Changes in folate status in overweight/obese women following two different weight control programmes based on an increased consumption of vegetables or fortified breakfast cereals

R. M. Ortega1*, A. M. López-Sobaler1, P. Andrés2, E. Rodríguez-Rodríguez1, A. Aparicio1, L. M. Bermejo1 and B. López-Plaza1

1Departamento de Nutrición, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain

2Laboratorio de Técnicas Instrumentales, Sección Departamental de Química Analítica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain

(Received 22 November 2005 – Revised 19 April 2006 – Accepted 2 May 2006)

The modification of folate status was analysed in a group of sixty-seven overweight/obese women of childbearing age (20–35 years). Subjects were randomly assigned to one of two slightly hypocaloric diets: diet V (increased consumption of vegetables) or diet C (increased consumption of breakfast cereals). Dietetic, anthropometric and biochemical data were collected at the start of the study and again at 2 and 6 weeks. At 6 weeks a weight loss of 2.0 (sd 1.3) kg was achieved in V subjects and of 2.8 (sd 1.4) kg in C subjects (P<0.05). At the start of the study, 64.2 % of all subjects had a folate intake of <67 % of the recommended intake; this fell to just 3 % (7.14 % of V subjects and 0 % of C subjects) by week 6. Significant increases were only seen in C subjects in serum folate concentrations (both at 2 and 6 weeks), accompanied by a significant reduction in serum homocysteine (at week 6). Some 62.1 % of all subjects had serum folate concentrations of ≥13.6 nmol/l (associated with a very low risk of neural tube defects) at the start of the study, while 87.0 % (85.2 % of V subjects and 88.9 % of C subjects) had concentrations of ≥13.6 nmol/l at 6 weeks (P<0.01). Increasing the relative consumption of vegetables/cereals in the context of a slightly hypocaloric diet may therefore be a good way to lose body weight. Breakfast cereals may be of special help with respect to folate status and serum homocysteine levels in overweight/obese young women following energy restriction diets.

Folic acid: Young women: Overweight: Homocysteine

In September 1992, the US Public Health Service recommended that women of childbearing age who were capable of becoming pregnant should consume 400 μg/d folic acid to reduce the number of cases of neural tube defects (Public Health Service, Centers for Disease Control and Prevention, 1992). In 1998, the Food and Drug Administration (1998) required the fortification of enriched cereal grain products with folic acid, and manufacturers have voluntarily added more folic acid to many ready-to-eat breakfast cereals (Centers for Disease Control and Prevention, 2002). The result has been a considerable improvement in folate status in this population group, accompanied by an impressive reduction in the prevalence of neural tube defects (Centers for Disease Control and Prevention, 2002; Hertrampf et al. 2003; Dietrich et al. 2005; Pfeiffer et al. 2005). A secondary possible benefit of fortification might be a reduction in the risk of developing CVD (Boushey et al. 1995; Lee et al. 2003) and certain cancers (Dietrich et al. 2005).

A number of studies (Ortega et al. 1996a, 1999b, 2000; Navia et al. 2003) have shown that, for the Spanish population, the greatest distances between the observed and recommended intakes of foods correspond to vegetables (natural sources of folate) and cereals (important sources of folic acid). The consumption of foods fortified with folic acid is rare; extra folate is added to very few foods and the fortification of cereals with this vitamin is not obligatory. Women who are concerned about their weight have an additional problem; dieting periconceptionally in an effort to lose weight can lead to reductions in folate intake (Neumark-Sztainer et al. 2004). Similarly, obese women tend to consume fewer folate-containing fruits and vegetables (Serdula et al. 1996), and some authors (Tungtrongchitr et al. 2003; Mojtabai, 2004; Hirsch et al. 2005) have reported an inverse association between serum folate and BMI.

The results of previous studies (Ortega & André, 1998; Ortega et al. 1999a, 2005; Ortega & López-Sobaler, 2005) suggest that approximating the diet to the theoretical ideal by increasing the relative consumption of vegetables and cereals is nutritionally beneficial, and helps to achieve a hypocaloric diet that aids
weight control. An increased consumption of vegetables or fortified breakfast cereals might be of particular benefit to those who need to improve their folate status (Schorah & Wild, 1993; Hertrampf et al. 2003; Department of Nutrition, 2004a; Dietrich et al. 2005; Pfeiffer et al. 2005).

The aim of the present work was to determine the folate status of a group of overweight/obese young women and to analyse the changes produced by following two slightly hypocaloric diets, one rich in vegetables, the other rich in cereals, especially fortified breakfast cereals.

Materials and methods

Study subjects

The study subjects were sixty-seven women aged 20–35 years (mean 27.8 (sd 4.6) years). Most were university students.

The subjects were enrolled through a public offer to take part in a study on ‘The assessment of nutritional status and improvement of weight control’. The study was publicised using posters, radio announcements and via publications directed towards young, female university students.

Initially, all interested parties were interviewed by telephone to ensure that they met the inclusion criteria, which were: female sex, age 20–35 years, BMI 24–35 kg/m², not needing to improve their folate status (Schorah & Wild, 1993; Dieitchen et al. 1999b, 2000; Navia et al. 2003).

Diet C. With this diet, the weight control measures were based on restricting the consumption of energy-rich foods and increasing the consumption of cereals. Breakfast cereals and cereal bars were particularly recommended (a minimum of three times per day) since, apart from carbohydrate, they also provide fibre, minerals and vitamins (particularly folic acid: 250–300 μg/100 g). However, the subjects were also advised to eat other cereals, e.g. bread, rice and pasta etc.

Diet V. With this diet, the weight control measures were based on restricting the consumption of energy-rich foods and increasing the intake of vegetables (minimum three times per day).

Increasing the consumption of these foods may also be useful for improving folate status since vegetables are a natural source of folate and the breakfast cereal was enriched in this vitamin (Department of Nutrition, 2004b).

Compliance with dietary rules

Over the intervention period (a total of 6 weeks), the subjects attended a weekly appointment to record anthropometric data and to discuss (and solve) any difficulties in following the diet assigned.

Methods

The following data were collected from all subjects during the pre-intervention stage, and again at 2 and 6 weeks.

Physical activity. The subjects completed a questionnaire on their normal physical activity; this information was used to calculate their energy expenditure (Ortega et al. 2003b). Subjects indicated the length of time spent sleeping, eating, playing sport etc. during both working days and weekend days. An activity coefficient was established for each subject (World Health Organization, 1985; Ortega et al. 1996b). No overt attempt to increase the activity of the subjects was made, but all were encouraged to maintain moderate activity without introducing any great changes into their normal activity routines (the aim of the study was to analyse the effects of changes in food consumption, not exercise).

Anthropometric information. Weight and height were determined using a Seca Alpha digital electronic balance (range 0.1–150 kg) and a Harpenden digital stadiometer (range 70–205 cm), respectively. For both measurements, subjects were barefoot and wore only underwear. All data were collected at the Department of Nutrition by trained personnel following norms set out by the World Health Organization (1995). The BMI was calculated as weight (kg)/height² (m²).

Health variables. Information was collected on any disease problems, the consumption of medications, supplements and the consumption of manufactured diet foods. Tobacco use and alcohol consumption were also recorded (both are
known to affect folate status; Ortega et al. 2004b; Hirsch et al. 2005; Stark et al. 2005).

Dietetic study. A 3 d food diary was used to register all intakes (both at home and away) for 3 d, including a Sunday (Ortega et al. 2003c). Subjects were instructed to record the weights consumed if possible, and household measurements (spoonfuls, cups etc.) if not. The aim was to have as true a record as possible; subjects were asked to record all intakes, even though they broke the ‘rules’ of their diet.

The energy and nutrient contents of these foods were then calculated using food composition tables (Department of Nutrition, 2004a). The values obtained were compared to those of the recommended intake (RI) (Department of Nutrition, 2004b) to determine the adequacy of the diets. Special attention was paid to the intake of energy and folates. DIAT software (Alce Ingenierı́a, Madrid, Spain) was used to process all data (Ortega et al. 2004a).

Folate intake was recorded in the form of dietary folate equivalents (DFE), which takes into account the higher bioavailability of straight folic acid compared to food folate (DFE; 1 DFE = 1 µg food folate + 0·6 µg folic acid from fortified food) (Food and Nutrition Board and Institute of Medicine, 2000). Thus, the dietary data presented in the present study are in micrograms of total folate, the term ‘total folate’ referring to the combination of food folate and folic acid provided by fortified foods. Thus dietary folate (µg DFE) = µg food folate + (1·7 × µg folic acid added to or provided by fortified foods).

Blood biochemical analysis. Blood samples were taken from the cubital vein first thing in the morning (after a 12 h overnight fast) at the Department of Nutrition. Part of this blood was collected in tubes with no anticoagulant to allow the separation of serum. Samples were kept at −40°C until analysis.

Serum folate was determined by RIA (Lindenbaum, 1983) (CV 4·5%), and plasma homocysteine (tHcy) levels by polarized fluorescence immunoanalysis using an Imx Analyzer (Shipchandler & Moore, 1995) (CV 6·3%).

Statistical analysis

Means and standard deviations were calculated for all variables. ANOVA was used to analyse the changes in the different variables over time in each diet group. Weight losses at 2 and 6 weeks and the results for group C and V subjects were compared using the Student’s t test or the Mann–Whitney U test (if the distribution was not homogeneous). Linear correlation coefficients were calculated using the Pearson test. Analysis of covariance and multiple regression analysis were used where indicated. Comparisons between proportions were made using an approximation of the binomial distribution to the normal distribution, employing continuity correction. All calculations were made using RISIGMA BABEL Software (Horus Hardware, Madrid, Spain). Significance was set at \(P<0·05\).

Results

No initial significant differences were seen between V and C subjects with respect to tobacco use (10·4 (SD 6·4) cigarettes/d for V subjects and 11·4 (SD 6·7) for C subjects), or alcohol consumption (Table 1), nor were any modifications detected over the study period.

Some 11·1% of V subjects and 9·7% of C subjects (NS) declared taking supplements containing folic acid on a sporadic basis. Similarly, 41·7% of V subjects and 41·9% of C subjects (NS) declared taking breakfast cereals or other foods (dairy, juice) fortified with folic acid.

No significant differences were seen in the serum folate concentrations of those who had taken and those who had not taken supplements or fortified foods.

TABLE 1. Changes in anthropometric data, activity coefficient and food intake over the dietary intervention period

<table>
<thead>
<tr>
<th></th>
<th>Diet V (n=36)</th>
<th>Diet C (n=31)</th>
<th>Diet V (n=32)</th>
<th>Diet C (n=30)</th>
<th>Diet V (n=28)</th>
<th>Diet C (n=29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropometric data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>73·3 (7·7)</td>
<td>77·8 (10·9)</td>
<td>75·6 (10·6)</td>
<td>74·0 (10·9)</td>
<td>74·0 (10·9)</td>
<td>74·0 (10·9)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>161·8 (5·0)</td>
<td>164·8 (5·9)</td>
<td>164·4 (6·0)</td>
<td>164·6 (5·8)</td>
<td>164·6 (5·8)</td>
<td>164·6 (5·8)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28·0 (2·8)</td>
<td>28·6 (3·6)</td>
<td>27·4 (3·5)</td>
<td>27·3 (3·6)</td>
<td>27·3 (3·6)</td>
<td>27·3 (3·6)</td>
</tr>
<tr>
<td>Weight loss since start (kg)</td>
<td>0·9 (0·6)</td>
<td>1·5† (0·9)</td>
<td>1·5‡ (0·9)</td>
<td>2·0†† (1·3)</td>
<td>2·0†† (1·3)</td>
<td>2·0†† (1·3)</td>
</tr>
<tr>
<td>Physical activity level</td>
<td>1·5 (0·05)</td>
<td>1·5 (0·07)</td>
<td>1·5 (0·09)</td>
<td>1·5 (0·07)</td>
<td>1·5 (0·07)</td>
<td>1·5 (0·07)</td>
</tr>
<tr>
<td>Alcohol intake (% energy)</td>
<td>0·62 (1·28)</td>
<td>0·88 (1·48)</td>
<td>0·34 (0·99)</td>
<td>0·23 (0·83)</td>
<td>0·25 (0·53)</td>
<td>0·25 (0·53)</td>
</tr>
<tr>
<td>Consumption of food groups (servings/d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereals and pulses</td>
<td>3·9 (1·3)</td>
<td>4·1 (1·5)</td>
<td>3·2 (1·2)</td>
<td>4·9†† (0·9)</td>
<td>4·9†† (0·9)</td>
<td>4·9†† (0·9)</td>
</tr>
<tr>
<td>Greens and vegetables</td>
<td>2·8 (1·2)</td>
<td>3·0 (1·2)</td>
<td>3·9** (1·7)</td>
<td>3·9 (1·8)</td>
<td>3·9 (1·8)</td>
<td>3·9 (1·8)</td>
</tr>
<tr>
<td>Fruits</td>
<td>0·9 (0·7)</td>
<td>1·3 (1·0)</td>
<td>3·6** (1·5)</td>
<td>3·6** (1·3)</td>
<td>3·6** (1·3)</td>
<td>3·6** (1·3)</td>
</tr>
<tr>
<td>Milk products</td>
<td>1·7 (1·0)</td>
<td>2·1† (0·7)</td>
<td>1·8 (0·6)</td>
<td>1·9 (0·8)</td>
<td>1·9 (0·8)</td>
<td>1·9 (0·8)</td>
</tr>
<tr>
<td>Meat, fish and eggs</td>
<td>3·7 (1·6)</td>
<td>4·1 (1·6)</td>
<td>2·4** (1·1)</td>
<td>2·3** (1·1)</td>
<td>2·3** (1·1)</td>
<td>2·3** (1·1)</td>
</tr>
</tbody>
</table>

Diet C, increased consumption of breakfast cereals; Diet V, increased consumption of vegetables.

Mean values were significantly different from those of the pre-intervention group: *P<0·05; **P<0·01.

Mean values were significantly different from those of the 2-week group: †P<0·05; ††P<0·01; †††P<0·001.

§For details of procedures, see pp. 713–714.
During the intervention period, the consumption of cereals increased among C subjects and the consumption of vegetables increased among V subjects (both at 2 and 6 weeks). The intake of fruit increased in both groups at 2 and 6 weeks, while the consumption of meat, fish and eggs fell at 2 weeks in C subjects, and was lower at 6 weeks in both V and C subjects (Table 1).

Energy intake was reduced in both groups (Table 2), however, the weight loss of C subjects was significantly greater than that of V subjects at both 2 and 6 weeks (Table 1). This remained the case after adjusting for initial weight (covariance analysis). No changes in the activity coefficient were seen that might have contributed to this weight loss (Table 1).

Despite this reduction in energy intake, folate intake, folate density, the contribution of dietary folate to the coverage of the RI and the index of nutritional quality for folate increased in both V and C subjects, although more so in the latter. In addition, the percentage of women with folate intakes below the RI fell with both diets, but again, more so in C subjects (Table 2).

Significant increases in serum folate were only seen in C subjects (both at 2 and 6 weeks). The percentage of subjects with serum folate concentrations <14·9 nmol/l fell significantly in V subjects at 6 weeks and in C subjects at 2 and 6 weeks. Serum tHcy levels were significantly reduced in subjects (both at 2 and 6 weeks). The percentage of subjects (Table 2).

Discussion

The initial consumption of meat/fish/eggs was somewhat higher than that recommended, while that of cereals/pulses, vegetables/greens and fruit was lower (Ortega et al. 1999b; Federación de Industrias de Alimentos y Bebidas et al. 2004) (Table 1). The same situation has been reported in other studies (Ortega et al. 1996a; 2000, 2005; Navia et al. 2003). This justifies the following of diets C and V during the intervention period: these interventions approximate the diet to the theoretical ideal while providing a slightly hypocaloric energy intake and a greater intake of folate (Tables 1 and 2). The results obtained over the study period show that the goals set out during the planning period were attained (Tables 1 and 2), including a slight weight reduction (more obvious in C subjects) (Table 1). This agrees with the results of other studies (Ortega & López-Sobaler, 2005; Ortega et al. 2005).

The initial dietetic and anthropometric data (Tables 1 and 2) were similar to those obtained for other groups of overweight women (Ortega et al. 1996a; 2000; Navia et al. 2003). The initial blood analysis results were also similar to those recorded in other studies (Lee et al. 2003; Ortega et al. 2003a, 2004a; Tucker et al. 2004).

At the start of the intervention, the mean folate intake was far below the recommended 400 µg/d (Department of Nutrition, 2004b); 64·2 % of all subjects had a folate intake of <67 % of this RI (Table 2). This clearly inadequate intake (with respect to protection against congenital malformations, cancer and CVD) coincides with that reported in other studies (Ortega et al. 2004a; Stark et al. 2005), in which the difficulty of reaching an optimum intake without taking supplements or consuming fortified foods was discussed (Stark et al. 2005).

At the start of the study an association was seen between folate intake and serum folate concentrations (r 0·346), as reported by other authors (Stark et al. 2005). This is to be expected since serum folate is a very sensitive indicator of dietary folate intake (Food and Nutrition Board and Institute of Medicine, 2000). A correlation was also seen between folate intake and the number of rations of cereals (r 0·252) and vegetables (r 0·542) consumed.

During the intervention period, the increased consumption of breakfast cereals clearly increased the intake of folate (Table 2). This is in good agreement with the results of Schorah & Wild (1993). The latter authors monitored the effects of introducing folic acid-fortified foods to the diets of young women by measuring their total folate intakes between 1986 and 1988, a period during which breakfast cereal manufacturers in the UK began to fortify their products with folic acid. These authors estimated the total folate intake to be 43 % higher in consumers of fortified breakfast cereals than in non-consumers. Folate intake also increased in V subjects because of the folate content of the vegetables (Department of Nutrition, 2004b), although this increase was smaller than in the C subjects (Table 2).

Mandatory folic acid fortification of all enriched cereal-grain products in the USA (with the aim of increasing folate intake in women of childbearing age to reduce the incidence of neural tube defects) has been associated with significant increases in blood folate concentrations (Dietrich et al. 2005; Pfeiffer et al. 2005). For example, Dietrich et al. (2005) report the median serum folate concentration of women aged 15–44 years to have increased from 10·9 to 29·5 nmol/l from the time of the NHANES III study (reflecting the time prior to folate fortification) to that of the NHANES 1999–2000 study (reflecting the time period after mandatory fortification). The mean dietary total folate intake of the study population increased from 275 to 351 µg/d (Dietrich et al. 2005). In Chile, after the mandatory fortification of wheat flour with folic acid, which aimed to increase daily folate consumption by women of childbearing age by 400 µg/d, serum folate concentrations in a representative sample of the population increased from 9·7 (SD 4·3) to 37·2 (SD 9·5) nmol/l (Hertrampf et al. 2003).

The initial folate status of the subjects in the present study (Table 3) was better than that reported by Hertrampf et al. (2003) and Dietrich et al. (2005), but in agreement with these authors, a substantial improvement in folate status was seen in C subjects (Table 3).

With regard to the prevention of neural tube defects, Dietrich et al. (2005) also report that, as a consequence of the mandatory folic acid fortification of cereals, a larger percentage of women of childbearing age have attained the lower limit of the range of serum folate concentrations associated with very low risk for neural tube defects (±13·6 nmol/l; Sauberlich et al. 1974). In the present work, 62·1 % of women had serum folate concentrations of ±13·6 nmol/l at the start of the study, rising to 87·0 % (85·2 % of V subjects and 88·9 % of C subjects) at 6 weeks (P<0·001).

The influence of folate intake on serum folate concentrations was further reflected in that women who increased their folate intake by <200 µg/d (P90) at 6 weeks showed significantly smaller elevations of serum folate (3·04 (SD 15·7) nmol/l) compared to those who increased their intake by
Table 2. Changes in dietary data over the dietary intervention period§
(Mean values and standard deviations)

<table>
<thead>
<tr>
<th>Intake</th>
<th>Pre-intervention data</th>
<th>Results at 2 weeks</th>
<th>Results at 6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diet V (n 36)</td>
<td>Diet C (n 31)</td>
<td>Diet V (n 32)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Energy (kJ/d)</td>
<td>8788</td>
<td>2226</td>
<td>9913‡</td>
</tr>
<tr>
<td>Proteins (g/d)</td>
<td>80·5</td>
<td>21·3</td>
<td>119·9</td>
</tr>
<tr>
<td>Lipids (g/d)</td>
<td>104·2</td>
<td>33·3</td>
<td>135·9</td>
</tr>
<tr>
<td>Carbohydrates (g/d)</td>
<td>195·7</td>
<td>51·7</td>
<td>212·0</td>
</tr>
<tr>
<td>Vitamin B12 (µg/d)</td>
<td>6·4</td>
<td>4·5</td>
<td>6·3</td>
</tr>
<tr>
<td>Vitamin B6 (mg/d)</td>
<td>2·02</td>
<td>0·52</td>
<td>2·02‡</td>
</tr>
<tr>
<td>Folate (µg/d)</td>
<td>224·3</td>
<td>69·9</td>
<td>269·4†</td>
</tr>
<tr>
<td>Folate density (µg/MJ)</td>
<td>25·9</td>
<td>6·8</td>
<td>28·4</td>
</tr>
<tr>
<td>Coverage of RI (%)</td>
<td>56·1</td>
<td>17·5</td>
<td>67·4†</td>
</tr>
<tr>
<td>Folate intakes < RI (%)</td>
<td>97·2</td>
<td>90·5</td>
<td>75**</td>
</tr>
<tr>
<td>Folate intakes < 67% RI (%)</td>
<td>72·2</td>
<td>54·8</td>
<td>21·9</td>
</tr>
<tr>
<td>INQ</td>
<td>0·65</td>
<td>0·18</td>
<td>0·73</td>
</tr>
<tr>
<td>INQ < 1 (%)</td>
<td>94·4</td>
<td>83·9</td>
<td>21·9**</td>
</tr>
</tbody>
</table>

Diet C, increased consumption of breakfast cereals; Diet V, increased consumption of vegetables; INQ, index of nutritional quality (folate density (µg/MJ)/density recommended (µg/MJ)); RI, recommended intake.

Mean values were significantly different from those of the pre-intervention group: *P < 0·05; **P < 0·01; ***P < 0·001. Mean values were significantly different from those of the diet V group: †P < 0·05; ††P < 0·01; †††P < 0·001.

§ For details of procedures, see pp. 713–714.

Folate intake is presented in dietary folate equivalents: DFE = µg food folate + (1·7 × µg folic acid added to or provided by fortified foods).

Table 3. Changes in folate concentrations and homocysteine levels over the dietary intervention period§
(Mean values and standard deviations)

<table>
<thead>
<tr>
<th>Intake</th>
<th>Pre-intervention data</th>
<th>Results at 2 weeks</th>
<th>Results at 6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diet V (n 35)</td>
<td>Diet C (n 31)</td>
<td>Diet V (n 29)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Folate (nmol/l)</td>
<td>16·9</td>
<td>8·5</td>
<td>18·4</td>
</tr>
<tr>
<td>Subjects with folate <6-8nmol/l (%)</td>
<td>0</td>
<td>3·23</td>
<td>0</td>
</tr>
<tr>
<td>Subjects with folate <14-9nmol/l (%)</td>
<td>47·2</td>
<td>41·9</td>
<td>31·2</td>
</tr>
<tr>
<td>Homocysteine (µmol/l)</td>
<td>7·57</td>
<td>2·31</td>
<td>7·18</td>
</tr>
<tr>
<td>Subjects with homocysteine > 10-4 µmol/l (%)</td>
<td>5·6</td>
<td>3·2</td>
<td>5·6</td>
</tr>
</tbody>
</table>

Diet C, increased consumption of breakfast cereals; Diet V, increased consumption of vegetables.

Mean values were significantly different from those of the pre-intervention group: *P < 0·05; †P < 0·01; ††P < 0·001. Mean values were significantly different from those of the diet V group: ‡P < 0·05; ‡‡P < 0·01.‡‡‡P < 0·001.

§ For details of procedures, see pp. 713–714.
Changes in folate status by dietetic intervention

> 200 µg/d (14.8 (SD 14.3) mmol/l). At the end of the study, and for all subjects considered together, a relationship was found between serum folate and folate intake (r 0.369) and the number of rations of cereals consumed (r 0.401).

Folic acid is a strong predictor of total plasma tHcy levels (de Bree et al. 2001; Tungtrongchitr et al. 2003; Nurk et al. 2004; Tucker et al. 2004). de Bree et al. (2001) report that mean plasma tHcy concentrations in women with low (first quintile: 160 µg/d) and high (fifth quintile: 262 µg/d) folate intakes were 13.7 and 12.4 µmol/l, respectively. The same influence was seen in the present study, although the tHcy levels recorded were lower than those reported by de Bree et al. (2001) (the mean plasma tHcy concentrations in women with low (first quintile: 174 µg/d) and high (fifth quintile: 305 µg/d) folate intakes were 8.78 (SD 2.60) and 6.33 (SD 1.55) µmol/l, respectively; P < 0.01).

In agreement with Tungtrongchitr et al. (2003), a negative correlation was found between serum folate and tHcy for all subjects at the beginning of the study (r −0.429). In addition, an inverse relationship was seen between tHcy and folate intake (r −0.345) at this time-point. These correlations were maintained at 2 weeks (r −0.523 for that between tHcy and serum folate; r −0.346 for that between tHcy and folate intake). Also at the beginning of the study, the subjects with tHcy concentrations < P90 (7 µmol/l) had higher folate intakes (276.0 (SD 78.4) µg/d) than did subjects whose tHcy levels were ≥ P90 (214.8 (SD 62.3) µg/d).

The C diet reduced tHcy concentrations (Table 3). This could be partly due to the greater increase in folate intake and serum folate in subjects on this diet (Tables 2 and 3). Although vegetables are very rich in folate, the intake of V women was lower than that of C women and cooking may cause its thermal breakdown; it may also be eliminated with cooking water during straining (Melse-Boonstra et al. 2002). Thus, although the folate intake of V subjects increased, the serum concentrations of these subjects did not increase significantly; this might explain the difference seen in the tHcy levels of the V and C subjects. However, multiple regression analysis revealed no significant influence of the change in folate, vitamin B12, vitamin B6, or protein intake on tHcy levels.

The reduction in tHcy concentrations seen in group C (Table 3) coincides with that reported by Tucker et al. (2004). In a relatively healthy group of volunteers these authors observed that the consumption of one cup of fortified breakfast cereal per day significantly increased B vitamin concentrations and reduced tHcy levels.

The present results agree with those obtained in many studies which have shown dietary folate improves folate status and decreases tHcy levels (Lee et al. 2003; Skibinska et al. 2004). This is important since every 1 µmol/l decrease in tHcy may be associated with a 10% reduction in the risk of developing CVD (Boushey et al. 1995). Ubbink (2001) suggested that a tHcy concentration of ≤ 9 µmol/l would be desirable should the outcome of controlled clinical trials show that a lowering of plasma tHcy concentrations reduces the incidence of CVD. In the NHANES 1999–2000 study, 78% of the US population (72% of males and 85% of females) had plasma tHcy concentrations of ≤ 9 µmol/l (Pfeiffer et al. 2005). In the present study, 81.8% of subjects (83.9% of the C subjects) had serum tHcy concentrations of ≤ 9 µmol/l at the start of the study, rising to 100% for C subjects and 96.3% for V subjects at 6 weeks.

The results of the present study suggest that the folate status of the studied women could be improved. Bearing in mind the results of similar studies (Ortega et al. 2004a), the present results show the need for better education on the importance of an adequate supply of folate during a woman’s fertile period (Stark et al. 2005). Increasing the consumption of vegetables and fortified breakfast cereals would seem to approximate folate intake to the theoretical ideal. With respect to weight control, increasing the relative intake of vegetables or cereals would seem to be helpful; both hypocaloric diets brought food intake closer to the theoretical ideal, and are reasonable from a nutritional and health point of view (Ortega & López-Sobaler, 2005; Ortega et al. 2005). The weight lost by the subjects, the improvement in folate status and the fall in tHcy levels seen with the increase in the consumption of fortified breakfast cereals is of particular interest.

Acknowledgements

This work was financed by Kellogg España via the Universidad-Empresa project 362/2003.

References

Hertrampf E, Cortes F, Erickson JD, Cayazzo M, Freire W, Bailey LB, Howson C, Kauwell, GPA & Pfeiffer C (2003) Consumption of...

