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1. Introduction

We denote by R the set of real numbers, and by R", n ^ 2, the Euclidean
space of dimension n. Given any subset E of Rn, n ^ 1, we denote the characteristic
function of E by %E, so that XE(X) = 1 if X e E; and XE(X) = 0 if x e R"\E. The
space LP(R") = LF consists of those measurable functions/on R" such that

" = 11/11,

is finite. Also, L™ represents the space of essentially bounded measurable functions
with H/Hoo = inf {a >0; m({x : \f(x)\ > a}) = 0}, where m represents the
Lebesgue measure on R". The numbers/? and/?' will be connected by l/p + \/p' = 1.

The Fourier transform of a function/in L1 is defined by

= (2*)-*" f
J R

where for x = (x1, x2, • • •, xn), t = (t1, t2, • • •, tn), we set x • t = jq ?L -

The symbol J^ will also represent the extension of the Fourier operator
as a bounded linear operator in LF, 1 ^ p ^ 2.

Given a bounded measurable function # on /?" we denote by Tg the operator
denned on L2(R") by

(1-1)

On using the fact that | |-F(/)||2 = | |/ | |2 for/in L2, we see that

O-l-l) \\Tg(f)\\2 ^ \\g\\J\f\\2.

As usual we say that g is a multiplier in LF, p ^ 2, if J9 can be extended to
bounded linear operator in LF. For properties of multipliers in LF see for example,
Hormander [2] and Brainerd and Edwards [1]. The main purpose of this paper is
to describe some classes of bounded measurable functions on R" which are
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multipliers in LP, 1 < p < oo. A particular case of the main theorem shows that
some non-negative bounded symmetrically non-increasing function on R are
multipliers in L"(R), 1 < p < oo. The conclusions obtained here supplement
existing results on multipliers in L" spaces; see S. G. Mihlin [6], Hormander
[2, Theorem 2.5], Stein [7], de Leeuw [3], Littman [4], and also [5]. See also [10].

I am grateful to the referee of this paper for his comments.

2. The main results

The main results of the paper are given in Theorem 2.4 and Corollary 2.5
of this Section. In the next Section we consider the special results involving the
one-dimensional cases. First we state two results which will be employed in the
proof of the main theorem.

2.1. DEFINITIONS

(2.1.1) Given any measurable function h on R" we define the set H", a > 0,
by

H" = {xeRn : \h(x)\ > a}.

(2.1.2) For any real-valued function (j> on R and a function h on R", we denote
by <f> o h the function whose value at x e R" is cf>{h{x)).

(2.1.3) We denote by f(n ^ 1) the class of rectangles / in R" of the form
/ = It x I2 x • • • x /„, where each /,- is an interval of R (open, closed, or half open).

2.2. LEMMA. Let $ be absolutely continuous on [0, oo), with </>(0) = 0, and let
h be measurable and non-negative on R". Then, with (j>'(x) = (d/dx)(f>(x),

<t> o h(x) = \4>'{a)lHa{x) da, (x s R").
Jo

PROOF. This follows immediately from the fact that

<f>oh(x) = <t>'(a)da.
Jo

2.3. LEMMA. If I < p < oo,n ^ 1, then there is a constant kp<n such that, for

PROOF. This is a well-known result which follows easily from the one-dimen-
sional case. Note that if J = [a, b) c R, then

and the boundedness of Txr follows by applying known results involving the
Hilbert transform [8, Theorem 101].
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(2.3.1) NOTE. If M= \JJ
k=lIk, where {/t, I2, • • •, / ,} is a finite disjoint sub-

class of Jn, then we have

so that by 2.3,
, (feL%R")).

2.4. THEOREM. Let the functions (j> on [0, oo) and h on R" satisfy the following
conditions:

(i) (j) is absolutely continuous on [0, oo), </>(0) = 0, and <j>' eL^O, oo),

(ii) h is non-negative on R", and there is an integer j 2: 1 such that, for a > 0,
we have

j(a)

H" ={J H{a, k),
k=l

where j(a) ^ j or Ha = 0, each set H(a, k) e / " , and H(a, k) n H(a, I) = 0
ifk^l. Then for 1 < p < oo and with kp<n defined as in Lemma 2.3; we have

PROOF. L e t / e L1 n L™. Then by Lemma 2.2, we have

and it follows by applying Fubini's theorem and the Parseval relation for Fourier
transforms that, for g e L2,

f 3W^r^(/)(x)dx=fC°4,'(a)f &{g){x)TXHa{f)(x)dxda
J R" J 0 J R"

= !
J R"

Further, on applying the Parseval relation once more and noting that the function
g is arbitrary, we see that

W / X * ) = V 4>'{a)TXHa{f){x)da.
Jo

Hence it follows from the hypotheses and Note 2.3.1, and by applying Minkowski's
integral inequality that

P W l \\TXBXf)\\Pda ^ jfeP|I1||*'lli
o

The inequality can be extended to all of LP in the usual way by constructing
sequences of functions in L2 n LP which converge to given functions in Z/-norm.
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2.5. COROLLARY. Let the function h on R", « ^ 1, be bounded and satisfy
condition (ii) of Theorem 2.4. Then, for 1 < p < oo and with kp,n defined as in
Lemma 2.3, we have

\\Th(f)\\p^jkp<n\\h\U\f\\P-

PROOF. Let <p0 be any monotone increasing absolutely continuous function on
[0, oo) with ||<£olli = 1 and $o(O) — 0> f° r example we may choose

Now define the function 4>{x) by <f>(x) = ( 1 + e ) \\h\\n </>0 (x), where £ > 0. We

denote by cj>~1 the inverse of (j>, so that for y e [0, ||A||«>L

0O0-1 (y) = y.

Since {x e Rn : (j)'1 o A(x) > a} = {x e i?" : A(x) > </»(«)} it follows that if h{x)
satisfies the condition (ii) of Theorem 2.4, then so also does 4>~l o h(x). Hence
by Theorem 2.4, we have, for 1 < p < oo,

\\Th{f)\\p = | | 7 ^ _ 1 0 , , ( / ) I I P ^ 7fcp,»Wllill/ll, = (l+e)jfcp.»l|A||»ll/llp.
and the required conclusion follows since e is arbitrary.

(2.5.1) REMARK. It is possible to prove Corollary 2.5 directly by using the
same argument as that given in the proof of Theorem 2.4. We simply note that,
as in Lemma 2.2,

h{x) = da = XH-(x)da,
Jo Jo

where b = (l+e)\\h\\x, e > 0.

3. The one-dimensional case of the main result

The main feature of the one-dimensional case of Theorem 2.4 is that condition
(ii) of that theorem can be put in a more suitable form involving in some cases
the monotone-ness of the function h.

3.1. THEOREM. Let the function <j> on [0, oo) and h on R satisfy the following
conditions

(i) (j) is absolutely continuous on [0, oo), <̂ >(0) = 0, and<t>' e I ' ( 0 , oo),

(ii) h is non-negative on R, and there is a finite class {At, A2,- • •, Aj} of

disjoint intervals such that

where h is monotone on each set Ak. Then for 1 < p < oo, there is a

£ jk,\\<l>'\\i\\f\\p-

constant kp such that
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PROOF. This result is a special case of Theorem 2.4. We note that, for a > 0,
we have

Ha = {xeR: h(x) > a} = (J H(a, k),

where H(a, k) = {xeAk: h(x) > a}. Since h is monotone on the interval Ak,
the set H(a, k) e ^f1, and so condition (ii) of Theorem 2.4 is satisfied.

3.2. COROLLARY. Let the function h on R be bounded and satisfy the condition
(ii) of Theorem 3.1. Then for 1 < p < oo f&ere w a constant kp such that

\\Th{f)\\p^jkp\\h\U\f\\P.

PROOF. In view of the remarks in the proof of Theorem 3.1, the result is easily
seen to be a special case of Corollary 2.5.

3.3. REMARKS, (i) The conclusions of Corollary 3.2 provide examples of
multipliers in LP(R), 1 < p < oo, which have an infinite set of discontinuities on
some subinterval of R. The main condition required of such functions is that they
should be non-increasing or non-decreasing on the interval, (ii) Since linear
combinations of multipliers are also multipliers the condition in Corollary 3.2
that h be non-negative can be replaced by one requiring that h be a linear combi-
nation of functions satisfying the conditions given there. For this reason the
conclusions of the Corollary apply to functions of the form

where the integral is bounded on R.
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