dα
A (�+) , we have

‖Anx‖‖A∗−nϕ‖ ≤ C(1 + n)α‖x‖‖ϕ‖,
for all x ∈ X and ϕ ∈ X∗. This implies

‖An‖‖A−n‖ ≤ C(1 + n)α, ∀n ∈ �.

Further if B := 1
λ

A, then

‖Bn‖‖B−n‖ = ‖An‖‖A−n‖ ≤ C(1 + n)α.

On the other hand, as σ (B) = σ (B−1) = {1}, we have ‖Bn‖ ≥ 1 and ‖B−n‖ ≥ 1.

Consequently,

‖Bn‖ ≤ ‖Bn‖‖B−n‖ ≤ C(1 + n)α, ∀n ∈ �.

Similarly, we have

‖B−n‖ ≤ C(1 + n)α, ∀n ∈ �.

Thus, we obtain

‖Bn‖ ≤ C(1 + |n|)α, ∀n ∈ �.

By Proposition 2.4, (B − I)k = 0, where k = [α] + 1. It follows that (A − λI)k = 0. If
we put N := A − λI, then A = λI + N, where N is nilpotent of degree ≤ k. �

The following result is an application of Proposition 2.6.

THEOREM 2.9. Let A ∈ B (X) be such that σ (A) = {λ1, . . . , λk} , where 0 	= λi 	= λj

(i 	= j) (i, j = 1, . . . , k) . If K (X) ⊂ Dα
A (�+) (0 ≤ α < 1) , then |λ1| = · · · = |λk| and

there exist pairwise disjoint (bounded) projections P1, . . . , Pk such that P1 + · · · + Pk = I
and

A = λ1P1 + · · · + λkPk.

Proof. As in the proof of Theorem 2.8, we have

‖An‖‖A−n‖ ≤ C(1 + n)α, ∀n ∈ �.
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It follows that r(A)r(A−1) ≤ 1. Since r(A)r(A−1) ≥ 1, we obtain

r(A)r(A−1) = 1.

Consequently, |λ1| = · · · = |λk| = a for some a > 0. Further if B := 1
a A, then

‖Bn‖‖B−n‖ = ‖An‖‖A−n‖ ≤ C(1 + n)α, ∀n ∈ �.

On the other hand, as

σ (B) =
{

λ1

a
, . . . ,

λk

a

}
and σ (B−1) =

{
a
λ1

, . . . ,
a
λk

}
,

we have ‖Bn‖ ≥ 1 and ‖B−n‖ ≥ 1. This implies

‖Bn‖ ≤ ‖Bn‖‖B−n‖ ≤ C(1 + n)α, ∀n ∈ �.

Similarly, we have

‖B−n‖ ≤ C(1 + n)α, ∀n ∈ �.

Thus, we obtain

‖Bn‖ ≤ C(1 + |n|)α, ∀n ∈ �.

By Corollary 2.7, there exist pairwise disjoint projections P1, . . . , Pk such that P1 +
· · · + Pk = I and

B = λ1

a
P1 + · · · + λk

a
Pk.

So we have A = λ1P1 + · · · + λkPk. �

3. The norm of AT − TA. In this section, we give some estimates for the norm
of AT − TA in the case when T ∈ DA (�) .

Recall that an entire function f is said to be of order ρ if

ρ = lim
r→∞

log log Mf (r)
log r

,

where

Mf (r) = sup {|f (z)| : |z| ≤ r} (r > 0) .

An entire function f of finite order ρ is said to be of type σ if

σ = lim
r→∞

log Mf (r)
rρ

.

If the entire function f is of order at most one and type less than or equal to σ , we say
f is of exponential type σ [3, p. 8].

For a given σ > 0, we denote by Bσ the set of all bounded on the real line entire
functions f of exponential type ≤ σ . Recall [11] that Bσ is a Banach space under the
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norm given by

‖f ‖σ := sup
z∈�

[
e−σ |Im z| |f (z)|] .

It follows from the Phragmen–Lindelöf theorem that

‖f ‖σ = sup
t∈�

|f (t)| , ∀f ∈ Bσ .

The following inequality of Bernstein type is well known [11]: If f ∈ Bσ , where 0 ≤
σh ≤ π

2 , then

sup
t∈�

|f (t + h) − f (t − h)| ≤ 2 sin σh ‖f ‖σ .

It follows that for every f ∈ Bσ ,

|f (1) − f (0)| ≤ 2 sin
σ

2
‖f ‖σ (σ ≤ π ) ,

|f (1) − f (−1)| ≤ 2 sin σ ‖f ‖σ

(
σ ≤ π

2

)
.

On the other hand, by Cartwright theorem (see, [3, Chapter 10] and [11]), the inequality

‖f ‖σ ≤ 1
cos σ

2

sup
n∈�

|f (n)|

holds for every f ∈ Bσ (σ < π ) . Hence, we have

|f (1) − f (0)| ≤ 2 tan
σ

2

(
sup
n∈�

|f (n)|
)

, ∀f ∈ Bσ (σ < π ) , (3)

|f (1) − f (−1)| ≤ 4 sin
σ

2

(
sup
n∈�

|f (n)|
)

, ∀f ∈ Bσ

(
σ ≤ π

2

)
. (4)

We will need the following.

LEMMA 3.1. Assume that T ∈ B (X) and x ∈ X satisfies the following conditions,

(i) σ (T) ⊂ ���−,

(ii) supn∈� ‖Tnx‖ ≤ C for some C > 0.

If τT := sup {|log z| : z ∈ σ (T)} , then the following assertions hold:
(a) If τT < π, then

‖Tx − x‖ ≤ 2C tan
τT

2
.

(b) If τT ≤ π
2 , then

‖Tx − T−1x‖ ≤ 4C sin
τT

2
.
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Proof. By condition (i), we can write T = eS, where S = log T [4, Chapter I, Section
7]. For arbitrary functional ϕ ∈ X∗ with norm one, consider the entire function

f (z) := 〈ϕ, ezSx〉.
From the inequality,

|f (z)| ≤ e|z|‖S‖ ‖x‖ ,

we deduce that f is an entire function of order

ρ = lim
r→∞

log log Mf (r)
log r

≤ lim
r→∞

log (r ‖S‖ + log ‖x‖)
log r

= 1.

Notice also that the nth derivative of f at zero is ϕ (Snx) . By Levin’s Theorem
[14, p. 84], the type of f is less than or equal to

lim
n→∞|ϕ(Snx)| 1

n ≤ lim
k→∞

‖Sn‖ 1
n = r(S)

= sup{| log z| : z ∈ σ (T)} = τT .

Consequently, f is an entire function of exponential type τT . Further, since

sup
n∈�

‖enSx‖ ≤ C,

from the identity t = n + r, where n ∈ �, |r| < 1, and |n| ≤ |t| , we can write

sup
t∈�

‖etSx‖ ≤ Ce‖S‖.

Hence, f is bounded on �. Thus, we obtain that f ∈ BτT . Now, taking into account
that

sup
n∈�

|f (n)| ≤ C,

in the case when τT < π, from the inequality (3), we can write

|f (1) − f (0)| ≤ 2C tan
τT

2
.

It follows that ∥∥eSx − x
∥∥ ≤ 2C tan

τT

2
,

which means that

‖Tx − x‖ ≤ 2C tan
τT

2
.

Similarly, from the inequality (4), we can deduce that if τT ≤ π
2 , then

‖Tx − T−1x‖ ≤ 4C sin
τT

2
.

�
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The following theorem gives us another generalization of Williams result [18].

THEOREM 3.2. Let A be an invertible operator on a Banach space X and let T ∈
B (X) . Assume that the following conditions are satisfied:

(i) {λμ−1 : λ,μ ∈ σ (A)} ⊂ ���−,

(ii) supn∈� ‖AnTA−n‖ ≤ CT for some CT > 0.

If τA := sup{| log(λμ−1)| : λ,μ ∈ σ (A)}, then the following assertions hold:

(a) If τA < π, then

‖AT − TA‖ ≤ 2CT‖A‖ tan
τA

2
.

(b) If τA ≤ π
2 , then

‖A2T − TA2‖ ≤ 2CT‖A‖2 sin
τA

2
.

Proof. We have

sup
n∈�

‖(LARA−1 )nT‖ ≤ CT .

By Lumer–Rosenblum theorem mentioned above, we also have

σ (LARA−1 ) = {λμ−1 : λ,μ ∈ σ (A)} ⊂ ���−.

Applying now Lemma 3.1 to the operator LARA−1 on the space B (X) , we can write

‖AT − TA‖ = ‖(ATA−1 − T)A‖
≤ ‖A‖‖(LARA−1 )T − T‖
≤ 2CT‖A‖ tan

τA

2
.

Similarly, we have

‖A2T − TA2‖ = ‖A(ATA−1 − A−1TA)A‖
≤ ‖A‖2‖(LARA−1 )T − (LA−1 RA)T‖
≤ 4CT‖A‖2 sin

τA

2
.

�
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