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I n t r o d u c t i o n . Let G be a locally compact group and Gf its dual space, 
t h a t is, the set of all uni tary equivalence classes of irreducible uni tary repre­
sentations of G. An impor tan t tool for investigating the group algebra of G 
is the so-called hull-kernel topology of Gf, which is discussed in (3) as a 
special case of the relation of weak containment . T h e question arises: Given 
a group G, how do we determine Gf and its topology? For many groups G, 
Mackey 's theory of induced representations permits us to catalogue all the 
elements of G| . One suspects t ha t by suitably supplementing this theory it 
should be possible to obtain the topology of Gf a t the same time. I t is the 
purpose of this paper to explore this possibility. Unfortunately, we are not 
able to complete the programme a t present. However, we shall derive a 
theorem (Theorem 4.3) which gives the topology of G | in many cases (in­
cluding all the nilpotent groups which Dixmier has t reated in (2)). 

Let A be a C*-algebra; in particular, A might be the group C*-algebra of a 
locally compact group. We recall the definition of weak containment . If © 
is a family of ""-representations of A, and T a ""-representation of A, T is 
weakly contained in @ if all positive functionals on A associated with T can 
be weakly ""-approximated by sums of positive functionals associated with 
representations in ©. When restricted to A\, the relationship of weak con­
ta inment gives the operation of closure in the hull-kernel topology.1 However, 
for arbi t rary representations it does not define the closure in any topology.2 

Now it is sometimes convenient to have a genuine topology for the space 
of all ""-representations of A, which will reduce to the hull-kernel topology 
on ^4f. In §§ 1 and 2 we discuss two such topologies, the quotient topology 
(introduced in § 3 of (4)) and the inner hull-kernel topology. In § 3 we prove 
a theorem (Theorem 3.1) on direct integrals and weak containment . A corol­
lary of Theorem 3.1 is the highly plausible result (Theorem 3.3) tha t , if A is 
separable and of Type I, and if \x is the measure on A\ associated with the 
direct integral decomposition of a ""-representation T of A into irreducible 
par ts , then the spectrum of T (in the sense of (3), § 5) is just the closed 
hull of ju­

in § 4, the principal section of this paper, it is shown (Theorems 4.1 and 

Received January 3, 1961. 
^ e e (3, Lemma 1.6). 
2Indeed, let S and T be two ^representations of A, neither of which is weakly contained in 

the other. Then S © T is weakly contained in the set {S, T\, but not in [S\ or in {T}. 
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4.2) that the process of taking induced representations of a separable locally 
compact group G is continuous. This result is clearly part of what is needed 
in order to obtain the topology of Gf from the topologies of the dual spaces 
of subgroups. But we also need information of the converse kind: Suppose 
that © is a family of unitary representations of a closed subgroup K of G, 
and T is a unitary representation of some other closed subgroup H; and 
suppose it is known that UT is weakly contained in { US\S Ç ©}. Then how 
is T related to © ? Theorem 4.3 answers this question in terms of the "orbits" 
of representations of K, for the case that K is normal and II D K. 

In § 5 Theorem 4.3 is applied to deduce the topology of the dual spaces of 
certain groups, most of them nilpotent, whose irreducible representations are 
easily catalogued by Mackey's theory of induced representations. Most of 
these groups have been treated by Dixmier in (2) by a different method. 
However, Theorem 4.3 by no means suffices to deduce the topologies of the 
dual spaces of all groups whose irreducible representations are catalogued by 
Mackey's theory. For this more general theorems will be needed, of a kind 
indicated in the concluding remarks. 

1. The quotient topology. In this paper representations of groups and 
algebras will be allowed to have null spaces. Let A be a C*-algebra. A repre­
sentation of A will be a *-homomorphism T of A into the *-algebra B(II) of 
all bounded linear operators on some Hilbert space H, called the space of T. 
The null space N(T) of T is defined as {£ Ç H\Ta% = 0 for all a in A) ; the 
essential space H(T) is N(T)-1, or, equivalently, the closed linear span of the 
ranges of the Ta; P(T) is projection onto H(T). If N(T) = {0}, that is, 
II = H(T), T is proper•; if N(T) = H, T is a zero representation. 

Similarly, if G is a locally compact group, and K is a closed linear sub-
space of a Hilbert space H, a representation T of G with space II and essential 
space K (= II(T)) means a mapping x —> Sx © 0 of G into B(H), where S 
is a unitary representation of G on K (in the usual sense) and 0 here denotes 
the zero operator on K1. We say T is unitary or zero if K = II or K — {0} 
respectively. 

As in (4), a representation T (of a C*-algebra or group A) is irreducible 
if II(T) 7e- {0} and there are no closed invariant subspaces of II\T) except 
{0} and H(T). Let T and T' be two representations of A ; T and T' are equiva­
lent (T ~ T') if there is a linear isometry of H(T) onto H(T') carrying the 
restriction of T to H(T) into the restriction of T' to II(T'). 

If G is a locally compact group, we shall denote by C*(G) the group C*-
algebra of G, that is, the completion of L\{G) under its minimal regular norm. 
If II is a fixed Hilbert space, then by a trivial extension of a well-known 
theorem there is a natural one-to-one correspondence between representations 
of G whose space is H and representations of C* (G) whose space is H. Under 
this correspondence, proper representations of C*(G) go into unitary repre­
sentations of G, and vice versa. It also preserves the notions of essential 
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space, irreducibility, and equivalence. We shall usually denote corresponding 
representations of G and C* (G) by the same letter. 

Let A be a C*-algebra and H a Hilbert space, and denote by X(A; H) the 
space of all representations of A with space H. We equip T(A; H) with the 
topology defined in §2 of (4); in this topology a net {Tl) converges to T 
(T\ T e T(A ; H)) if and only if, for each a in A and £ in H(T), 

(i) | | r £ - rfl£||->o, 
t 

and 

(2) | | p ( r l ) f - | | | - , o . 

As a matter of fact, condition (2) may be omitted without altering the 
topology. Indeed, suppose (1) holds (for all a m A and § in H(T)); and let 
£ be in H{T) and ô > 0. By the existence of an approximate identity in A, 
there is an Û in i such that ||a|| < 1, \\Ta£ — f|| < ô. Then, by (1), 
| | 7V£- r a f | | <ô for all large enough i; so that ||£|| > | | P ( r ) £ | | > | |7VP(rO£| | 
= ||7Vf|| > \\Tal;\\ - Ô > ||£|| - 25, and hence ||f|| - \\P(T%\ < 23. It 
follows that ||P(7^)£ — £||2 < 4||£||<5 for all large enough i. The arbitrariness 
of 8 now gives (2). 

If G is a locally compact group and H a Hilbert space, X(G\ H) will mean 
the same as %(C*(G); H). Convergence in this space is described in terms 
of the group as follows: 

LEMMA 1.1. If {T1}, T are in X(G; H), then Tl —> T if and only if, for each 
£ in H(T) and each compact subset C of G, 

(3) lir^-T^n-^o 
i 

uniformly on C. 

Proof. The proof that (3) implies Tl —> T is straightforward. We prove 
only the converse direction. Assume then that Tl —» T. Fix two elements 
£, 7] of H(T), and a in Li(G). For each x in G, we have 

(4) TxTa = Tax, TiTt = T t , 

where ax(y) = a(x_Iy). The functionals <pt on Li(G), denned by 

Mb) = an- Tbn,v), 
are bounded in norm uniformly in i, and converge weakly * to 0. So, by 
Gelfand's Lemma, the <f>t converge to 0 uniformly on any compact subset 
of L\(G). Now let C be a compact subset of G; then {ax\x £ C) is norm-
compact in Li(G). So 

(5) *<(a*)->0 

uniformly on C. Now, by (4) and (5), (7V7V£, 77) —> (TxTa%, rj) uniformly for 
x in C. Therefore, since 7V£ —> ^ f » 
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(6) (TXt, v) - (TxTaÇ, r,) 

= {Tl
x{Tak - Tfo, r,) + {TiTÙ, „) - (TxTa$, v) -> 0 

uniformly for x in C. Since linear combinations of the Ta% are dense in H(T), 
(6) implies that (7Vf, rj) —» (TXÇ, rj) uniformly on C for all f, 77 in H{T). Now 
let J be an element of H(T). We claim that {Tx% Txt-) —> ||£||2 uniformly on 
C. Indeed, given a positive e, we can cover C with finitely many open sets 
Ui, . . . , f/w, and take a point ;yr in each Ur, such that 

| | r ^ - TVÉII < | 

for each r and each x in Z7r. Now, by what we have already proved, there is 
an index i0 such that, if i > i0, x 6 C, and r = 1, . . . , n, 

\(T&Tyrï)- (T^Tyri)\ < | . 

Combining these facts, we see that, if i > i0 and x Ç C, \{TX% Tx£) — (Tx%, 
Tx£)\ < e. This establishes the claim. Hence, multiplying out the inner pro­
duct ||Tx% — r ^ | | 2 , and applying what we have just proved, we obtain (3). 

Let A be a C*-algebra (or locally compact group) and H a Hilbert space; 
let us abbreviate X(A; H) to X. If T Ç X, we denote by T the equivalence 
class of T under the relation ~; if © C Ï , ©^ denotes {5|5 Ç ©}. In parti­
cular, ï ~ = ï^(^4; iJ ) will be the family of all such equivalence classes. As 
in (4), p. 224, %~ inherits from X a quotient topology, in which a subset W 
is open if and only if {T\ T G W} is open in X. The natural map of X onto X~ 
is continuous and open (see 4, p. 224). 

A certain interest attaches to those subsets © of X such that the map 
T —» T is open when restricted to @ (here we give to @ and @~ the topologies 
relativized from X and ï ~ respectively) ; such © we will call representative. If 
© is representative, we can discover the quotient topology of ©~ (that is, the 
quotient topology of X~ relativized to ©~) by looking at © only. To obtain 
representative sets we shall need the following technical lemma. Note that 
[X] means the closed linear span of the set of vectors X. 

LEMMA 1.2. Let H be a Hilbert space, Xi, . . . , xr a sequence of r vectors in 
H, and e > 0. Then there exists a 5 > 0 such that, for each closed linear subspace 
K of H containing all xu and each sequence of r vectors yu . . . , yr such that 
dirndl, . . . , yr] < dim K and \\yt — %i\\ < ô (i = 1, . . . , r) there is a linear 
isometry F of [yi, . . . , yr] into K for which H-F^*) — Xi\\ < e (i = 1, . . . , r). 

Proof. Let K be a linear subspace containing all XÙ and, for each i, let 
{yt1} be a sequence of elements of H such that dim^i™, . . . , yr

n] K dim K 
(for each n) and y? —> xt (for each i). It is clearly sufficient to set up, for 
each n, a linear isometry Fn of [yin, . . . , yr

n] into K, such that 

(7) Fn(y
ni) —>xt(i= 1, . . . ,r). 
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Assume that X i , • • • , Xg a i e linearly independent, while 
in [xi, . . . , xs]. Then, for all large enough n, the yin, . . . , ys

n are linearly 
independent; we shall in fact assume this for all n. Let Ln = [yin, . . . , y8

n], 
and let ei, . . . , es be an orthonormal basis of [xi, . . . , xs] with 

s 

0* = 2 ai3xi(i = If • • • > s) 

and 
s 

Xj = Y. bjieiti = 1, . . . , r ) . 

Setting 
^ = 2 , a o ^ f 

we have clearly 

(8) l i m ( ^ ) =8tj. 
n 

For each ^, let din, . . . , ds
n be the orthonormal basis of Lw obtained by the 

Gram-Schmidt process from e\, . . . , es
n. Then (8) gives 

(9) limdn
i = e, 

n 

Now let Fn be any linear isometry of [yin, . 
into ^ (i = 1, . . . , s); and set 

s 

** = H, bjifTKj = 1, . 
i=l 

so that 

(10) Fn(z
nj) = Xj. 

By (9), zf-^Xj) and we know that yf—^Xj (j = 1, . . . , r). Combining 
these two, and remembering that zf1 and y J1 are in [3^, . . . , yr

n], we get 
| | / W ) - Fn(y?)\\ ->0 , which by (10) implies (7). 

LEMMA 1.3. Let A be a C*-algebra, H a Hilbert space, and K a closed linear 
subspace of H. Then @ = {T G %(A; H)\H{T) C ^ } ^ a representative set. 

Proof. It will be sufficient to show that if T G © and £7 is a neighbourhood 
of T in J(^4 ; H), there is a neighbourhood V oî T (in ï ( /4 ; iï")) such that 

(ii) f n r c (t/n©)~. 
Without loss of generality we may suppose 

U= {Se X(A;H)\\\Saiet- Tai£t\\ < e, i=l,...yr}, 

where £i, . . . , £r G H{T), ah . . . , a r G ^4, ||a*|| < 1, and e > 0. Let <5 be con­
structed from H, the vectors £* and Tai£i (i = 1, . . . , r), and e/2, in accordance 
with Lemma 1.2; and let 

. , yr
n] into K which carries d/1 

.,r), 
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(12) V = {S e X(A;H)\ \\SnSt - Tai^\\ < ô, 

| |P(5)£i - f<ll < * , ^ = 1 r}. 

Now take any element Sf of V such that S' £ ©~. Then H(S'), which contains 
all Sa/Zi and P (£')£*, has dimension no greater than dim K. Hence, by Lemma 
1.2 there is a linear isometry F of H(S') into K such that for each i 

(13) | |FSU,-r„É,| | < f - i l ^ ( S % - U I < | -

Defining 5 to be the representation (in ©) whose essential space is F(H(S')) 
and for which SaF£ = FSa'£ (a 6 A, £ G # (S ' ) ) , we obtain by (12) and (13) 

||S«,£< ~ rai.£<|| < ||Sfl,(f« - FP(S')5,) | | 

+ ||PSJ,P(S')f< ~ rfl,.£<|| < | + 1 = e. 

Hence 5 Ç [/ Pi ©, so 5 ' = 5 Ç (£/ P\ @)~. Since 3' was an arbitrary element 
of V C\ @~, (11) is proved. 

There is a natural correspondence between X~(A ; H) and the family of all 
unitary equivalence classes of proper representations of A of dimension no 
greater than dim H. Hence, if K is a Hilbert space with dim K < dim H, 
X~(A ; K) can be considered as a subset of X~(A ; H). Lemma 1.3 then asserts 
that the quotient topology of X~(A\K) is the same as that of X~(A;H) 
relativized to X~(A ; K). 

Let us fix a huge infinite cardinal 7, and agree once for all to consider only 
representations whose dimension does not exceed y.z Denote by ï~(^4) the 
family of all unitary equivalence classes of proper representations of A of 
dimension no greater than 7. By the quotient topology of Ï~G4) we mean 
its quotient topology when it is identified with X~(A ; Hy), H7 being a Hilbert 
space of dimension 7. If © C X~(A), then by Lemma 1.3 the quotient topo­
logy relativized to © can be calculated in X~(A ; H), where H is any Hilbert 
space big enough to contain everything in ©. 

It follows from Theorem 3.1 of (4) that the quotient topology relativized 
to Af is just the hull-kernel topology. 

If we are concerned only with countably-dimensional representations, then 
a useful representative set can be obtained in which the essential space of 
each representation is uniquely specified (Lemma 1.5). 

LEMMA 1.4. For any (finite) integer n and Hilbert space H, {T G X(A;H)\ 
dim H(T) < n] is closed in X(A ; H). 

The proof is simple and we omit it. 

LEMMA 1.5. Let A be a C*-algebra, H = Hœ a separable infinite-dimensional 

3We make this restriction in order to avoid paradoxically large sets, such as the set of all 
representations of A. In future it will be assumed without mention. In particular, 7 must be 
greater than the dimensions of all elements of A] and greater than the cardinality of A] 
itself. The index sets in direct sums of representations must be of cardinality less than 7. 
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Hilbert space, and Ho, Hi, H2, H3, . . . , an increasing sequence of linear sub-
spaces of H such that dim Hn = n {for each n) and \Jn<mHn is dense in H. Then 
© = {T £ X(A ; H)\H(T) = Hn for some n = 0, 1, 2, . . . , œ} is a repre­
sentative set. 

Proof. Clearly ©~ = X~(A;H). Let T be in ©, and U be an arbitrary 
open neighbourhood of T in J(^4 ; H). We must find a neighbourhood F of 7" 
(in £G4;iT)) such that 

(14) V C ( £ / n © ) ~ . 

Suppose first that iï(7") = Hn, n finite. By Lemma 1.4, we may as well 
assume that dim H(S) > n for all 5 in U. Then the essential spaces of 
elements S of © for which S £ Û contain H(T); and (14) may be obtained 
by an argument (based on Lemma 1.2) similar to the proof of Lemma 1.3. 

Now suppose that H(T) = H, and 

u={se xiA^iTjWiSaai- rfl,M| < e (i = 1 , . . . ,r)}, 

where £1, . . . , £r £ i7, ai, . . . , ar £ A, \\ai\\ < 1, and e > 0. Let w be such 
a large integer that \\rji — £*|| < e/3, where rjt is the projection of £* onto iJw, 
and set 

IF = J 5 € SE(̂ 4;JÏ)| ||5«n* — y«»ï*|| < | (« = 1, . . . , r), 

and dim H(S) > n 

By Lemma 1.4, W is easily seen to be a neighbourhood of T contained in U. 
By an argument based on Lemma 1.2, similar to that used for the case 
H(T) = Hn, we obtain a neighbourhood V of T (in X(A\H)) such that 

f c ( ^ n © r c (*yn@)~. 
The proof is now complete. 

The following Lemmas 1.6-1.11 are easily verified. 

LEMMA 1.6. / / T lies in the quotient closure of ©, so does any subrepresenta-
tion4 of T. If T lies in the quotient closure of ©, and each S in © is a subrepre-
sentation of some S' in ©', then T lies in the quotient closure of ©'. 

LEMMA 1.7. For each i in an index set I, let T1 £ %~{A). Then 

E © T* -> Z © Tl 

ieF F ie I 

in the quotient topology, where F runs over the directed set of all finite subsets 

o£l-
4T' is a subrepresentation of T if T' is unitarily equivalent to the restriction of T to some 

invariant subspace of H(T). 
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LEMMA 1.8. / / , for each i in an index set I, Tl £ X~(A), and 

in the quotient topology (the directed set {A} being independent of i), then 

it I X it I 

in the quotient topology. 

LEMMA 1.9. Suppose A is a C*-algebra with no unit element, and A\ is the 
C*-algebra obtained by adjoining a unit I to A. For each T in X~(A), let T' be 
the extension of T to an element of %~(Ai) obtained by setting TV equal to 
the identity operator on H(T). Then T —> T' is one-to-one and bicontinuous on 
X~(A) into 3r( ,4i) . 

If B is any closed *-subalgebra of the C*-algebra A, and T £ X~(A), T\B 
as usual denotes the restriction of T to B. Let TB be the result of restricting 
the operators of T\B to H(T\B). Then TB Ç %~(B). 

LEMMA 1.10. The restriction mapping T —> TB is continuous with the quotient 
topologies of Z~{A) and Z~{B). 

If G is a locally compact group, X~(G) will mean J~(C*(G)); or it may be 
identified with the class of all unitary equivalence classes of unitary repre­
sentations of G (of dimension no greater than 7). 

LEMMA 1.11. / / K is a closed subgroup of G, the restriction mapping T —> TK 

= T\K is continuous with the quotient topologies of %~{G) and %~(K). 

Next we investigate the relationship between the quotient topology and 
weak containment. We recall that a positive functional p on a C*-algebra A 
is associated with a family © of representations of A if, for some T in © and 
some £ in H(T), pipe) — (Tx%, £) (for all x in A). 

Now the proof of Theorem 3.1 of (4) actually establishes the following 
stronger result: 

LEMMA 1.12. Let A be a C*-algebra with unit, T a cyclic element of X~(A) 
with cyclic vector £, and @ a subfamily of £~(A). Then T belongs to the quotient 
closure of © if and only if the positive functional x —> (Tx%, £) is a weak * limit 
of positive functionals associated with ©. 

THEOREM 1.1. Suppose A is a C*-algebra, T Ç T~(A), and © C Z~(A). Then 
T is weakly contained in © if and only if T belongs to the quotient closure of the 
set ©/ of all finite direct sums 

± &S1 

1=1 

(where n = 1, 2, . . . , and each S1 G ©). 
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Proof. By Lemma 1.7 and (3), Lemma 1.3, we may as well assume that A 
has a unit. Write T as a direct sum ]£«© Ta of cyclic representations Ta\ and 
observe that a sum of positive functionals associated with © is associated 
with ©/. 

Let r be weakly contained in ©. Then so is each T"; and the positive 
functional associated with a cyclic vector of Ta is a weak * limit of positive 
functionals associated with © r . So, by Lemma 1.12, each Ta is in the quotient 
closure of ©/. Applying Lemmas 1.7 and 1.8, we deduce that T is in the quotient 
closure of ©/. 

The converse implication—that if T belongs to the quotient closure of ©/ 
it is weakly contained in ©—is almost trivial. 

2. The inner hull-kernel topology. Let X be an arbitrary topological 
space, and E{X) the family of all closed subsets of X. For each finite set 
{Aiy A2, . . . , An] of non-void open subsets of X, let U(Aly . . . , An) = { Y Ç 
E(X)\Y r\ At is non-void for every i}. A subset of E(X) will be called open 
if it is a union of certain of the U(Ai, . . . , An). This clearly defines a topology 
for £ (X), called the inner topology derived from X. 

Now fix a C*-algebra A. As before, ï ~ = ï~ ( / l ) is the set of all unitary 
equivalence classes of proper representations of A. If T £ £~, the spectrum 
Sp(jT) of T will be the family of all S in A\ which are weakly contained in 
T (see 3, § 5). Clearly Sp(71) is closed in A\. 

DEFINITION. If T Ç X~ and © C £~, ^ define T to be in the inner hull-
kernel closure of © if Sp(T) belongs to the closure of {Sp(5)|5 G ©} with respect 
to the inner topology of E(A]) {derived from the hull-kernel topology of A\).This 
closure operation defines the inner hull-kernel topology of Z~(A). 

From Theorem 1.6 of (3), we see that the inner hull-kernel topology does 
not distinguish between elements of J~ which are weakly equivalent,5 since 
such elements have the same spectrum. In particular, it does not distinguish 
between a representation T and a multiple a • T of T. Clearly, the inner 
hull-kernel topology, like the quotient topology, becomes the hull-kernel 
topology when relativized to A\. 

LEMMA 2.1. Let A have no unit; and adjoin a unit 1 to get the C*-algebra Ax. 
For each T in X~, let T' be the extension to A\ obtained by setting 7Y equal to 
the identity operator on H(T). Then the map T —> T' is one-to-one and bicon-
tinuous in the inner hull-kernel topologies of %~(A) and ï~(^4i). 

This follows by an easy argument based on Lemmas 1.3 and 1.8 of (3). 
We shall next obtain an equivalent definition of the inner hull-kernel 

topology in terms of positive functionals. For this we remark the following 
minor generalization of Theorem 1.4 of (3): 

5Two families © and © ' of proper representations of A are weakly equivalent if each is 
weakly contained in the other. See (3, §5) . 
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LEMMA 2.2.6 Suppose © C X~(A), T 6 ^4f. Then the following three con­
ditions are equivalent: 

(i) T is weakly contained in ©; 

(ii) some non-zero positive functional associated with T is a weak * limit of 
finite linear combinations of positive functionals associated with ©; 

(iii) every non-zero positive functional <j> associated with T is the weak * limit 
of positive functionals \f/ associated with © such that ||^|| < | |0| | . 

Lemma 2.2 differs from Theorem 1.4 of (3) in that the elements of © are 
not assumed irreducible. But their irreducibility was nowhere used in the 
proof of (3), Theorem 1.4. 

Now let T be an element of £~(A), e a positive number, 0i, . . . , <j>n positive 
functionals on A associated with T, and ai, . . . , am elements of A. We define 

(1) U{T) = C/(0i, . . . , <t>n', ai, . . . , am; e; T) 

to be the set of all those S in £~ such that there exist </>/, . . . , 0 / , each of 
which is a sum of positive functionals associated with S, for which 

(2) \<t>Mf) - <t>'Mj)\ < e (i = 1, . . . ,n;j = 1, . . . , m), 

(3) | | | 0 , | | - II^IH < e(i= l,...,n). 

THEOREM 2.1. For each T in X~(A), the U(T) just defined form a basis for 
the neighbourhoods of T in the inner hull-kernel topology. 

Proof. (A) It is sufficient to assume that A has a unit. Indeed, assume it 
does not, and adjoin 1 to get Ai\ we shall identify T with T' (see Lemma 
2.1). The inner hull-kernel topology of X~(A) is by Lemma 2.1 just that of 
X~(Ai) relativized to X~(A). On the other hand, by well-known facts about 
positive functionals on C*-algebras,7 U(T) can be described as the set of 
all 5 in Z~(A) such that there exist positive functionals </>/, . . . , <t>n

r on A\y 

each a sum of positive functionals associated with Sr, for which |$*(Û^) — </>/ 
(aj)\ < e, \<t>ill) - 0 / ( l ) | < e (i = 1, . . . , n; j = 1, . . . , m). That is, 
U{T) is the intersection of X~(A) with the set U\(T) defined using Ai instead 
of A. Thus we may assume a unit element, and omit (3) from the definition 
of U(T). 

(B) Assume that T G %~(A), @ C T ( i ) , and that every U(T) inter­
sects ©. We shall show that T lies in the inner hull-kernel closure of ©, and 
hence that every inner hull-kernel neighbourhood of T contains some U(T). 

6At the time of writing (3), the author was unaware that Lemma 1.7 of that paper, the 
main tool in the proof of Theorem 1.4, is merely a special case of Proposition 4, § 4, chapter 
II of Bourbaki, Espaces vectoriels topologiques. 

7We are using the fact that, if </>(x) = (Tx£, £) for x G A, where T is a proper representation 
of A and £ Ç H(T), then | |0 | | = ||£||2; also that, if </>i, . . . , <f>n are positive functionals on A, 
then | E t - i n < M | = S*'-in||0*ll- Both of these facts follow immediately from the existence of an 
approximate identity on A. 
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Since the U{T) form a directed set under inverse inclusion, there is a net 
{5X} of elements of © such that, for each U(T), Sx £ U(T) for all large enough 
X. Now let Bi, . . . , Bn be open subsets of A] each of which intersects Sp(T); 
and choose representations Tt in Sp(T) r\Bt. 

Consider a (non-zero) positive functional <£ associated with 7\. Since T± is 
weakly contained in T, Lemma 2.2 assures us that <f> may be weakly * approxi­
mated by positive functional <j>' associated with T. By the definition of U(T), 
for each Ao <j>f may be weakly * approximated by a sum <j>" = \[/i + . . . -f- \f/r, 
where each \f/i is a positive functional associated with Sx for a suitable X > Xo 
(the same X for all i). Further, since 5X is weakly contained in Sp(5x) (see 3, 
§ 5), each ^ can be weakly * approximated by a sum of positive functionals 
associated with Sp(Sx). Combining these facts, we see that, for each Xo, <t> is 
weakly * approximated by sums of positive functionals associated with 

U Sp(5x). 
\>x0 

Hence T\ belongs to the hull-kernel closure of 

U Sp(Sx). 
\ > A 0 

It follows that there is a subnet {Srfi} of {Sx} such that each neighbourhood 
of Ti intersects Sp(S/,x) for all large enough fx. We now repeat the considera­
tions of the preceding paragraph, replacing {5X} by {S/fi} and T± by T2. After 
n repetitions of this argument we arrive at a subnet {S"v} of {Sx} such that, 
for each i — 1, . . . , n, every neighbourhood of Tt intersects Sp(5"") for all 
large enough v. In particular, there is an S"v (in ©) such that Sp(5//,;) inter­
sects all the B^ 

But {S Ç £~(^4)|Sp(5) intersects all Bt (i = 1, . . . , n)) is a typical inner 
hull-kernel neighbourhood of T. Thus T belongs to the inner hull-kernel 
closure of ©. 

(C) Suppose T G X~(A), @ C Î 1 4 and T belongs to the inner hull-
kernel closure of @. We shall complete the proof by showing that every U(T) 
intersects ©. 

Let U(T) be as in (1). Since T is weakly equivalent to its spectrum (3 
Theorem 1.6), each <j>t is weakly * approximated by a sum xf/f of positive 
functionals \f/t

k associated with Sp(T): 

(4) *i = E *\, 

(5) \^Mi) - *<(«i)| < ! (i = 1,. . . , « ; i = 1,. . . , m). 

Let yj/f be associated with the representation St
k in Sp(J'); and define Wf 

to be the set of all R in A\ such that there is a positive functional x associated 
with R satisfying: 

\xiaj) - 4,*t(aj)\ <d(j= l , . . . , m ) , 
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where 

(6) 4r,5 < e for all i. 

Then W* is a hull-kernel neighbourhood of Sf\ indeed, if Z is a subset 
of A\ with Sik in its closure, Lemma 2.2 assures us that Z intersects W*. 

Now V = {S e %~(A)\Sp(S) intersects Wf for alH = 1, . . . , n; k = 1, . . . , 
Ti) is an inner hull-kernel neighbourhood of T; and so contains an element 
5 of ©. Choose R* £ Sp(5) Pi W*, and let xtk be such a positive functional 
associated with Rt

k that 

(7) \xi{a3) - **(a,)| < ô ( i = l , . . . , m ) . 

Now i ? / is irreducible and weakly contained in S; and so there is a positive 
functional ir* associated with S such that 

(8) |**,(<*,) - xî(fli)| < ô ( j = l , . . . , w ) . 

Put 

Combining (5), (6), (7), and (8), we get |7Ti(a;-) — ^i(ay) | < e. So 5 Ç U(T) 

Remark. If in Theorem 2.1 J1 is irreducible, then a basis for the inner hull-
kernel neighbourhoods of T is formed by the sets V(T) defined in the same 
way as the U(T), except that each 6/ must be a positive functional associated 
with 5 (rather than merely a sum of such). 

Indeed, if T is irreducible, by Lemma 2.2 we do not need sums of more 
than one term in (4). Otherwise the proof of Theorem 2.1 goes through as 
before. 

Now let G be a locally compact group with unit e. It will be useful to express 
the inner hull-kernel topology of X~(G) in terms of functions on G, after the 
pattern of Theorem 1.3 of (3). 

A function / of positive type on G is associated with a family © of unitary 
representations of G if there is an S in © and a vector £ in H(S) such that 
f{x) = (S*f,£) (xeG). 

Let T be a unitary representation of G, e a positive number, </>i, . . . , #„ 
functions of positive type associated with T, and C a compact subset of G. 
We define W(T) = W(cf)U . . . , 0W; C; e; T) to be the set of all unitary 
representations S of G such that there exist 0 / , . . . , 4>n', each of which is a 
sum of functions of positive type associated with S, for which \<t>i(x) — cj>/(x)\ 
< e for all i = 1, . . . , n and all x in C. 

THEOREM 2.2. For each T in X~(G), the set of all such W(T) forms a basis 
for the inner hull-kernel neighbourhoods of T. 

Proof. We shall denote by the same letter a function of positive type on 
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G and the corresponding positive functional on C*(G); and similarly for 
representations. 

(A) Let U(T) = U(<t>u . . . , <j>n\ au . . . , am; e; T) be one of the sets of 
Theorem 2.1. We shall show that some W(T) is contained in U(T). Without 
loss of generality assume ||<£j|| < 1, dj Ç LX{G), \\aj\\Ll{G) < 1. (By (3, Lemma 
1.4), \\(f>i\\ is the same whether </>* is considered as belonging to (Li(G))* or 
to (C*(G))*.) 

Choose a compact subset C of G containing e such that 

J \at(x)\dx < | 
G-C O 

for all i (dx being left Haar measure); and let W(T) = W(<j>iy . . . , <j>n\ C; 
e/3; T). If 5 Ç W(T), there are sums </>/, . . . , <£,/ of functions of positive 
type associated with S such that |</>/(x) — <l>i(x)\ < e/3 for # in C. In parti­
cular, since e Ç C, this gives 

(9) i i k i i i - II*«II i < | . 
Further, by a simple calculation, 

(10) WMj) - 4>i(a>i)\ < € (i = 1, . . . , w; j = 1, . . . , w). 

By (9) and (10), 5 £ tf(r). So W ( D C U(T). 
(B) Let TF(r) = W(<f>h . . . , 0n; C; e; T). We shall complete the proof by 

finding a C/(7") contained in W(T). 
Assume that W(T) contains no U(T). Then by Theorem 2.1 we can find 

(i) a net of unitary representations {5X}, all outside W{T)y and (ii) for each 
i = 1, . . . , n and each X, a sum </>/ of positive functionals on C*(G) associated 
with 5 \ such that for each i 

<t>i—» </>i 
x 

weakly * on C*(G) and 

I |$i | | —* | |0i | |. 
x 

In particular the ||<£*x|| may be assumed bounded in X; so by Gelfand's Lemma, 

(11) <fi(a) - 0«(a)->O 
x 

uniformly on any norm-compact subset of Li(G). Now let <j>i(x) = (7^ - , £*) 
(x Ç G), where £* G H(T). Using the approximate identity in Li(G), we may 
find an element b in L±(G) such that JT6£Ï is close to £*, in fact, such that for 
all i and all x in G 

(12) 1 ( ^ 7 ^ , 7 ^ ) - 4>t(x)\ < | . 

Now as x ranges over C, b*bz ranges over a compact subset of L\{G) (here 
bx(y) = ^(x -1^)). So, by (11), for each i 
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(13) 4>)(b*bx)- * , ( * * & , ) - » 0 
X 

uniformly for x in C. Since <t>i(b*bx) = (TxTb£u Tb^t)y (12) and (13) combine 
to show that there is a X such that, for each i, 

(14) | <t>Xi(b*bx) - <t>t(x) | < e for all x in C. 

But the function x—^<t>ii(b*bx)1 like 0 / , is a sum of positive functionals associ­
ated with S \ Therefore (14) asserts that Sx Ç W(T). This contradicts the 
definition of {5X}. 

Remark. Just as in the case of Theorem 2.1, if T is irreducible, a basis for 
the inner hull-kernel neighbourhoods of T is formed by the family of all 
Wf(T), where W(T) is defined just like W(T) except that each </>/ must be 
a function of positive type associated with S (rather than merely a sum of 
such). 

What is the relation between the quotient and inner hull-kernel topologies 
of representations of a C*-algebra A ? 

LEMMA 2.3. The quotient topology contains the inner hull-kernel topology {that 
is, the inner hull-kernel open sets are quotient open). 

This follows almost immediately from the definitions, and the openness of 
the mapping r - ^ f o n X(A ; H) (see § 1). 

The quotient and inner hull-kernel topologies are different. Indeed, the 
latter cannot tell the difference between T and a multiple of T, while the 
former in general can. However, when relativized to ^4f, both topologies 
coincide with the hull-kernel topology. At the other extreme, we have the 
following lemma: 

LEMMA 2.4. The quotient and inner hull-kernel topologies coincide when 
relativized to the set 3 of those T in X~(A) for which T = Ho- T. 

Proof. By Lemmas 1.9 and 2.1 we may assume that A has a unit 1. By 
Lemma 2.3 it is enough to show that, if T £ Z~(A), @ C T~(A), and T 
lies in the inner hull-kernel closure of ©, then Ko- T lies in the quotient closure 
of Ko-© = {Ko-5|5 6 ©}. 

Let Ko • T be written as a direct sum of cyclic subrepresentations Tl of T: 

Ko-r= Z © r . 
iel 

By Lemma 1.7, it is sufficient to show that 

ieF 

belongs to the quotient closure of Ko*© for each finite subset F of / . 
Let (t>i be the positive functional associated with a cyclic vector for T\ 

Since T lies in the inner hull-kernel closure of ©, by Theorem 2.1 there is a 
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net {5X} of elements of © and, for each i in F and each X, a positive functional 
\piX associated with Ko. <S\ such that 

i A * — » <t>i 
x 

weakly * for each i in F. Then by Lemma 1.12 

No-sx-+r 
X 

(quotientwise) for each i in F. It follows by Lemma 1.8 that 

X itF 

so that 

UF 

belongs to the quotient closure of Ko*©. 
Recalling that the inner hull-kernel topology cannot distinguish T from 

Xo-2", and combining Lemmas 1.10, 1.11, and 2.4, and Theorem 1.1, we 
obtain : 

THEOREM 2.3. Lemmas 1.10 and 1.11, and also Theorem 1.1, remain valid 
when the quotient topology is replaced by the inner hull-kernel topology. 

LEMMA 2.5. If A is a separable C*-algebra (or a separable8 locally compact 
group), the family of all countably-dimensional representations in £~ (A ) has a 
countable base for its open sets with respect to both the (relativized) quotient and 
inner hull-kernel topologies. 

Proof. If H is a separable infinite-dimensional Hilbert space, X(A\ H) has 
a countable base for its open sets (4, Lemma 2.1). From this, together with 
the openness of the map T —> T, follows the conclusion for the quotient 
topology. Relativizing the quotient topology to {T\T = HQ-T} and using 
Lemma 2.4, we obtain the conclusion for the inner hull-kernel topology. 

3. Direct integrals and weak containment. Mackey in (9) has in­
vestigated what can be accomplished by imposing on the space of repre­
sentations of a group or algebra not a topological structure, but merely a 
structure of Borel sets. In the present section we shall make considerable 
use of his definitions and results. 

Throughout this section we fix a separable C*-algebra A, and a separable 
infinite-dimensional Hilbert space H = Hœ. Let i7o, H1} H2, . . . , be a fixed 
increasing sequence of linear subspaces of H, such that dim Hn = n and 
KJn<œHn is dense in H. A representation T belonging to X = X(A;H) will 
be said to be in standard position if H(T) = Hn for some w = 0 , 1 , 2 , . . . , < » ; 

!In this paper a topological space is separable if it has a countable base for its open sets. 
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and the set of all T which are in standard position will be called Xs. Clearly 
X~s — £~. We saw in Lemma 1.5 that Xs is a representative set; that is, a 
subset © of £~ is open in the quotient topology of £~ if and only if 
{T G XS\T G ©} is open relative to Xs. 

We equip Xs with the smallest Borel structure9 such that, for each fixed a 
in A and £, 77 in H, the function T —> (Ta£, 77) (T G £ s) is a Borel function. 
Using the separability of A and II we verify without difficulty that, for each 
n = 0, 1, 2, . . . , 00, {T G Xs\H(T) = Hn] is a Borel set. It follows that our 
definition of the Borel structure of Xs is equivalent to that of (9, p. 149); and 
hence that Xs is a standard Borel space (9, Theorem 8.1). By other routine 
considerations we see that the Borel structure just defined for Xs is the same 
as that generated by the topology of Xs (relativized from that of X). 

The quotient Borel structure of %~, derived from the Borel structure of Xs 

(a subset W of ï ~ is a Borel set if and only if {T G Xs\ T G W] is a Borel 
subset of Xs) will be called the Mackey Borel structure of X~. It clearly con­
tains the Borel structure generated by the quotient topology of X~. 

Now let X be a fixed Borel space, and /x a fixed finite standard measure 
on X (see 9, p. 142). Suppose further that y —» 2y is a Borel function on X 
to Xs- We shall denote by Lv the unitary equivalence class of ??/, and by M 
the direct integral 

M = \ Lvdny, 

formed as on (9, p. 156). If U C X~, L~l(U) will mean {y G X\LU G U\ ; if 
U is a Mackey Borel subset of X~, L~1(U) is clearly a Borel subset of X. 

LEMMA 3.1. If z is an element of X such that /JL(L~1(U)) > 0 for each open 
quotient neighbourhood U of Lz, then Lz is weakly contained in M. 

Proof.10 Let p be a positive functional associated with Lz: p(x) = (IV£, £) 
(x (z A), where £ G H(%z). Suppose ai, . . . , ar G /I and e > 0. It is enough 
to find a positive functional q associated with M such that 

(1) \q(cLi) - p(at)\ < e (/ = 1, . . . , r). 
Let 

F = {TG î , | | ( r « f , f ) - £ M < e (* = l . . . - ^ ) l . 

Then F is an open neighbourhood of 2Z in Xs- Since Xs is a representative 
set (Lemma 1.5), it follows that V is an open quotient neighbourhood of L \ 
So by hypothesis ix(L~l(V)) > 0. 

We shall now prove the following Proposition (P) : 
(P) There is a /x null set A7 (contained in X) and a Borel function ty on 

L~l(V) — N to V such that ^p and %y are unitarily equivalent for each y 
mL-'iV) - N. 

9For the definition of a Borel structure, see (9). 
10The idea of this proof was taken from (9, Theorem 10.1, proof). 
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Let Xn = {3; G ZrH F) |dim H(2y) = n} (n = 0, 1, . . . , œ). Since 
^JnXn = L _ 1 (F) , we may find and fix an n for which n(Xn) > 0. It will be 
sufficient to prove (P) for Xn instead of Lrl{V). Let Q be the set of all pairs 
(y, T), where y £ Xn and T is a unitary operator on Hn such that T~l*&yT Ç F. 
We claim that 

(2) Q is a Borel subset of Xn X #(#"„). 

(Here B(Hn) is the algebra of all bounded linear operators on Hn; we equip 
it with the smallest Borel structure making a —> (a£, 77) a Borel function for 
each fixed £, rj in i?w.) 

Indeed, Q = Qx C\ Q2, where Qx = {(y, T)\y G Xn, T is unitary in B(Hn)}, 
Q* = {(y, T)\y e Xni\(2ai

yT^ n) - p(at)\ < 6 (i = 1, . . . , r) hand a routine 
argument shows that both Qi and Q2 are Borel sets. 

Further, by the definition of Q and Xn, 

(3) {T e B(HH)\(y, T) e Q} 

is non-void for each y in Xn. 
Now jit is standard on Xn since it is standard on X. Also B (Hn) is a standard 

Borel space (see 9, Theorem 8.1, proof). So, by (2), (3), and the Borel Choice 
Theorem (9, Theorem 6.3), there is a /x null subset N of Xn, and a Borel 
function y —> 7^ on Xw to B(Hn), such that (3/, 7^) £ Q for all y in Xn — N. 
Defining *$/ = Ty~

1(^a
yTy(a £ A), we see that tyy is unitarily equivalent to 

%y and belongs to V. Thus $ is the desired function on Xw, and Proposition 
(P) is proved. 

Now form the direct integral 

p= f r^; 
« ' In 

then P is a non-zero subrepresentation of M. If 77 is the projection of £ onto 
H"w, the constant function/ on Xn with value (n(Xn))~*ri belongs to the space 
of P. Setting, for a in A, 

q(a) = ( iy, /) = (MCA-»))-1 /" W%t)dw, 

and recalling that tyy £ F, we find that \q(at) — p(at)\ < e for each i, which 
is (1). Since q is associated with P, and hence with M, the lemma is proved. 

A function L on X to X~ is said to be integrable (9, p. 157) if there is a 
Borel function 8 on X to ï s such that 2y belongs to the class Ly for JJL—almost 
all y. In that case the direct integral J xL

ydiiy has a well-defined meaning. 

THEOREM 3.1. Let A be a separable C*-algebra, \i a a-finite standard measure 
on a Borel space X, and y —> Ly an integrable function on X to X~(A ; H), where 
H is a separable infinite-dimensional Hilbert space. Then M = jxL

ydfxy is 
weakly equivalent to the set of all those Ly (y £ X) such that 

(4) jx{L~l{U)) > 0 for each open quotient neighbourhood U of Ly. 
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Exactly the same is true if in (4) "quotient" is replaced by u inner 
hull-kernel". 

We shall denote by (4') the condition obtained from (4) by replacing "quo­
tient" by "inner hull-kernel." 

Proof. We may clearly assume without loss of generality that A has a unit 
and that /x is finite. Since (4') is weaker than (4) (Lemma 2.3), it is enough 
to show that M weakly contains every Ly satisfying (4'), and that M is weakly 
contained in the set of all Ly satisfying (4). 

Suppose that Lz satisfies (4') ; and let U be an open quotient neighbourhood 
of #o'Lz. By Lemma 2.4 there is an open inner hull-kernel neighbourhood V 
of Ho'Lz whose intersection with {T\T = Xo'^} coincides with that of U. 
But V is also an inner hull-kernel neighbourhood of Lz (since the inner hull-
kernel topology does not distinguish Ly from Xo-J^). Hence by (4') 
niL-^V)) > 0. It follows that {y 6 X\X0-L

V G U} is of positive M measure. 
So, by Lemma 3.1 and the arbitrariness of U, X o * ^ = fxKo -Udpy weakly 
contains HQ-LZ. That is, M weakly contains Lz. 

Next we claim that M is weakly contained in the set of all Lv (y G X). 
Indeed, let ah . . . , an be elements of A, e a positive number, a n d / a n y vector 
in H(M) such that | | /(y)| | is bounded in y. Then for each i = 1, . . . , n the 
function 

(5) y^{Ll,f{y),f{y)) 

is bounded on X; and there exists a partition X\, . . . , Xm of X into disjoint 
Borel sets such that, on each Xh each function (5) has oscillation less than 
e/fx(X). Choosing an element yj in each Xjf and setting <t>j{a) = (La

yjf(yj)f 

f(yj)), and <j> = Y,&(X}W, we find that 

\4>(at) - (Maif,f)\ < e 

for all i = 1, . . . , n. Thus the positive functional a —» (Maf,f) associated 
with M is weakly * approximated by sums <f> of positive functional associated 
with the Ly. Since the elements / for which | \f(y) \ \ is bounded in y are dense 
in H(M)y we have proved that M is weakly contained in the set of all Ly. 

Now the direct integral M is not altered by eliminating a n null set from 
X. Hence, by the preceding paragraph, M will be weakly contained in the 
set of all Ly satisfying (4), provided that the set of y for which (4) fails is a 
IJL null set. Let W be the set of all T in X~(A ; H) having a quotient neighbour­
hood UT such that ix{L~l{UT)) = 0. By Lemma 2.5 the covering { UT) of W 
can be reduced to a countable covering; from which it follows that L~1{W) 
is ji null. But Lrl(W) is just the set of y for which (4) fails. 

Remark. The correspondence between the unitary representations of a 
separable locally compact group and the proper representations of its (separ­
able) group C*-algebra preserves the notion of direct integral, as well as the 
Borel structure of the space of countably-dimensional representations (see 9, 
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especially Theorem 9.1). It also (by definition) preserves the quotient and 
inner hull-kernel topologies. Hence Theorem 3.1 remains valid when A is a 
separable locally compact group. 

The following consequence of the preceding theorem is a considerable 
generalization of (3, Theorem 1.7) (at least for the separable case). 

THEOREM 3.2. Let A be a separable C*-algebra (or a separable locally compact 
group), X a separable locally compact Hausdorff space, and n a a-finite measure 
on the Borel subsets of X. Further let y —» Ly be an integrable function on X to 
X~ (A ; H) (where H is a Hilbert space of countable dimension), which is con­
tinuous with respect to the inner hull-kernel topology of X~(A). Then M=jxL

ydfxy 
is weakly equivalent to the set of all Ly, where y ranges over the closed hull11 of /x. 

Proof. Since the Borel structure of X is standard (9, p. 138), M is a standard 
measure. We may assume without loss of generality that the closed hull of \x 
is X. The assertion then follows immediately from Theorem 3.1 (and the 
Remark following it). 

Suppose now that A is a separable C*-algebra or a separable locally com­
pact group which is of Type I (and hence by (5) has a smooth dual). If M 
is a proper (or unitary) countably-dimensional representation of A, it is 
shown in (9, § 10) that there is a (r-finite measure \x on the Borel subsets 
of A\ and a Borel function a on Af to the non-zero countable cardinals such 
that 

M^J a(L)-LdfxL. 

THEOREM 3.3. If A, M, and /z are as in the preceding paragraph, M is weakly 
equivalent to the closed hull of fx (in A f ). 

Proof. Since ^4f is smooth, /x is standard. We now apply Theorem 3.1 (and 
the Remark following it). 

On examining Theorem 3.2, one naturally asks under what conditions the 
continuity of the map y —> Lv implies its integrability. 

PROPOSITION. If in Theorem 3.2 A is of Type I and if all the Lv are irreducible, 
the continuity of the map y —» Ly (with respect to the hull-kernel topology) implies 
its integrability. 

Proof. By (5, Theorem 1), the hull-kernel topology separates points of A\\ 
hence the Mackey Borel structure of A] coincides with the Borel structure 
generated by the hull-kernel topology (see 5 or 4, Theorem 4.1). So the 
map y —> Ly, being continuous, is a Borel map. The assertion now follows from 
the Corollary (9, p. 157). 

n The closed hull of n is the (closed) set of all points y in X such that n( U) > 0 for every 
open neighbourhood U of y. 
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Suppose, on the other hand, that the I? are not irreducible. Then, even 
assuming that A is of Type I and that the map y —> Lv is continuous, we 
cannot conclude its integrability. Indeed, suppose for simplicity that A is 
abelian and let jiii and /z2 be two Borel measures on A\ which have the same 
compact closed hull, but are of different measure classes (that is, have different 
null sets). Then Tx = J^tX^MiX and T2 = jA-fXdvzX are unitarily inequivalent, 
but it is easily verified (using Lemma 1.12) that even the quotient topology, 
let alone the inner hull-kernel topology, cannot distinguish them. Hence, if 
y —> Lv has range equal to {7\, JT2}, it is automatically quotient-continuous; 
but the values 7\ and T2 can in general be distributed so irregularly that 
y —̂  Lv is not integrable. 

4. Induced representations. We remind the reader of the definition 
and the notation for induced representations.12 Let G be a separable locally 
compact group with unit e, K a closed subgroup, G/K the space of right K 
cosets x = Kx (x Ç G), p a non-zero quasi-invariant13 Borel measure on G/K, 
and X the Radon-Nikodym derivative of p considered as defined on G X G: 

K'y) dpx ' 

Throughout this section all representations of G will be assumed countably-
dimensional. 

Let T be a unitary representation of K. We define H(UT) as the space 
of all measurable14 functions/ on G to H(T) such that 

(i) /(&c) = W ( * ) ) ( * € G , | £K), 

(ii) f \\f(x)\\2dpx < œ.15 

*> G IK 

This is a Hilbert space under the inner product 

(f,g) = f (f{x),g{x))dpx. 
*J G/K 

Now UT (or GUT if it is necessary to specify the larger group) is defined by 

(U?f)(x) =f(xyW(Mx,y))(x,y G G J G H(UT)). 

This UT is the representation of G induced from T. The reader will be assumed 
familiar with the elementary theory of induced representations as presented 
in (7). 

Let H be a countably-dimensional Hilbert space, and T a representation 
of K with space H (in the sense of § 1, with perhaps a null space). By UT 

12See (7). 
13That is, the elements of G, acting on G/K, carry p null sets into p null sets. See (7, p. 103). 
uf is measurable if (f(x), £) is measurable in x for each £ in H{T). 
15By (i) |\f(x)\|2 depends on x only. 
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we shall mean the same as UT>', where V is the restriction of T to its essential 
space H(T). Let <£ be any norm-continuous function on G to H with compact 
support, and define a function ^ on G to H(T) by 16 

Hx) = f 7Vi(0({*))<fof, 

where i> is right Haar measure on K. We easily verify that \p belongs to H(UT) ; 
indeed \f/ is norm-continuous on G, and the function x —» | |^(x)|| has compact 
support on G/X". The function \[/ will be called/^ ( o r / / T ) if we desire to em­
phasize its dependence on 7"). 

Let us denote by 2 the linear space of all norm-continuous functions on G 
to H with compact support, and by ?0 the linear subspace of 2 generated 
by functions of the form x —> «(#)£, where £ £ H and « is a continuous com­
plex-valued function with compact support on G. 

LEMMA 4.1. The set of all f^, where </> runs over £0, is dense in H(UT). 

Proof. It is proved in (7, Lemma 3.5) that the/^ are dense in H(UT) when 
<t> runs over ?. Furthermore, approximating elements of 8 by elements of 80, 
we easily verify that {/̂ |0 G £o} is dense (in the H(UT) norm) in {f^ £ £}. 
These two facts give the required result. 

THEOREM 4.1. If G is a separable locally compact group, and K is a closed 
subgroup of G, the map T —> GUT (T ranging over all unitary representations 
of K) is continuous with respect to the inner hull-kernel topologies of unitary 
representations of K and G. 

Proof. Let © be a family of unitary representations of K and T a unitary 
representation of K belonging to the inner hull-kernel closure of ©. It is 
enough to prove that UT belongs to the inner hull-kernel closure of 

£7® = {us\s e ©}. 

Since the inner hull-kernel topology does not separate S from Xo'-S, and 
X -S 

since U =Xo-Us, we may assume without loss of generality that 
T ^ Ko- T and S 9Ë Ko -S for all 5 in ©. Then by Lemma 2.4 T belongs to 
the quotient closure of ©. Thus we may assume that T and the representations 
in © are all situated in the same separable Hilbert space H (with null spaces 
perhaps, see § 1); and that there is a net {S1} of elements of © converging to 
T i n %(K\H). 

Let 8o be defined as before, using the above Hilbert space H. We shall 
prove that for each fixed <fr in 20 whose range is contained in H(T), 

(i) (u?nsi)jisi))^(imT\fr) 
uniformly in x on compact subsets of G. 

1GThis construction is given in (7, § 3). 
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Suppose 
r 

<?(%) = 23 X*(x)at-, 

where the X* are complex continuous functions on G with compact supports 
Cu and at Ç H(T). We shall assume without loss of generality that 

| |a, | | < 1, sup \\i(x)\ < 1. 
X 

Let us put 

C = U C , U {e}. 

Fix a positive number e, and a compact subset D of G; and define E to be 
the compact subset K r\ CC~lCDC~l of K. Further, let U be the neighbour­
hood 

[S £ X(K; H)\ {{Stat - Txai\\ < e for all i = 1, . . . , r and all x in £} 

of 7" in X(K; H) (see Lemma 1.1). 
Now, if 5 G X(K; H) and x j f G , 

(Uv
stis))(x) =ÂS)(xy)V(Mx,y)) 

= V(Hx,y)) J2 I *i(&y)St-ia4vè\ 

whence 

(UÏÏS\IIS)) = f ((^a)(*),/r(*))dp« 

= H I \/(\{x,y))dpx I I \i(^xyyKj{if]x){S^-iau S^-iaj) dv7]dv ^ 
i,j=l*s G/K *JK*JK 

= S I V(X(£, y))dpx J J \i(&y)\j(rtx){Sylai,aj)dv>qdvÇ> 
ij=l*s G/K *JK**K 

= ]E I V(X(x, y))dPx I (SrpLuCL3)dvri J X,(£ry)X,Orës)A'?» 
ij=l*s G/K *s K *J K 

and similarly for 7". Thus 

(^s),/r}) - (UÏÛT\ÛT)) 

(2) = X) I V(X(x, ;y))dpx I ((S>*, a,) - (TnOLua^dvri \, 
i,j=l*S G/K **K **K 

(&y) 

X \j(ri%x)dv£. 

If x is a coset having no element in common with C, then \j(rj^x) = 0 for 
all r), £, and j ; so that 
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X *i(&y)h(y&)dvt = 0 

for all rj in K and y in G. It follows that the integral over G/K in (2) need 
be taken only over C, and in the inner integrals x may be taken to lie in C. 

If x Ç C and y £ D, \t(£xy) = 0 unless £ £ CD~XC~Y\ so the innermost 
integral in (2) need be taken only over K H CD~lC~l. If x G C and 
£ Ç CD~lC-\ then X ;(^x) = 0 unless r/£ £ = CC~lCDC-1 Pi X. So the 
middle integral in (2) may be taken over E. Note that, if x Ç C, y £ D, and 
*7 € £ , 

(3) f X,(fcy)X~,(irê*)di* < y(2s: n cz^-'c-1) 

(since |X€| < 1). 
Now assume that S £ U; then HŜ a* — 7Vxf|| < e for all i = 1, . . . , r, and 

all ry in E. Since \\a.i\\ < 1, this implies | ( 5 ^ , aj) ~~ iX^au OLJ)\ < e for all i, j , 
and all rj in E. Thus, for each x in C, y in D, and each i, 7, we have by (3) 

(4) I ((Svaifaj) - (7>,,a,))dw7 I X i ( ^ ) X i ( ^ j " ^ d 

<€K^M^n CD~1C-X). 

Further, 

(5) J€V(Hx, y))dP x < Jc(l + \(x, y))dp x = P(C) + P(CD). 

Combining (2), (4), and (5), we obtain: 

(6) m%s\/n - mr,tiT))\ 
< er\p(C) + p{CD))v(E)v(K C\ CD^C-1) 

for all y in D and 5 in U. By choosing e properly, the right side of (6) may 
be made arbitrarily small. Since {S1} is eventually in £/, this proves (1). 

Now, by Lemma 4.1, as <j> ranges over those elements of So whose ranges 
are contained in H(T), fy ranges over a dense subset of H(UT). This together 
with (1) shows that, to every function 4> of positive type on G associated 
with UT and every compact subset D of G, there is a neighbourhood W<f> of 
T (in T(K;H)) such that, if S Ç W4, there is a function of positive type 
associated with Us differing from <j> on D by less than e. 

If #1, . . . , #n are functions of positive type associated with UT, there is 
an 5 belonging to 

© n w* r\... n ŵ . 
We may then find functions of positive type \^i, . . . , \f/n associated with Us 

such that for each i \<t>t(x) — \^i(x)\ < e for all x in D. By Theorem 2.2, this 

implies that UT is in the inner hull-kernel closure of U . 
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From Theorem 4.1 and Theorem 2.3 we obtain almost immediately the 
following theorem. 

THEOREM 4.2. / / K is a closed subgroup of the separable locally compact 
group G, © is a family of unitary representations of K, and T is a unitary 
representation of K weakly contained in ©, then UT is weakly contained in 
{us\se ©}. 

Theorems 4.1 and 4.2 suggest a converse question: What can be said about 
T and © if it is known that UT is weakly contained in { US\S Ç ©}? Theorem 
4.4 answers this question in case K is normal. 

Assume that K is a closed normal subgroup of the separable locally compact 
group G (with unit e). If 5 is a unitary representation of K and x Ç G, Sz will 
be the unitary representation of K for which Sf = Sx^x-i (£ Ç K). The set 
of all Sx, where x runs over G, is the orbit of 5 under G, and is denoted by 
0(5); if © is a family of unitary representations of K, 0(©) will mean 

U 0 ( 5 ) . 
Se© 

It is evident that, for fixed x, the mapping 5 —> Sz leaves unaltered the 
relation of weak containment. We recall also that GUS = GUSX for all x in G 
and all unitary representations 5 of K. 

We shall denote by T (8) 5 the Kronecker product of the two representations 
T and 5 of G (see 7, p. 114), and by S\H the restriction of 5 to a subgroup H. 

LEMMA 4.2. Let H be a closed subgroup of G. / / 5 and T are unitary repre­
sentations of G and II respectively, then 

UT" ® 5 ^ uT®(SlH\ 

Proof. G and H, as subgroups of G, are regularly related (7, p. 127). The 
Lemma is now an immediate consequence of (7, Theorem 12.2). 

COROLLARY 1. Let H be a closed subgroup of G, and I and J the one-dimensional 
identity representations of G and H respectively. If 5 is any unitary representation 
of G, then 
(7) US^H 9Ë UJ ® 5. 

Further, if UJ weakly contains I, then US]H weakly contains 5. 

Proof. We obtain (7) by setting T = J in the Lemma. To obtain the last 
statement, we apply to (7) the following easily verifiable proposition: 

If T and W are unitary representations of G, and © is a family of unitary 
representations of G which weakly contains T, then {5 ® T^|5 £ ©} weakly 
contains T ® W. 

If in Corollary 1 we take H = \e), we obtain the fact, already noted by 
Godement (6, p. 77), that, if the regular representation of G weakly contains 
the identity representation, then it weakly contains all unitary representa­
tions of G. 
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We note, as a digression, a further immediate consequence of Corollary 1: 

COROLLARY 2.17 Let K be a closed normal subgroup of G. For each unitary 
representation T of G/K, let T' be the corresponding representation of G 
(TV = TxK). Suppose further that the right regular representation R of G/K is 
written as a direct integral of unitary representations Ra of G/K: R = JRadjjLa. 
Then for each unitary representation S of G, 

U8lK^j (Ra' ® S)d»a. 

In particular, if G is abelian, x is a character of K} and xo is a character 
of G which extends x, then 

Ux^ J (0xo)d/*«, 
•J H 

where II = {$ (E G\\<f> = 1 on K] and JJL is Haar measure on H. 

T H E O R E M 4.3. Let G be a separable locally compact group, K a closed normal 
subgroup of G, and H a closed subgroup of G containing K. Suppose further that 
the regular representation of H/K weakly contains the identity representation 
{hence all representations) of H/K. Let © be a family of unitary representations 
of K, and T a unitary representation of II. Then 

GUS = \GUS\S € © } 

weakly contains GUT if and only if the orbit 0(@) of © (under G) weakly contains 
T\K. 

Proof. (A) Suppose t ha t 0(@) weakly contains T\K. Then by Theorem 4.2, 
applied with H as the larger group, 

(8) HUe^ weakly contains HUTlK. 

By Corollary 1 of Lemma 4.2 (together with the hypothesis on the regular 
representation of H/K) HUTlK weakly contains T. Hence by (8), 

(9) HU ^ ' weakly contains T. 

Inducing (9) up to G, and applying Theorem 4.2 (as wTell as (7, Theorem 4.1) 

on inducing in stages), we find tha t GU ^ ' (which is the same as GU ) 
weakly contains UT. 

(B) Conversely suppose tha t U weakly contains UT. By (3, Theorem 1.3, 
Corollary), 

(10) U^\K weakly contains UT\K 

17The last statement of this Corollary is also an immediate consequence of Mackey's general­
ized Frobenius Reciprocity Theorem (see 8). 

https://doi.org/10.4153/CJM-1962-016-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-016-6


262 J. M. G. FELL 

(where lf°\K = {US\K\S € ©}). But by Theorem 12.1 of (7), 

(11) US\K^ f SxdPx, 
J G/R 

(12) UT\K^ f (T\K)xdax 
*>G/H 

(where x = Kx, x = Hx, and p and a are quasi-invariant measures on G/K 
and G/H respectively). 

Now from the existence of a Borel cross-section for the coset spaces G/K 
and G/H (7, Lemma 1.1) we easily deduce that the mapsx —•» Sx and x—>(T\K)x 

are integrable. Further, since x —> Sx and x —•> (T^X-)* are continuous in the 
inner hull-kernel topology of representations of K, the same is true of the 
maps x —» 5* and x —* (rjiT)*. Hence, applying Theorem 3.2 to (11) and (12), 
we find that US\K is weakly equivalent to 0(5) (for each 5 in ©) and UT\K 
is weakly equivalent to Q(T\K). So, by (10), 0(©) weakly contains 0(7"|K) 
and hence T|i£. The proof is now complete. 

The condition that the regular representation of a group weakly contains 
all other representations has been studied by Takenouchi in (11); he derives 
a necessary and sufficient condition for it to hold, in terms of the structure 
of the group. It is well known, even without Takenouchi's result, that it 
holds for all compact and all abelian locally compact groups. 

Putting H = K in Theorem 4.3, we have: 

THEOREM 4.4. Let G be a separable locally compact group, K a closed normal 
subgroup of G, Ta unitary representation of K, and © a family of unitary 

representations of K. Then UT is weakly contained in U if and only if 0(©) 
weakly contains T. 

We observe the following fact, which was demonstrated in the course of 
the proof of Theorem 4.3. 

THEOREM 4.5. / / T is a unitary representation of a closed normal subgroup K 
of the separable locally compact group G, then GUT\K is weakly equivalent to 
the orbit of T {under G). 

5. Examples. Theorem 4.3 constitutes the main step in determining the 
topology of the dual space of many solvable groups. Before giving examples, 
we mention two further facts. The first is the same as (3, Theorem 1.3, Corol­
lary); the second also follows directly from (3, Theorem 1.3). We fix a separable 
locally compact group G. 

LEMMA 5.1. If K is a closed subgroup of G] and © is a family of unitary 
representations of G which weakly contains a unitary representation T of G, then 
T\K is weakly contained in {S\K\S G ©}. 
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LEMMA 5.2. Let K be a closed normal subgroup of G. For each unitary repre­
sentation T of G/K, let T' be the corresponding representation of G (Tx

f = TxK). 
Then, if © is a family of unitary representations of G/K, T is weakly contained 
in © if and only if T' is weakly contained in ©' = {Sf\S Ç ©}. Further, if R 
is a unitary representation of G which is weakly contained in ©', R must be of 
the form Tr for some unitary representation T of G/K. 

Example 1. The "ax + b" group. This is the group G of all pairs (x, y), 
where x is real and y is positive, with 

0 , y) (*', y') = (xy' + x', yyf). 

Let K be the closed normal subgroup of all (x, 1) (x real). Then K] consists 
of all xk (k real), where xk(x, 1) = eikx, and contains three orbits under G, 
namely (i) 0+, consisting of all xk with k > 0, (ii) 0_ consisting of all xk with 
k < 0, and (iii) {x0} = #o. By the theory of induced representations (see 7), 
the irreducible representation of G are U*1, Ux~l', and the one-dimensional 
ypr (r real), where \pr (x, y) = yir. 

Now the closure (in i£f) of 0+ contains 60 but not 0_; and similarly for 
6-. Hence, applying Theorem 4.3, we see that U*1 weakly contains all ypr but 
not Ux~1', while Ux~l weakly contains all ypT but not Ux\ By Lemma 5.2, the 
set of all \[/T (r real) is closed in Gf, and the topology of Gf relativized to this 
set is just the ordinary topology of the parameter r. We therefore have: 

THEOREM 5.1. Let G be the uax + 6" group. A subset W of Gf is closed in 
Gf if and only if it satisfies the following two conditions: 

(i) If either U*1 or Ux~l is in W, then all \f/r are in W. 
(ii) {r realtyT 6 W} is closed in the ordinary topology of the reals. 

Thus, the topology of Gf is not only not Hausdorff, but fails to be even 7\ 
(indeed, Uxl and Z7*"1 are not closed). This shows, incidentally, that Uxl 

and Ux~l are not completely continuous (see (3, Lemma 1.11 )).18 

Example 2. The euclidean group of the plane. This is the group G of all pairs 
(z, u), where z and u are complex and \u\ = 1, with 

(s, u)[z', uf) — (z + uzf, uu'). 

Let K be the closed normal subgroup of all (z, 1). The dual K\ consists of 
all xw (w complex), where xw(z> 1) = eiRe{zw). The orbit of xw under G consists 
of all those xv for which \v\ = \w\. For r > 0 let BT be the orbit {x l̂ \w\ = r}. 
The distinct irreducible representations of G are: 

(i) the Ux\r > 0); 
(ii) the one-dimensional \j/n (n an integer), where ^w(z, w) = un. 
Now if 5 is a subset of the positive reals and r > 0, then 

erC U es 
seS 

18This fact has also been observed in (10, p. 556). 
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if and only if r G S (in the ordinary topologies of plane and line). I t follows 
from Theorem 4.4 tha t the topology of Gf relativized to the set of all UxT is 
just the ordinary topology of the parameter r. By Theorem 4.3, if S is a subset 
of the positive reals, the closure in Gf of { UxS\s G S] contains all the \f/n if 
0 G S, and none of the \f/n if 0 $ S. As in the previous example, {\l/n\n an integer} 
is closed in Gf and its relativized topology is the discrete topology. We there­
fore have : 

T H E O R E M 5.2. Let G be the Euclidean group of the plane. A subset W of G | 
is closed if and only if the following conditions hold: 

(i) S = {s > 0 \UxS G W} is closed in the ordinary topology of the positive 
reals; 

(ii) if 0 G S, then all \f/n are in W. 

T h u s Gf in this case is T\ b u t not Hausdorff. 
Dixmier (1) has studied the irreducible representat ions of all simply con­

nected nilpotent Lie groups of dimension no greater than five. Apar t from 
the addit ive group of reals and obvious direct sums, there are eight of these, 
which he calls T3, T4, r 5 , i , r 5 f 2 , r5 ) 3 , r5>4, r5 f 5 , and r5 ,6. In (2) he has worked 
out the topologies of the duals of these groups (except for r 5 ) 4 and, in par t , 
TO,5), by computat ions based on the detailed form of the representat ions. I t 
tu rns out t ha t one can obtain all of Dixmier 's results by a rguments based 
on Theorem 4.3. For TO,4 these a rguments do not seem to suffice; bu t the 
dual of this group can be obtained by a method peculiar to this case. T h e 
dual of r5>5 offers no difficulties in principle; bu t the complicated na ture of 
the orbits makes explicit calculation difficult. 

We shall sketch the application of our method to r 3 , T4, and F5 ) 3 ; and 
conclude with a sketch of the a rgument for r5 ,4 . 

If g is the Lie algebra of the ni lpotent group G, we denote by (x\, . . . , xr) 
the linear span of the vectors Xi, . . . , xT in g, and by E the exponential map­
ping. If f is a subalgebra of g, E(î) is the corresponding closed subgroup of 
G. If K is a closed normal subgroup of G, we shall sometimes denote by the 
same letter a representat ion of G/K and the corresponding lifted representa­
tion of G. By Rn we mean Euclidean ^-space; R is the addi t ive group of reals. 

Example 3. The group T3. This is the three-dimensional simply connected 
Lie group whose Lie algebra has basis {xi, x2, x3} with [xi, x2] = x3, [xi, x3] = 0, 
[X2, x3] = 0. Then K = E((x2, x3)) is a closed normal abelian subgroup of T3. 
Let Xu,v (u> v real) be the character of K sending E(rx2 + sxz) into e

i(UT+vs). 
We verify t h a t the orbits in K\ (under T3) are the following: (i) 6U° = {xu,o} 
for real u, and (ii) Bv

l = {x* ,^rea l} for v real, v 7e 0. T h e s ta t ionary sub­
group for 6U° is T3; t h a t for Bv

l is K. Hence, by Mackey ' s theory of induced 
representations, the distinct elements of r 3 | a re : 

(A) the one-dimensional \l/u,v(u, v real), where 

^uAE{nxi + r2x2 + r3x3)) = e
mri+VT2), 
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(B) the representations Tv (v real ^ 0), where Tv is induced from the 
character xo,v of K. 

Just as in Examples 1 and 2, we obtain: 

THEOREM 5.3.19 A subset W of r3f is closed in r3f if and only if: 
(I) {(u,v)\xl/UtV e W] and {v\Tv Ç W) are closed in R2 and R - {0} re­

spectively; 
(II) If 0 is a limit point of {v\Tv Ç W], all \//UtV are in W. 

Example 4. The group T4. This is the four-dimensional simply connected 
Lie group whose Lie algebra has basis xh x2, x3, x4 with [xi, x2] = x3, 
[xi, x3] = x4, and [xu x3] = 0 for all other i < j . Let K be the closed normal 
abelian subgroup E((x2, x3, x4)) ; and Xu,v,w (for u, v, w real) the character of 
K sending E{rx2 + sx^ + fo4) into e

i{ur+vs+wt\ We verify that the orbits in 
Xf (under T4) are the following: (i) 0M° = {xu,o,o} (for w real); (ii) 6v

l = {xt.v.ol* 
real} (for v real ^ 0) ; and (iii) dSjW

2 = [xu,v,w\u, v are real and uw — (v2/2) =s} 
(for s, w real, ze; ^ 0). Let Q0 = {0tt

o|wreal}, Çi = {«V^real ^ 0}, 
(?2+ = {0,t„,2|sreal, w > 0}, Q2" = {Bs,w

2\s real, w < 0 } , Q2 = (?2+ U Q2-. In 
view of Theorem 4.3, we must calculate the quotient topology of the orbit 
space Q = Qo^J Qi^J Q2. It is not hard to verify: 

PROPOSITION. (I) Relativized to Ço, Qu or (?2, the quotient topology of Q is 
the natural topology of the parameters u, v, s, w. 

(II) The closure of a subset W of Qi contains all or none of QQ according as 0 
is or is not a limit point of {v\dv

l Ç W}. 
(III) An element 6v

l of Qi belongs to the closure of a subset W of Q2 if and 
only if (— (v2/2),0) is a limit point of {(s, w)\6StW

2 Ç W). 
(IV) If W C (?2+ [or Q2~], the closure of W contains du° if and only if (a) 

(0, 0) is a limit point of {(s, w)\6StW
2 £ W], and (b) 

IJm I — ) < « 
(s,w)^(o,o),e;,wew \ w > 

o r 1 
(s,w?)->(0 

im n l — ) > u \ 
,0),62

s,weW \W / J 

Now the stationary subgroup of any orbit in Ço is T4; that of any other 
orbit is K. Thus the distinct elements of T4f are the following: 

(A) the one-dimensional \I/U1,U2 (uu u2 real), where 

tui,U2\E( X) riXiJj i{u\r\JrU2r2) . 
C i 

(B) the Tv (v real ^ 0), where Tv is the representation induced from the 
character xo,t>,o of K; 

(C) the Ss,w (SjWreal, w ^ 0),where SS,W is induced from the character 
Xs/w,0,w Of K. 

19See (2, § 2, Proposition 1). 
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Combining the above proposition with the arguments of the preceding 
examples, we obtain Dixmier's result for r4"h 

THEOREM 5.4.20 A subset W of r4f is closed if and only if: 
(I) the sets {(^i, w2)|i/w2 € W], {v\Tv G W), and {0, w)\Ss>w G W] are 

closed in R2, R — {0}, and R X (R — {0}) respectively; 
(II) if {v\Tv G W} has 0 as a limit point, all ^M1,M2 are w PT; 

(III) ifvis real, v ^ 0, and ( - (?;2/2), 0) w a limit point of {(s, w)\Ss>w G W}, 

(IV) if (0, 0) w a limit point of {(s, w)\w > 0, Ss>w G W) and 

hm (5/^) < w> 

(a,w)->(0,0) ,w>0 f S*««>eïr 

J&ew \//r,u £ W for all real r; 
(V) # (0, 0) is a limit point of {(5, w)|w < 0, Ss>w G W) and 

lim (s/w) > w, 
(s,M')^(0,0),M?<0,Ss'«-,eIF 

//^w ipr,u G W for all real r. 

Example 5. 77&e group Tt>t%. This is the five-dimensional simply-connected 
group whose Lie algebra has basis Xi, x2, x3, x4, X5, with [xi, x2] = x4, 
[xi, x4] = X5, [x2, x3] = x5, and [xu xf\ = 0 for all other i < j . Let C = E ((x5)) 
be the centre of r5(3, and K = E((xz, x4, x5)) ; K is a closed normal abelian 
subgroup of r5)3. By the usual method of induced representations, we find 
that the elements of r5)3 fall into two classes: 

(A) Those which are the identity on C, that is, which are lifted from 
irreducible representations of T5 3 /C == T3 X R (this class will be referred to 
as ( r 5 ) 3 /C) A ) ; 

(B) the Sw (w real 9e 0), where Su' is induced from the character of K 
which sends £(r3x3 + r4x4 + r5Xs) into eiwr'°. 

Let Xs,t,w be the character of K sending E(r3x3 + r4x4 + r5xs) into 
eH8TZ+tri+v>r6)m nphe orbit in K\ corresponding to Sw (w 9* 0) is {x«,«.»k, t real}. 
Further, we easily verify that each representation in (r5,3 /C)A , when restricted 
to K, is weakly contained in {xs,*,o|s, /real}. Thus applying Theorem 4.3 as 
before, we obtain Dixmier's result: 

THEOREM 5.5.21 A subset W of r5 ,3t is closed if and only if 
(I) {w\Sw G W] is closed in R - {0} ; 

(II) l f n ( r 5 , 3 / C ) A w closed in ( r 5 ) 3 /C) A (the topology of the latter is known 
from Example 3, since r5 > 3 /C = T3 X i£) ; 

(III) if {w\Sw G W} has 0 as a limit point, W contains ( r5 > 3 /C)A . 

Example 6. 77ze group r5(4. This is the five-dimensional simply-connected 
group whose Lie algebra has basis Xi, x2, x3, x4, X5, with [xi, x2] = ^3, 
[xi, x3] = x4, [x2, x3] = x5, and [x*, x ;] = 0 for all other i < j . 

20See (2, § 3, Proposition 2). 
21See (2, § 6, Proposition 5). , 
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The dual of this group does not yield to Theorem 4.3 for the following 
reason. In the previous examples there was a small number of normal sub­
groups Ki, K2, . . . , such that each irreducible representation of the whole 
group G was either induced from a character of some Kt, or lifted from some 
G/Ki. In the case of r5)4, however, it is found that the subgroups K, from which 
the elements of r5(4f are obtained by lifting or inducing, vary continuously—a 
situation definitely not covered by Theorem 4.3. However, the day is saved 
by the existence of enough automorphisms of r5 i4 to carry these different 
subgroups into one fixed subgroup. 

The centre of r5>4 is C = E((x4, x5)). Every T in Ts^t reduces on C to a 
character times the identity operator, hence reduces to the identity on some 
one-dimensional subgroup of C. Now, for d real, let Fe be the automorphism 
of TO,4 corresponding to that automorphism of its Lie algebra which sends 
Xi into x / , where: x / = X\ cos 6 + x2 sin 6, x2' = — X\ sin 6 + x2 cos 6, 
x% — #3i x* = x4 cos 6 + #5 sin 6, x*>' = — x4 sin 0 + x5 cos 6. Every one-
dimensional subgroup of C is carried by a suitable F$ into E((x&)). We now 
verify the following propositions: 

(1) The map (5, 0) —-> SOFe (where O denotes composition) is continuous 
on r5f4t XRto r5)4f; 

(2) every T in r5,4f is of the form SOFe, where 0 is real and 5 is lifted from 
an element of the dual of r5 ,4/£((x5)). 

Observe that r5>4/E((x5)) = T4. We shall identify the dual of r5(4/£((x5)) 
with T4f ; thus ^MlfM2, T\ Ss,w (see Example 4) become irreducible representa­
tions of r5,4, reducing to the identity on E((x5)). 

(3) Ss'w OFe ^ Ss'~w OFe+*. Thus we lose none of the Ss'w OFe by assuming 
w > 0. Assuming this, we have Ss>wOFe ^ Ss''w' OFB> if and only \i s = s', 
w = w', and 6 = Br (mod 2w). 

(4) For all real 0, U\, u2, and all real v 9e 0, 

Tv OFe ^ T\ 

^u\,ui^ FQ = ^icos0+W2Sln0,-znsin0-N2Cos0* 

In view of these results, the distinct elements of r5 ,4t are the following: 
(A) The^M1>M2 («i, «2 real); 
(B) the Tv (v real ^ 0) ; 
(C) the Ss'w OFe (s, w real, w > 0, 6 in the reals modulo 2TT). 
Using the above propositions (l)-(4), the compactness of the group of the 

Fe, and the known topology of r 4 | , we obtain the following result: 

THEOREM 5.6. A subset W of r5 ( 4 t is closed if and only if: 
(I) {(tti,tt2)hfc.liM, e W], {v\T° e W], and {(s,w,d)\Ss'wOFde W] are 

closed in R\ R - {0}, and R X (R - {0}) X (R mod 2TT) respectively; 
(II) if 0 is a limit point of {v\Tv G W\, W contains all ^U1M2; 

(III) if ( - (v2/2), 0) is a limit point of N = {(s, w)\Ss'w OFe G W for some 
6}, then Tv Ç W; 
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(IV) if (0, 0) is a limit point of N and if 

!im ( -- - «i sin 6 - u2 cos 6 ) < 0, 
(s,w)^(0,0),w>0,Ss'wOFeeW W / 

then \[/ul tU2 G W. 
In conclusion, we repeat that the procedure used for T5>4 was quite special, 

and depended on the existence of "enough" automorphisms of the group. 
There surely exists a general inductive procedure, perhaps similar to that of 
(12), guaranteed to give the topology of the dual of any simply connected 
nilpotent group. Such a procedure might well require a generalization of 
Theorem 4.3 which, in line with the remark at the beginning of Example 6, 
would cover the case of continuously varying subgroups. 

Indeed, the following more comprehensive problem arises naturally: How 
can we generalize Theorem 4.3 so that, whenever Mackey's theory of induced 
representations permits us to catalogue the elements of the dual Gf of a 
group G, we obtain at the same time the topology of Gf ? 
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