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CLASSIFICATION OF �-CATEGORICAL MONADICALLY
STABLE STRUCTURES

BERTALAN BODOR

Abstract. A first-order structure A is called monadically stable iff every expansion of A by unary
predicates is stable. In this paper we give a classification of the class M of �-categorical monadically
stable structure in terms of their automorphism groups. We prove in turn that M is the smallest class
of structures which contains the one-element pure set, is closed under isomorphisms, and is closed under
taking finite disjoint unions, infinite copies, and finite index first-order reducts. Using our classification we
show that every structure in M is first-order interdefinable with a finitely bounded homogeneous structure.
We also prove that every structure inM has finitely many reducts up to interdefinability, thereby confirming
Thomas’ conjecture for the class M.

§1. Introduction. A first-order structure A is called monadically stable iff every
expansion of A by unary predicates is stable. We know that this property is
also equivalent to a property called tree-decomposability introduced in [3]. The
equivalence follows from the results of [3] and they are discussed in the introduction
in [34]. Further equivalent conditions for monadic stability are given in [34].

In this article we are interested in those monadically stable structures which are
�-categorical and countable. We denote the class of these structures by M. Lachlan
[34] gave a bottom-up description of the class M in terms of automorphism groups.
Namely he showed that a structure is contained inM if and only if its automorphism
group can be obtained from finite structures by a finite number of iterations of
certain combinatorial constructions, called �-stretches and loose unions. Another
interesting characterization of M is given by Braunfeld [22] in terms of orbit growth
on subsets, a countable �-categorical structure is monadically stable if and only if
it is stable and its orbit growth on subsets is slower than exponential (see Theorem
3.12 for the precise formulation).

In the present article we refine the description of automorphism groups of
structures in M given in [34] (Section 3). We define recursively a sequence of classes
of permutation groups H′

n : n ∈ � such that H′
n is exactly the class of automorphism

groups of those structures in M whose Morley rank are at most n. We know from
the results of [34] that every monadically stable structure has finite Morley rank.
This implies the following.
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2 BERTALAN BODOR

Theorem 1.1. A countable structureA is monadically stable if and only if Aut(A) ∈
H′ :=

⋃∞
n=0 H′

n.

The main difference between our description and the one given in [34] is that in
our description the groups in H′

n have an explicit definition using the groups in H′
n–1.

We also show that H′ is the smallest class of permutation groups which contains
all finite domain permutation groups, is closed under isomorphism, and is closed
under taking finite direct products, wreath products with Sym(�), and finite index
supergroups. This result also gives rise to a rather simple description of the class M
without any mention of automorphism groups.

Theorem 1.2. M is the smallest class of structures which contains the one-element
pure set, is closed under isomorphism, and is closed under taking finite disjoint unions,
infinite copies, and finite index first-order reducts.

1.1. Finite homogenizability and finite boundedness. A structure A is called
homogeneous if every homomorphism between finitely generated substructures of A
can be extended to an automorphism ofA. A structure is called finitely homogenizable
if it is first-order interdefinable with a homogeneous structure with a finite relational
signature. In [34] Lachlan showed that all structures inM are finitely homogenizable.

In the study of finitely homogeneous structures we are particularly interested in
the ones which are finitely bounded, i.e., the ones whose finite substructures can be
described by finitely many forbidden substructures. The precise definition can be
found in Section 2.7. Lachlan [34] showed that every �-categorical monadically
stable structure is finitely homogenizable. On the other hand, by the results of
[32] we know that every stable homogeneous structure is finitely bounded. This
implies that every structure in M is first-order interdefinable with a finitely bounded
homogeneous structure (Theorem 4.9). In Section 4 we give a direct and more
elementary proof of this statement using our classification.

1.2. Connection to CSPs. Let B be a structure with a finite relational signature.
Then the Constraint Satisfaction Problem (CSP) over B, denoted by CSP(B), is
the computational problem of deciding whether a given finite structure A with the
same signature as B has a homomorphism to B. Using concepts and techniques
from universal algebra, Bulatov and Zhuk proved that for finite structures B the
computational complexity of CSP(B) satisfies a dichotomy: it is either in P or it
is NP-complete [24, 39]. The universal algebraic approach for CSPs can also be
generalized for countable�-categorical structures. However as opposed to the finite
domain case one cannot expect such a CSP dichotomy for �-categorical structures
since in general we do not even know whether CSP(B) is in NP. In fact we know
that CSP(B) may be undecidable even for homogeneous structures with a finite
relational signature (see for instance [17]). One way to guarantee that CSP(B) is at
least in NP is to assume that B is homogeneous and finitely bounded, or a reduct
of such a structure. This motivates the following complexity dichotomy conjecture,
originally presented in [20].

Conjecture 1.3 (Infinite domain CSP dichotomy conjecture). Let A be a
countable finitely bounded homogeneous structure, and let B be a first-order reduct

https://doi.org/10.1017/jsl.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.66


CLASSIFICATION OF �-CATEGORICAL MONADICALLY STABLE STRUCTURES 3

of A with a finite relational signature. Then the CSP(B) is either in P or it is
NP-complete.

The conjecture above has been solved for many classes of structures, such as the
first-order reducts of:

• the pure set (N; =) [14],
• the universal linear order (Q;<) [15],
• the random graph [18],
• the random poset [33],
• unary �-categorical structures [16],

and all expansions of the homogeneous RCC5-structure by first-order definable
relations [10]. (RCC5-structures arise in the formalism of spatial reasoning,
introduced in [5].)

Theorem 4.9 implies that all structures in M fall into the scope of the conjecture
above. We mention one more property of the class M which makes it a good
candidate for a CSP dichotomy result, namely that it is closed under taking model-
complete cores. A countable �-categorical structure is called a model-complete core
if the closure of its automorphism group is the same as its endomorphism monoid.
Two structures are called homomorphically equivalent if there exist homomorphisms
between them in both directions. Clearly, if two structures are homomorphically
equivalent then they have the same CSP. We know that every�-categorical structure
B is homomorphically equivalent to an (up to isomorphism unique) model-
complete core C [6]. Moreover the structure C is also �-categorical, and it is called
the model-complete core of B. As we argued above, every countable �-categorical
structures has the same CSP as its model-complete core. Moreover some of the
universal algebraic techniques only work under the assumption that the domain
structure is a model-complete core. Thus in the analysis of CSPs we usually prefer
to work with the model-complete cores of structures. This reduction is a key step
in the solution of all the dichotomy results mentioned above. For this reason when
formulating a CSP dichotomy for a class C of �-categorical structures it is useful to
have a class C which is closed under taking model-complete cores. This property is
satisfied by M for simple orbit growth reasons (see Section 3).

For more details on infinite domain CSPs we refer the reader to [4], [7], or [9].

1.3. Thomas’ conjecture. In [37] Thomas made the conjecture that a countable
homogeneous structure over a finite relational signature has only finitely many
reducts up to first-order interdefinability. The conjecture has been verified for
many well-known homogeneous structures. The list includes the rationals with the
usual ordering [25], the countably infinite random graph [37], the homogeneous
universal Kn-free graphs [38], the expansion of (Q;<) by a constant [31], the
universal homogeneous partial order [35], the random ordered graph [19], and
many more [1, 2, 12, 13]. Note that if we drop the assumption that the signature
of the homogeneous structure A is relational, then Thomas’ conjecture is false even
if we keep the assumption that A is �-categorical: already the countable atomless
Boolean algebra has infinitely many first-order reducts [21].

Even though Thomas’ conjecture has been verified for several individual
structures, there does not seem to be much progress towards proving it in its full

https://doi.org/10.1017/jsl.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.66


4 BERTALAN BODOR

generality. In a recent paper [11] the authors showed that Thomas’ conjecture holds
for all cellular structures. In this article we further generalize this result by showing
that Thomas’ conjecture also holds for the entire class M (Theorem 5.11). Finally,
we mention a recent result by Simon [36] where he showed that Thomas’ conjecture
holds for another robust class of structures, namely the class of �-categorical
primitive NIP structures with thorn rank 1. This class contains for instance all the
generalized random permutation i.e., the Fraı̈ssé limit (M ;<1, ... , <n) of all finite
structures equipped with n linear orders.

§2. Preliminaries.

2.1. Permutation groups. For a group G we writeH ≤ G if H is a subgroup of G
andH�G if H is a normal subgroup of G. IfH ≤ G then we write |G : H | for the
index of H in G. For a set X we write id(X ) for the identity map on X. Sometimes
we drop the set X from the notation if it is clear from the context.

We say that a group G is a permutation group if G is a subgroup of Sym(X ) for
some X. Note that whenever G is a permutation group then the set X witnessing this
fact is unique (it is the domain of the identity element). We call this set the domain
of G, and we denote it by Dom(G).

If G ⊂ Sym(X ) is a permutation group, and e : X → Y is any injective function,
then the map defined as �(e) : � �→ e�e–1 is a homomorphism from G to Sym(e(X )),
and is referred to as the homomorphism induced by e.

Two permutation groups G and H are called isomorphic as permutation groups
if there is a bijection e : Dom(G) → Dom(H ) such that the homomorphism �(e)
induced by e is an isomorphism between G and H. Note that this condition is strictly
stronger than saying that G and H are isomorphic as groups. For instance the trivial
permutation groups {id(X )} are isomorphic for every set X as groups, but {id(X )}
and {id(Y )} are isomorphic as permutation groups only if |X | = |Y |. All the groups
in this article will be permutation groups, and when we say that two permutation
groups are isomorphic we always mean that they are isomorphic as permutation
groups.

Assume that G is a permutation group, and Y ⊂ Dom(G). Then we use the
following notation.

• GY denotes the pointwise stabilizer of Y, that is, GY = {g ∈ G : ∀y ∈
Y (g(y) = y)}.

• G{Y} denotes the setwise stabilizer of Y, that is, G{Y} = {g ∈ G : ∀y ∈
Y (g(y) ∈ Y )}.

• G |Y denotes the restriction of G to Y, that is, G |Y = {h|Y : h ∈ G}, provided
that Y is invariant under G.

• G(Y ) := G{Y}|Y = G{Dom(G)\Y}|Y .
• G((Y )) := GDom(G)\Y |Y .

Whenever the set Y is finite, say Y = {y1, ... , yn}, we simply write Gy1,...,yn for
GY .

If E is an equivalence relation defined on a set X then we denote by X/E the
quotient set of X with respect to E, and for any x ∈ X we write [x]E for its
equivalence class with respect to E. Then by definition (x, y) ∈ E iff [x]E = [y]E .
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An equivalence relation E defined on Dom(G) for some permutation group G is
called a congruence of G if and only if E is preserved by every permutation in G. In
this case there is a natural map G → Sym(Dom(G)/E) that maps g �→ g/E, where
g/E([x]E) = [g(x)]E . We define G/E as {g/E : g ∈ G}.

2.2. Topology. Every permutation group is naturally equipped with a topology,
called the topology of pointwise convergence. This topology can be defined as the
subspace topology of the product space XX where X is equipped with the discrete
topology. A sequence (gn)n in G converges to a permutation g ∈ Sym(X ) with
respect to this topology if and only if for all finite subsets F of X there exists an n
such that gi |F = g|F for all i ≥ n.

We say that a permutation group G ≤ Sym(X ) is closed if it is closed in the
topology of pointwise convergence. Equivalently,G ≤ Sym(X ) is closed if and only
if it satisfies the following property: for all g ∈ Sym(X ), if for every finite F ⊂ X
there exists g ′ ∈ G such that g ′|F = g|F then g ∈ G .

2.3. Orbit growth functions, oligomorphic groups. There are three natural
sequences counting orbits attached to a permutation group introduced and discussed
in general in [26, 27].

Definition 2.1. LetG ≤ Sym(X ) be a permutation group, and let n be a positive
integer. Then:

• on(G) denotes the number of n-orbits of G, i.e., the number of orbits of the
natural action G � Xn.

• osn(G) denotes the number of orbits of n-subsets of G, i.e., the number of orbits
of the natural action G �

(X
n

)
= {Y ⊂ X : |Y | = n}.

A permutation group is called oligomorphic if and only if on(G) is finite for all n.

Remark 2.2. It follows easily from the definitions that for any permutation group
G the following inequalities hold: osn(G) ≤ oin(G) ≤ on(G) ≤ n! osn(G). Therefore
the following are equivalent:

• G is oligomorphic.
• oin(G) is finite for all n.
• osn(G) is finite for all n.

We often use the following easy observation.

Observation 2.3. IfG ≤ H are permutation groups, thenfn(H ) ≤ fn(G) where f
is any of the operators o, oi , or os . In particular every group containing an oligomorphic
group is oligomorphic.

2.4. Direct products. Let {Xi : i ∈ I } be a set of pairwise disjoint sets, and for
each i ∈ I let Gi be a permutation group acting on Xi . Then we define the direct
product of the permutation groups Gi , denoted by

∏
i∈I Gi , to be the set of all

permutations of X :=
⋃
{Xi : i ∈ I } which can be written as

⋃
{f(i) : i ∈ I }, for

somef : I →
∏
i∈I Gi that satisfiesf(i) ∈ Gi for all i ∈ I . Then

∏
i∈I Gi as a group

is also the usual direct product of the groups Gi : i ∈ I .
LetG ≤ Sym(X ) be a permutation group and let I be any set. Then we define the

power GI to be
∏
i∈I Gs , where Gi := {(g, i) : g ∈ G} and (g, i)(g ′, i) = (gg ′, i).
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6 BERTALAN BODOR

This makes sense since the sets Dom(Gi) = X × {i} : i ∈ I are pairwise disjoint.
Then Dom(GI ) = X × I , and since all Gi are isomorphic to G it follows that GI is
isomorphic to the power G |I | as a group.

It follows easily from the definition that any direct product of closed groups is
again closed. This also means that any power of a closed group is closed.

It is easy to see that every n-orbit of a direct productG :=
∏
i∈I Gi can be written

as the union of ni -orbits of Gi for some sequence of natural numbers (ni)i∈I with∑
i∈I ni = n. This implies that if I is finite then the number of n-orbits of G is at

most
(|I |
n

)
Mn where M is the maximum of on(Gi) with i ∈ I . In particular if on(Gi)

is finite for all i ∈ I and I is finite then on(G) is also finite. Thus any finite direct
product of oligomorphic groups is again oligomorphic.

2.5. Wreath products. Let G ≤ Sym(X ) and H ≤ Sym(Y ) be permutation
groups. Then we define the wreath product of the groups G and H, denoted byG 	H ,
as follows. The domain set of G 	H is X × Y and a permutation � ∈ Sym(X × Y )
is contained in G 	H if and only if there exist � ∈ H and, for all y ∈ Y , αy ∈ G
such that, for all x ∈ X and y ∈ Y we have �(x, y) = (αy(x), �(y)). Note that � is
unique given�, and we denote it by	(�). Then the map� �→ 	(�) defines a surjective
homomorphism from G 	H to H, and the kernel of this homomorphism is exactly
GY. Moreover the map e : � �→ ((x, y) �→ (x, �(y)) splits the homomorphism 	,
that is 	 ◦ e is the identity map on H. This implies that G 	H can be written as a
semidirect product GY �H (or more precisely GY � e(H )).

In this document we are only interested in the case when the group H above is the
full symmetric group.

Lemma 2.4. Let G ≤ Sym(X ) be a permutation group, and let Y be a set. Then:

(1) if G is closed then so is G 	 Sym(Y ), and
(2) if G is oligomorphic then so is G 	 Sym(Y ).

Proof. (1) A permutation � of X × Y is contained in Sym(X ) 	 Sym(Y ) if
and only if it preserves the equivalence relation E := {((x1, y1), (x2, y2)) : y1 = y2}.
This implies immediately that the group Sym(X ) 	 Sym(Y ) is closed. Now let
(�n)n be a sequence in G 	 Sym(Y ) converging to a permutation � ∈ Sym(X × Y ).
Then there exist �n ∈ Sym(Y ), αy,n ∈ G such that for all x ∈ X and y ∈ Y we
have �n(x, y) = (αy,n(x), �n(y)). Since Sym(X ) 	 Sym(Y ) is closed we know that
� ∈ Sym(X ) 	 Sym(Y ), and thus there exist � ∈ Sym(Y ) and αy ∈ Sym(X ) such
that for all x ∈ X and y ∈ Y we have �(x, y) = (αy(x), �(y)). We claim that the
sequence (αn,y)n converges to αy for all y ∈ Y . Indeed let F be an arbitrary finite
subset of X. Then since (�n)n → � it follows that we can choose an index n ∈ � such
that for all i ≥ nwe have�|F×{y} = (gi)|F×{y} for ally ∈ Y , and thusαi,y |F = αy |F .
We have shown that (αn,y)n converges to αy , and thus αy ∈ G since G is closed. This
shows that � ∈ G 	 Sym(Y ).

(2) Let n ∈ �, and let Z be any n-element subset of Y. Note that in this case every
n-orbit of G 	 Sym(Y ) contains a tuple in X × Z. Indeed, if �a ∈ (X × Y )n then
�a ∈ (X × Z ′)n for some Z ′ ⊂ Y with |Z ′| ≤ n. Let � ∈ Sym(Y ) such that �(Z ′) ⊂
Z. Then the map (x, y) �→ (x, �(y)), which is contained in {id(X )} 	 Sym(Y ),
maps �a into (X × Z)n. Let us also observe that (G 	 Sym(Y ))(Z) = G 	 Sym(Z). In
particular two n-tuples from X × Z are contained in the same orbit of G 	 Sym(Z)
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if and only if they are contained in the same orbit of G 	 Sym(Y ). From this
it follows that on(G 	 Sym(Y )) = on(G 	 Sym(Z)). We have already seen that the
group GZ is oligomorphic. On the other hand G 	 Sym(Z) contains GZ , and
thus by Observation 2.3 it follows that G 	 Sym(Z) is oligomorphic. In particular
on(G 	 Sym(Z)) = on(G 	 Sym(Z)) is finite. Since this holds for all n ∈ � it follows
that G 	 Sym(Y ) is oligomorphic. �

2.6. Reducts of�-categorical structures. In this article every structure is assumed
to be countable.

Notation 2.5. For a structure A we denote by Σ(A) the signature of A.

We say that a structure is relational if its signature does not contain any function
symbols.

Notation 2.6. Let A be a relational structure. Then for a relation R on A we write
ar(R) for the arity of R. We denote bym(A) the maximal arity of relations of A.m(A)
is defined to be ∞ if such a maximum does not exist.

Remark 2.7. In this article we always assume that the signature of any structure
contains the symbol “=” (represented as equality). This means that the value of
m(A) is always at least 2.

Definition 2.8. Let A and B be structures. We say that B is a reduct of A iff
Dom(A) = Dom(B) and every relation, function, and constant of B is first-order
definable in A. Two structures are called interdefinable if they are reducts of one
another.

The structures A and B are called bidefinable iff there exist a reduct A′ of A with
Σ(A′) = Σ(B), a reduct B′ of B with Σ(B′) = Σ(A), and a bijection i from A to B
such that i defines an isomorphism from A to B′ and from A′ to B.

We say that B is a finite-index reduct of A iff |Aut(B) : Aut(A)| is finite.

Lemma 2.9. The structures A and B are bidefinable if and only if B is interdefinable
with a structure which is isomorphic to A.

Proof. Let us assume that A and B are bidefinable, and let B′ and A′ be
structures and let i : A→ B be a bijection witnessing this. Then by definition A

and B′ are isomorphic, and we claim that B and B′ are interdefinable. To see this,
it suffices to show that B is a reduct of B′. But this follows from the fact that A′ is
a reduct of A, and i defines an isomorphism from A′ to B and from A to B′. This
finishes the proof of the “only if” direction of the lemma.

Now let us assume thatB andB′ are interdefinable, andB′ andA are isomorphic.
Let i be an isomorphism from A to B′. Let us define the structure A′ as follows. The
domain set of A′ is A, Σ(A′) = Σ(B), and every symbol in Σ(B) is realized in A′ in
such a way that i defines an isomorphism from A′ to B. By definition B′ is a reduct
of B. It remains to show that A′ is also a reduct of A. By definition B is also a reduct
of B′. Since i–1 defines an isomorphism from B′ to A and from B to A′, we obtain
that i–1(B) = A′ is a reduct of i–1(B′) = A. Thus A and B are bidefinable. �

From now on we use the description given in Lemma 2.9 for bidefinability instead
of its definition. The reason why we did not define bidefinability this way is that
from this description it is not obvious that bidefinability is a symmetric relation.
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8 BERTALAN BODOR

Remark 2.10. Clearly interdefinability implies bidefinability, but the converse
implication does not hold necessarily even if the structures are assumed to have the
same domain set. For instance the structures (N; =, 0) and (N; =, 1) are bidefinable
but not interdefinable.

When we are talking about reducts of a given structure A we usually consider two
reducts the same if they are interdefinable. It turns out that under the assumption
that A is �-categorical the reducts of A are completely described by the closed
supergroups of the automorphism of A (see Theorem 2.13).

Definition 2.11. A countable structure A is called �-categorical if and only if it
is isomorphic to every countable model of its first-order theory.

By the theorem of Engeler, Ryll-Nardzewski, and Svenonius, we know that a
countably structure A is �-categorical if and only if Aut(A) is oligomorphic (see for
instance [29]). Given a structure A we use the notation fn(A) for fn(Aut(A)) where
n is a positive integer and f is any of the operators o, oi , or os (see Definition 2.1).
Then Observation 2.3 has the following analog for structures and reducts.

Lemma 2.12. Let B be a reduct of a structure A. Then fn(B) ≤ fn(A) where f is
any of the operators o, oi , or os . In particular every reduct of an�-categorical structure
is �-categorical.

We also know that for an �-categorical structure A a relation (or a function or a
constant) defined on A is first-order definable if and only if it is preserved by every
automorphism of A (see [29]). This implies the following theorem.

Theorem 2.13. Let A be a countable �-categorical structure. Then every closed
group Aut(A) ⊂ G ⊂ Sym(A) is an automorphism group of a reduct of A, and two
reducts of A have the same automorphism group if and only if they are interdefinable.

Theorem 2.13 tells us that given a countable �-categorical structure A the map
B �→ Aut(B) defines a bijection between the reducts of A (up to interdefinability),
and the closed supergroups of Aut(A), that is the closed permutation groups
containing Aut(A).

An easy consequence of Theorem 2.13 is the following.

Lemma 2.14. Let A and B be countable structures, so that at least one of them is
�-categorical. Then A and B are bidefinable if and only if Aut(A) and Aut(B) are
isomorphic as permutation groups.

Proof. We can assume without loss of generality that A is �-categorical.
Suppose first that A and B are bidefinable. Then by Lemma 2.9 we know that B

is interdefinable with some structure B′ which is isomorphic to A. Then Aut(B) =
Aut(B′) and it is isomorphic to Aut(A).

For the other direction let i be a bijection from A to B such that i induces an
isomorphism from Aut(A) to Aut(B). Let A′ := i–1(B). Then we have Aut(A′) =
�(i–1) Aut(B) = �(i–1)(�(i)(Aut(A))) = Aut(A). Theorem 2.13 then implies that A
and A′ are interdefinable. On the other hand it follows from the definition that A′ is
isomorphic toB. Therefore by Lemma 2.9 the structuresA andB are bidefinable. �

https://doi.org/10.1017/jsl.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.66


CLASSIFICATION OF �-CATEGORICAL MONADICALLY STABLE STRUCTURES 9

Lemma 2.14, combined with Theorem 2.13 implies that for a countable �-
categorical structure the map B �→ Aut(B) defines a bijection between the reducts
of A up to bidefinability, and the closed supergroups of Aut(A) up to isomorphism.

2.7. Homogeneous structures, Thomas’ conjecture.

Definition 2.15. A structure A is called homogeneous if every isomorphism
between finitely generated substructures of A can be extended to an automorphism
of A.

Fact 2.16. Every homogeneous structure with a finite relational signature is
�-categorical.

Proof. Let A be a homogeneous structure with a finite relational signature 
.
We show that Aut(A) is oligomorphic. Since 
 is finite, and only contains relational
and constant symbols, it follows that every finitely generated substructure is finite.
Then using the finiteness of 
 again it follows that for all n ∈ � there exist only
finitely many 
-structures up to isomorphism. In particular A has finitely many
quantifier-free types. It follows from the homogeneity of A that if two n-tuples have
the same quantifier-free type then they are in the same orbit of Aut(A). This implies
that on(A) is finite. Therefore Aut(A) is oligomorphic. �

Thomas [37] conjectured that every homogeneous structure A with a finite
relational signature has only finitely many reducts up to interdefinability.

The fact that a given �-categorical structure has finitely many reducts can be
formulated in many different ways, as the following proposition shows.

Proposition 2.17. LetA be a countable�-categorical structure. Then the following
are equivalent:

(1) A has finitely many reducts up to interdefinability.
(2) A has finitely many reducts up to bidefinability.
(3) There exists some N ∈ � such that every reduct of A is interdefinable with a

relational structure B with m(B) ≤ N .
(4) Aut(A) has finitely many closed supergroups in Sym(A).
(5) Aut(A) has finitely many closed non-isomorphic supergroups in Sym(A).

Proof. The equivalence of items (1) and (2) is Proposition 6.36 in [11]. For the
direction (1)→(3) we only need to show that item (1) implies that every reduct of A
is interdefinable with a structure with a finite relational signature. This follows for
instance from Lemma 6.35 in [11].

In order to show the implication (3)→(1) it is enough to show that A has
finitely many reducts B with m(B) ≤ N up to interdefinability. Let R be a
relation of B with arity at most N. Then R is interdefinable with the relation
{(x1, ... , xN ) : (x1, ... , xar(R)) ∈ R}. Therefore we can assume without loss of
generality that every relation of B is N-ary. Since B is a reduct of A it follows
that every N-ary relation of B is a union of some orbits of A. Therefore there are
at most 2oN (A) many possible choices for an N-ary relation of B, and hence there

are at most 22oN (A)
many choices for reducts B of A with m(B) ≤ N . Since A is

�-categorical we know that oN (A) is finite, and hence 22oN (A)
is also finite.
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10 BERTALAN BODOR

The equivalences (1)↔(4) and (2)↔(5) follow from Theorem 2.13 and Lemma
2.14. �

Definition 2.18. We call a structure finitely homogenizable if it is interdefinable
with a homogeneous structure with a finite relational signature.

We denote by FH the class of finitely homogenizable structures.

Clearly the class FH is closed under bidefinability, and by Fact 2.16 we know that
every structure in FH is �-categorical. Thus it follows from Lemma 2.14 that the
structures in FH can fully be described in terms of their automorphisms groups.
We give a concrete such description below, as well as other equivalent conditions to
check whether a structure is contained in the class FH. We first need a couple of
notations.

Notation 2.19. For a tuple �a ∈ Xn we denote by ai the ith coordinate of �a. For a
function 	 : k → n we denote by �a	 the tuple (a	(0), ... , a	(k–1)).

Notation 2.20. Let A be a relational structure, and let m ∈ �. Then we denote
by Δm(A) the structure whose domain is A, and whose relations are all subsets of Am

which are definable in A.

It is clear from the definition that if m′ ≤ m then every m′-ary relation of A

is quantifier-free definable in Δm(A), that is Δm′(A) is a quantifier-free reduct of
Δm(A).

If A is �-categorical then every type over A is principal, and thus in this case
Δm(A) is a first-order reduct of A for all m ∈ �.

For a structure A and tuples �u, �v ∈ An we write �u ≈A �v iff �u and �v have the same
type over A, and we write �u �≈A �v iff �u ≈A �v does not hold. In the case when A is
�-categorical �u ≈A �v holds if and only if �u and �v are in the same orbit of Aut(A).

Lemma 2.21. LetA be an�-categorical structure, and letm ≥ 2. Then the following
are equivalent:

(1) A is interdefinable with a homogeneous relational signature structure A′ with
m(A′) ≤ m.

(2) A is interdefinable with a homogeneous relational signature structure all of
whose relations have arity exactly m.

(3) A and Δm(A) are interdefinable, and Δm(A) is homogeneous.
(4) For all �u, �v ∈ An if �u �≈A �v then there exists a function 	 : m → n such that

�u	 �≈A �v	.
Proof. The implication (2)→(1) is obvious. The converse follows from the fact

that if m′ ≤ m then every m′-ary relation of A′ is quantifier-free definable from an
m-ary relation of A′.

The implication (3)→(2) is obvious. For the converse implication let us assume
that item (2) holds, and let A′ be a structure as it is dictated in the condition. Then
Δm(A) = Δm(A′). Since A, and thus also A′ is �-categorical it follows that every
definable relation of A′ of arity m is a finite union of some m-orbits of A′. Therefore
A′ is quantifier-free definable in Δm(A′). Since Δm(A′) is reduct of A′ and A′ is
homogeneous it follows that Δm(A′) is also quantifier-free definable in A′. Therefore
Δm(A′) is interdefinable with A, and it is homogeneous.
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(3)→(4). Let us assume that condition (3) holds. We can assume without loss of
generality that A = Δm(A). We show the contrapositive of the statement in item (4).
Let us assume that for all 	 : m → n we have �u	 ≈A �v	. Then by definition we have
R(�u	) ⇔ R(�v	) for all 	 : m → n and for all relations R of A with arity m. Since
A = Δm(A) we know that the arity of every relation of A is exactly m. This means
that the tuples �u and �v have the same atomic type over A. Since A is homogeneous,
it has quantifier elimination, and hence �u and �v have the same type over A.

(4)→(3). We show the contrapositive. Let us assume that item (3) does not hold.
This means that A has a relation R which is not quantifier-free definable over Δm(A).
Then there exist tuples �u ∈ R, �v ∈ R̄ such that for every relation S of Δm(A), and
	 : m → n we have �u	 ∈ S if and only if �v	 ∈ S. By definition this implies that for
all 	 : m → n the tuples �u	 and �v	 have the same type over A. Thus the tuples �u and
�v witness that Condition (4) fails. �

The following is a direct consequence of Lemma 2.21.

Corollary 2.22. Let A be an �-categorical structure. Then the following are
equivalent:

(1) A ∈ FH.
(2) A is interdefinable with Δm(A) for some m.
(3) There exists an m ∈ � such that for all �u, �v ∈ An if �u �≈A �v then there exists a

function 	 : m → n such that �u	 �≈A �v	.

2.8. Finite boundedness. In the study of homogeneous structures with a finite
relational signature we are particularly interested in the ones which are also finitely
bounded.

Definition 2.23. Let 
 be a relational signature, and let C be a set of finite 
-
structures. Then we denote by Forb(C) the class of those finite 
-structures which
do not embed any structure from C.

For a relational structure A we call the class of finite structures which embed into
A the age of A, and we denote this class by Age(A).

A relational structureA is called finitely bounded if its signature 
 := Σ(A) is finite,
and there is finite set C of 
-structures such that Age(A) = Forb(C).

Next we give a couple of equivalent conditions for a homogeneous structure with
a finite relational signature to be finitely bounded which we will need later.

Notation 2.24. Let C be a class of finite 
-structures. Then:

• We denote by Cc the class of those finite 
-structures which are not in C.
• We denote by Min(C) the class of minimal structures in C, i.e., the class of those

structures in C which do not have a proper substructure which is also in C.

Lemma 2.25. Let A be a structure with a finite relational signature 
. Then the
following are equivalent:

(1) A is finitely bounded.
(2) Min(Age(A)c) contains finitely many structures up to isomorphism.
(3) There exists some m such that the size of every structure in Min(Age(A)c) is at

most m.
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12 BERTALAN BODOR

Proof. The equivalence of conditions (2) and (3) is clear since 
 is finite.
(2)→(1). Let F be a finite subset of Min(Age(A)c) so that every structure in

Min(Age(A)c) is represented inF . We claim that Age(A) = Forb(F). Let us suppose
that B is a finite 
-structure not contained in Forb(F). Then B has a substructure
B′ which is isomorphic to some structure in F . In particular B′ �∈ Age(A). Since
Age(A) is closed under taking substructures it follows that B �∈ Age(A). For the
other direction let us assume thatB �∈ Age(A). ThenB contains a minimal structure
with this property, say B′. Then by definition B′ is isomorphic to some structure in
C ∈ F , and hence C embeds into B, that is B �∈ Forb(F).

(1)→(3). Let us assume that Age(A) = Forb(F) for some finite set F of 
-
structures, and let m be the maximum of the sizes of structures in F . Let
B ∈ Min(Age(A)c). Since B �∈ Age(A) = Forb(F) it follows B has a substructure
B′ which is isomorphic to some C ∈ F . But in this case B′ is also not in Age(A).
Then the minimality of B implies that in fact B = B′, and hence |B| ≤ m. �

Notation 2.26. For a structure A we denote by b(A) the maximum of m(A) (see
Notation 2.6) and the maximum of sizes of structures in Min(Age(A)c). b(A) is defined
to be ∞ if such a maximum does not exist.

Lemma 2.25 shows that if A is homogeneous then it is finitely bounded if and
only if b(A) is finite.

Notation 2.27. We denote by FBH the class of those structures which are
interdefinable with a finitely bounded homogeneous relational structure.

We can argue the same way as in the previous section that the structures in
FBH can be described in terms of their automorphisms. In this case, however, we
do not know of any nice such description. Nevertheless we know that the class
{Aut(A) : A ∈ FBH} is closed under taking finite direct products, infinite copies,
and rather surprisingly (as we will see in Section 4) it is also closed under taking
finite index supergroups.

2.9. Unions and copies of structures. Let us consider the following two construc-
tions on structures.

Definition 2.28. Let A1, ... ,An be relational structures with pairwise disjoint
domains.

Then we define the disjoint union B of the structures A1, ... ,An, denoted by⊎n
i=1 Ai such that:

• the domain set of B is
⋃n
i=1Ai ,

• its signature is
⋃n
i=1 Σ(Ai ) together with some pairwise different unary symbols

U1, ... , Un �∈
⋃n
i=1 Σ(Ai ),

• UB
i = Ai for all 1 ≤ i ≤ n, and

• RB = RAi for all R ∈ Σ(Ai ).

Definition 2.29. Let A be a relational structure. Then we define the structure
A 	 �, called infinitely many copies of A, as follows.

• The domain set of A 	 � is A× �.
• Its signature is Σ(A) ∪ {E} where E is a binary relational symbol not contained

in Σ(A).
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• EA�� = {((a1, n), (a2, n)) : a1, a2 ∈ A, n ∈ �}.
• RA�� = {((a1, n), ... , (ak, n)) : (a1, ... , ak) ∈ RA, n ∈ �} for all R ∈ Σ(A) of

arity k.

The following two propositions are easy consequences of the definitions above.

Proposition 2.30. Let A1, ... ,An be relational structures as in Definition 2.28.
Then Aut(

⊎n
i=1 Ai) =

∏n
i=1 Aut(Ai).

Proposition 2.31. Let A be a relational structure. Then Aut(A 	 �) = Aut(A) 	
Sym(�).

The following two lemmas play a crucial role in our proofs later.

Lemma 2.32. Let A1, ... ,An be structures with pairwise disjoint domains, and let
A :=

∏n
i=1 Ai . Then:

(1) if A1, ... ,An are all homogeneous, then so is A, and
(2) if A1, ... ,An are all finitely bounded, then so is A.

Lemma 2.33. Let A be homogeneous structures. Then A 	 � is homogeneous, and A

is finitely bounded, then so is A 	 �.

Proof of Lemma 2.32. Item (1) follows from a straightforward induction using
Lemma 3.1 in [8].

As for item (2) let us assume that Age(A) = Forb(Fi) for some finite sets of
structures Fi for 1 ≤ i ≤ n. For a Σ(Ai)-structure B let (B;Ui) denote the structure
B expanded by a unary relation denoted by Ui which contains all elements of Bi .
Let G be the set of one-element {U1, ... , Un}-structures B such that either BUi = ∅
for all i or BUi = BUj = B for some i �= j. Then it follows from the construction
that

Age(A) = Forb({(B;Ui) : 1 ≤ i ≤ n,B ∈ Fi} ∪ G).

Therefore A is finitely bounded. �

Proof of Lemma 2.33. Let us assume that the tuples

�u = ((a1, m1), ... , (ak,mk)), �v = ((b1, n1), ... , (bk, nk))

have the same quantifier-free type over A 	 �. We have to show that �u and �v are
in the same orbit of Aut(A 	 �) = Aut(A) 	 Sym(�). For an n ∈ � let us denote by
�un (�vn) the subtuple of �u (�v) containing those elements whose second coordinate
is n. By definition it follows that mi = mj iff ni = nj for all 1 ≤ i, j ≤ k. Thus
there exists a permutation � ∈ Sym(�) such that for �um := ((ai1 , m), ... , aik , m)) we
have ni1 = ··· = nik = �(m). Moreover by the definition of A 	 � it follows that the
tuples (ai1 , ... , aik ) and (bi1 , ... , bik ) have the same quantifier-free type in A. Thus
by the homogeneity of A it follows that there exists some αm ∈ Aut(A) such that
αm(aij ) = bij for all j = 1, ... , k. Now let � ∈ Sym(A× �) be defined as �(a,m) :=
(αm(a), �(m)). Then � ∈ Aut(A) 	 Sym(�) and by our construction �(ai ,mi) =
(αmi (ai), �(mi)) = (bi , ni) for all 1 ≤ i ≤ k.

For the second part of the lemma let us assume that Age(A) = Forb(F) for some
finite set of structures F . Let G0 be a finite set of structures in the signature {E} so
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14 BERTALAN BODOR

that A ∈ Forb(G0) if and only if EA is an equivalence relation on A. We can do this
by listing all three-element {E}-structures where E does not define an equivalence
relation. For a Σ(A)-structure C let C∗ denote the structure C expanded by a binary
relation, denoted by E which contains every pair in C 2. Let

G := G0 ∪ {C∗ : C ∈ F}.
Then it is straightforward to check that Forb(G) is exactly the age ofA 	 �. Therefore
A 	 � is finitely bounded. �

Corollary 2.34. The classes FH and FBH are closed under taking finite disjoint
unions and infinite copies.

§3. Hereditarily cellular structures.

Definition 3.1. Let T be a complete theory in some language L. Then we say that
T is monadically stable if every expansion of T by unary predicates is stable. A first-
order structure A is called monadically stable if its first-order theory is monadically
stable.

We denote the class of countable �-categorical monadically stable structures by
M. For a natural number k we denote by Mk the class of structures in M whose
Morley rank is at most k.

Lachlan showed in [34] that the structures in M can be described in terms of their
automorphism group. For the description of these groups we first need a couple of
definitions.

Definition 3.2. Let G ≤ Sym(X ) be a permutation group. Then a triple P =
(K,∇,Δ) is called an �-partition of G iff:

(1) K ⊂ X is finite, and it is fixed setwise by G.
(2) Δ and ∇ are congruences of G |X\K with Δ ⊂ ∇.
(3) ∇ has finitely many classes.
(4) Every ∇-class is a union of ℵ0 many Δ-classes.
(5) For every C ∈ X/∇ we have G((C ))/Δ = Sym(C/Δ).

The components of an �-partition P = (K,∇,Δ) are the permutation groups G((Y ))
for all Y ∈ X/Δ.

Remark 3.3. Definition 3.2 includes the case whenX = K . In this case Δ = ∇ =
∅, and therefore all conditions (2)–(5) in Definition 3.2 are automatically satisfied.

Definition 3.4. We define the classes of closed permutation groups
H–1,H0,H1, ... recursively as follows:

• H–1 = ∅.
• For n ≥ 0 we defineG ∈ Hn if and only if G has an �-partition P so that every

component of P is in Hn–1.

We define the class H as the union of all classes Hn, n ∈ �. We call H the
class of hereditarily �-partitioned permutation groups. The rank of a hereditarily
�-partitioned group G, denoted by rk(G) is the smallest n such that G ∈ Hn.

We say that a structureA is hereditarily cellular if and only if Aut(A) is hereditarily
�-partitioned.
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Remark 3.5. It is clear from the definition that G ∈ H0 if and only if X = K ,
i.e., when X = Dom(G) is finite. Furthermore it can easily be shown by induction
that Hn–1 ⊂ Hn for all n ∈ �.

Theorem 3.6 [34, Theorem 2.3]. A ∈ M if and only if A is hereditarily cellular.

There are two more facts from [34] that we need to keep in mind. We quote them
below, slightly rephrased.

Proposition 3.7 [34, Proposition 1.4]. Let (K,∇,Δ) and (K ′,∇′,Δ′) be �-
partitions of a permutation group G ∈ H. Then K = K ′, ∇ = ∇′, and Δ = Δ′.

Proposition 3.8 [34, Propositions 1.3 and 1.6]. Let A ∈ M. Then A is �-stable,
and its Morley rank is equal to rk(Aut(A)).

By Proposition 3.7, the �-partition witnessing G ∈ H is unique. Therefore from
now on we will refer to this �-partition as the �-partition of the group G. Although
our definition of the rank function rk on H is different from the one given in [34] it
is easy to see that the two definition are equivalent. Then by Proposition 1.4 in [34]
we know that if A ∈ M then rk(Aut(A)) is equal to the Morley rank of A.

Corollary 3.9. Let A be a structure. Then A ∈ Mn if and only if Aut(A) ∈ Hn.
In particular M =

⋃∞
n=0 Mn, that is every structure in M has a finite Morley rank.

Example 3.10. We define the structures En by recursion as follows. E0 is defined to
be the one-element pure set, and En = En–1 	 �. The structure En can also be described
as a countable infinite set A endowed with equivalence classes E0 � ··· � En such
that:

• E0 is the trivial equivalence relation,
• En is the universal equivalence relation, and
• every Ei class contains ℵ0 many Ei–1 classes for all 1 ≤ i ≤ n.

It is easy to see that En ∈ M, and rk(En) = n.

The class M can also be described by orbit growth on subsets. We say that a
function f : � → R is slower (faster) than exponential if for all real numbers c > 1
we have f(n) < cn (f(n) > cn) if n is large enough. Using these notions we know
the following dichotomy for �-categorical stable structures.

Theorem 3.11 [22, Theorem 1.1]. Let A be an�-categorical stable structure. Then
exactly one of the following holds:

(1) osn(A) is slower than exponential, and A is monadically stable.
(2) osn(A) is faster than exponential, and A is not monadically stable.

The following is a straightforward consequence of Theorem 3.11.

Theorem 3.12. Let A be a structure. Then A ∈ M if and only if A is stable, and
osn(A) is slower than exponential.

Note that if B is a reduct of A then osn(B) ≤ osn(A) for all n. Therefore Theorem
3.12 immediately implies that the class M is closed under taking reducts. In fact
one can arrive to the same conclusion directly from the definition. It is also clear
that if Bis a reduct of A then the Morley rank of B is at most the Morley rank of
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A. This implies that for all n ∈ � the class Mn is also closed under taking reducts.
In terms of permutation groups, this means that the classes Hn, n ∈ �, and H are
closed under taking closed supergroups (see Theorem 2.13 and Corollary 3.9).

We can also use Theorem 3.12 to show that the class M is closed under
taking model-complete cores. As explained in the introduction this observation
is particularly important in the study of CSPs.

Definition 3.13. An �-categorical structure is called a model-complete core if
the topological closure of Aut(A) (in AA) is equal to the endomorphism monoid of
A.

We say that two structures A and B are homomorphically equivalent if there exist
homomorphisms f : A → B and g : B → A.

Remark 3.14. As the name suggests a structure being a model-complete core is
equivalent to it being model-complete and a core. However for our discussion we do
not need to introduce these notion separately or in a more general context.

Theorem 3.15 ( [6, Theorem 16]). Let A be an �-categorical structure. Then A is
homomorphically equivalent to a model-complete core B. Moreover the structure B

is unique up to isomorphism, and it is again �-categorical.

We call the (up to isomorphism) unique structure B as in Theorem 3.15 the
model-complete core of A.

Lemma 3.16. Let A be an �-categorical structure, and let B be its model-complete
core. Then fn(B) ≤ fn(A) for all n ∈ � where f is any of the operators o, oi , or os .

Proof. The case when f = o is shown in [7]. The statement for f = oi and
f = os can be shown analogously. �

Combining Theorem 3.12 and Lemma 3.16 we obtain that the class M is closed
under taking model-complete cores. By refining this argument one can also show
that the same conclusion holds for all classes Mn, n ∈ �.

3.1. Building up the class H.. In this section we construct recursively a subclass
H′ of H, and examine some properties of groups in H′. Then in the next section
we will show that in fact H′ = H, and as a result we obtain an explicit recursive
description of H.

Lemma 3.17. Let H be a permutation group. Then the groupG := H 	 Sym(�) has
an �-partition with all components isomorphic to H.

Proof. Let Δ := (Dom(H ) × �)2 and ∇ := {((a, n), (b, n)) : a, b ∈ H, n ∈ �}.
Then P := (∅,Δ,∇) is an �-partition of G with all components isomorphic to
H. �

Corollary 3.18. IfH ∈ Hn then H 	 Sym(�) ∈ Hn+1.

The following lemma tells us that the classes Hn are closed under finite direct
products.

Lemma 3.19. Let H1, ... , Hk ∈ Hn with pairwise disjoint domains. Then H :=∏k
i=1Hi ∈ Hn.
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Proof. For i = 1, ... , k let Pi := (Ki,∇i ,Δi) be the�-partition ofHi witnessing
the fact thatHi ∈ Hn, that is, every component of Pi is in Hn–1. Let P := (K,∇,Δ)
with K :=

⋃k
i=1Ki,∇ :=

⋃k
i=1 ∇i and Δ :=

⋃k
i=1 Δi . We claim that P is an �-

partition of H, and every component of P is a component of one of the �-
partitions Pi with i = 1, ... , k. Since these components are all contained in Hn–1

by our assumption, this implies the statement of the lemma.
It follows from the definition that H fixes the setsXi := Dom(Hi), andH |Xi = Hi .

This implies immediately that H fixes the set K and the equivalence relations Δ and
∇. It is clear from the definition that K is finite, ∇ has finitely many classes, and
every ∇-class is a union of ℵ0 many Δ-classes. It remains to show that item (5) of
Definition 3.2 holds for the congruences ∇ and Δ. Let C be a ∇-class. Then by
definition C is also a ∇i -class for some 1 ≤ i ≤ k. Then we have

H((C ))/Δ = H((C ))/Δi = (H |Xi )((C ))/Δi =

(Hi)((C ))/Δi = Sym(C/Δi) = Sym(C/Δ),

where the second-to-last equality above follows from the assumption that Pi is an
�-partition. This finishes the proof that P = (K,∇,Δ) is an �-partition. Now if
X is a Δ-class, then X is also a Δi -class for some 1 ≤ i ≤ k, and thus H((Y )) =
(H |Xi )((Y )) = (Hi)((Y )) which is by definition a component of Pi . This shows that
every component of P is a component of Pi for some 1 ≤ i ≤ k. �

In the next few paragraphs we will construct a structure with an �-partition and
dissect a permutation that preserves the equivalence relations on it. Our ultimate
goal is to give an explicit description of the groups in H and the structures in M.

Now we fix some notational conventions that we will use throughout this
section. First we fix some pairwise disjoint sets Y0, ... , Yk , with Y0 finite and
all other Yi nonempty; let Y :=

⋃k
i=0 Yi . We define i : Y → {0, ... , k} as the

function mapping a to the unique j such that a ∈ Yj . We will use Ω(Y0, ... , Yk)
to denote the set

⋃k
i=1(Yi × �) ∪ Y0 × {0}. Given u = (a, n) ∈ Ω(Y0, ... , Yk), we

define p(u) = a, q(u) = n.
Let

∇ :=
k⋃
i=1

(Yi × �)2 ∪ (Y0 × {0})2

and

Δ :=
k⋃
i=1

({((a, n), (b, n)) : a, b ∈ Yi , n ∈ �}) ∪ (Y0 × {0})2.

Observe thatY0 × {0} is the only finite∇-class, so any permutation of Ω(Y0, ... , Yk)
that preserves ∇ must stabilize Y0 × {0} setwise.

Suppose that � ∈ Sym(Ω(Y0, ... , Yk)) preserves ∇ and Δ. We identify
Ω(Y0, ... , Yk)/∇ with {0, ... , k} via the mapping that sends Y0 × {0} to 0
and Yi × � to i, for 1 ≤ i ≤ k. Similarly, Ω(Y0, ... , Yk)/Δ is identified with
{(0, 0)} ∪ {1, ... , k} × �. These identifications allow us to think of �/∇ as a
permutation φ(�) ∈ Sym({0, ... , k}) that fixes 0 and similarly �/Δ as a permutation
�(�) ∈ Sym({(0, 0)} ∪ {1, ... , k} × �) that fixes (0, 0).
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18 BERTALAN BODOR

We can further decompose �(�) into a constant mapping �0 ≡ 0 and k
permutations of�, say�i(�), so that�(�)(i, n) = (φ(�)(i), �i (�)(n)) for all (n, i) ∈
{(0, 0)} ∪ ({1, ... , k} × �). Thus �(�) is uniquely determined by the permutations
�i(�) (0 ≤ i ≤ k) and φ(�).

Given any �n = (0, n1, ... , nk) ∈ {0} × �k , we define �n as ((0, 0), (1, n1), ... , (k, nk))
∈ {(0, 0)} ∪ {1, ... , k} × �. For each �nwe define an injection �n : Y → Ω(Y0, ... , Yk)
by putting �n(a) = (a, ni(a)). We define

��n(�) := p ◦ � ◦ �n.

These functions are elements of Sym(Y ). For n ∈ � and i ∈ {0, ... k} we define

�in(�) := �n(�)|Yi ,

where n is the tuple (0, n, ... , n). Then �in(�) is a bijection Yi → Yφ(�)(i).
Let � ∈ Aut(Ω(Y0, ... , Yk);Y0 × {0},∇,Δ) be arbitrary. Then using the nota-

tion above it follows that given (a, n) ∈ Ω(Y0, ... , Yk) we have �((a, n)) =
(�i(a)
n (�)(a), �i(a)(�)(n)). In particular a permutation � in Aut(Ω(Y0, ... , Yk);Y0 ×

{0},∇,Δ) is uniquely determined by the maps �in(�) and �i(�).
For a 
 ∈ {id({(0, 0)})} × Sym(�)k we write 
̂ for the unique element in

Aut(Ω(Y0, ... , Yk);Y0 × {0},∇,Δ) for which for all 0 ≤ j ≤ k we have �jn(
̂) =
id(Yj), and �(
̂) = 
.

Lemma 3.20. Let �, 
 ∈ Aut(Ω(Y0, ... , Yk);Y0 × {0},∇,Δ). Then for all �n =
(n0, ... , nk) ∈ {0} × �k we have:

(i) ��n(
�) = ��(�)(�n)(
)��n(�), and
(ii) ��n(�–1) = (��(�–1)(�n)(�))–1.

Proof. (i) Let a ∈ Yi . Then � maps u = (a, ni) to u′ := (��n(�)(a), �i′(�n)) for
i ′ = i(��n(�)(a)). By definition p(
(u′)) = ��(�)(�n)(
)(��n(�)(a)). On the other hand
p(
(u′)) = p(
�(u)) = ��n(
�)(a). This shows the equality in item (i).

(ii) Using item (i) it follows that

id(Y ) = ��n(id) = ��n(��–1) = ��(�–1)(�n)(�)��n(�–1),

and the equality (ii) follows. �

Suppose now that N0, ... , Nk are permutation groups with Dom(Ni) = Yi , and
N0 = {id(Y0)}, the trivial permutation group on Y0. (Recall that Y0 is assumed to
be finite.) We will use the notation N for the group

∏k
i=0Ni .

Definition 3.21. Let H be a permutation group acting on Y such that N is
a normal subgroup of H, and H fixes Y0 setwise. Then we define the subset
G(H ;N0, ... , Nk) of Sym(Ω(Y0, ... , Yk)) as follows. A permutation � is contained
in G(H ;N0, ... , Nk) if and only if:

(a) � fixes Y0 × {0} setwise,
(b) � preserves the relations ∇ and Δ,
(c) for all �n = (n0, n1, ... , nk) ∈ {0} × �k it holds that ��n(�) ∈ H , and
(d) for all �n, �m ∈ {0} × �k the maps ��n(�) and � �m(�) are equal modulo N.
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Define

N (N0, ... , Nk) := {id(Y0 × {0})} ×
k∏
i=1

(Ni 	 Sym(�)) ⊂ Sym(Ω(Y0, ... , Yk)).

It is a straightforward consequence of the definition that G(N ;N0, ... , Nk) =
N (N0, ... , Nk), and if H ≤ H ′ then G(H ;N0, ... , Nk) ⊂ G(H ′;N0, ... , Nk) (assum-
ing that both sides are defined).

Lemma 3.22. G(H ;N0, ... , Nk) is a subgroup of Sym(Ω(Y0, ... , Yk)).

Proof. Let �, 
 be permutations in Sym(Ω(Y0, ... , Yk)) satisfying conditions
(a)–(d) in Definition 3.21. We have to show that the permutation �
–1 also satisfies
conditions (a)–(d). For conditions (a) and (b) this is obvious.

For condition (c) let �n ∈ {0} × �k be arbitrary. Then by Lemma 3.20 we have

��n(�
–1) = ��(
–1)(�n)(�)��n(
–1) = ��(
–1)(�n)(�)(��(
–1)(�n)(
))–1 ∈ HH –1 = H.

For condition (d) let �n, �m ∈ {0} × �k . Then we have

��n(�
–1) = ��(
–1)(�n)(�)(��(
–1)(�n)(
))–1

≡ ��(
–1)( �m)(�)(��(
–1)( �m)(
))–1 = ��n(�
–1)(mod N ). �
We next show that the groupN (N0, ... , Nk) has no nontrivial closed oligomorphic

normal subgroup.

Lemma 3.23. Suppose G ≤ Sym(X ) is a closed oligomorphic permutation group
and let K be a nontrivial closed oligomorphic normal subgroup of G. Then G has a
nontrivial closed normal subgroup of finite index.

Proof. Since K is closed, and K � G , we can pick a natural number n such that
K has more n-orbits than G. We claim that the n-orbits of K give a G-invariant
partition of X. Indeed, suppose that �u and �v are in the same n-orbit of K, that is
�v ∈ K(�u). Then for any α ∈ G we have

α(�u) ∈ αK(�v) = K(α(�v)).

Since K is oligomorphic this partition has finitely many parts. Thus, the stabilizer
of this partition is a closed finite-index normal subgroup of G. By the choice of n
this stabilizer is different from G. �

Lemma 3.24. Suppose K ≤ Sym(Y ) and S ≤ Sym(�) are closed permutation
groups, and S is transitive and has no proper closed subgroup of finite index. Then
K 	 S has no non-trivial closed normal subgroup of finite index.

Proof. For the ease of notation we identify S with the subgroup
{id(Dom(K))} 	 S.

Let G be a finite-index closed normal subgroup of K 	 S. Then G ≥ S by our
assumption on S. Let Q := G ∩K� . We have to show that Q = K� . Note that Q is
closed normal subgroup of K� , so S acts continuously on K�/Q by conjugation.
Moreover, the index |K� : Q| = |L : G | is finite; therefore, the kernel of this action
is a closed subgroup of S of finite index which must equal S by our assumption.
This implies that for all g ∈ S and p ∈ K� the commutator [g, p] is contained in Q.
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Now let k ∈ K be arbitrary, and write p = (k, id, id, ... ). By the transitivity of S
we know that for all n ∈ � there exists some gn ∈ S such that gn(0) = n. Then qn =
[gn, p] = (k, id, ... , id, k–1, id, ... ) ∈ Q where the k–1 appears in position n. The limit
of the sequence (qn)n as n → ∞ is p. As Q is closed, we obtain p ∈ Q. The elements
(k, id, id, ... ) with k ∈ K , however, together with S, generate a dense subgroup of
K�. Since Q is closed, this means that in fact Q = K�. �

Lemma 3.25. The group N (N0, ... , Nk) has no nontrivial closed oligomorphic
normal subgroup.

Proof. Recall that
G := N (N0, ... , Nk) =

k∏
i=1

Li ,

where L0 = {id(Y0 × {0})} and Li = Ni 	 Sym(�) for 1 ≤ i ≥ k. Let

Gi := {g(i) : g ∈ G,∀j �= i(g(j) = id)}.
We have to show that Gi = Li for all i ∈ {0, ... , k}. For i = 0 there is nothing to
prove. Otherwise, Gi is a closed oligomorphic normal subgroup of Li , and the
equality follows from Lemmas 3.23 and 3.24. �

Lemma 3.26. The group N (N0, ... , Nk) is a normal subgroup of G(H ;N0, ... , Nk),
and G(H ;N0, ... , Nk)/N (N0, ... , Nk) � H/N .

Proof. Condition (d) says that for a permutation � ∈ G(H ;N0, ... , Nk) all the
permutations of the form ��n(�) are the same modulo N. Then we define ϕ(�) to be
the coset of N containing all these elements. Then ϕ defines a homomorphism from
G(H ;N0, ... , Nk) to H/N , and the kernel of this homomorphism is N (N0, ... , Nk).
Note also that ϕ is surjective. Indeed, for an h ∈ H let us denote by h∗ the
permutation (a, n) �→ (h(a), n). Then clearly ϕ(h∗) = h. The statement of the
lemma then follows from the first isomorphism theorem. �

Lemma 3.27. Let G ⊂ Sym(Ω(Y0, ... , Yk)) be a closed permutation group which
preserves the set Y0 × {0} and the equivalence relations Δ and ∇. Let us assume
moreover that N (N0, ... , Nk) ≤ G , and for all i = 1, ... , k we have G((Yi×{0})) =
Ni × {id({0})}. Then for all �n, �m ∈ {0} × �k and � ∈ G the permutations ��n(�) and
� �m(�) are equal modulo N.

Proof. It is enough to show the statement of the lemma for �m = �0 = (0, ... , 0)
and any �n = (n0, ... , nk). By definition both ��0 and ��n map Yi to Yφ(�)(i). Therefore

 := ��n(�)–1��0(�) fixes the sets Y0, ... , Yk setwise.

Now let 
i := 
|Yi = ��0(�)–1� �ni (�). We have to show that 
i ∈ Ni . If ni = 0, then
there is nothing to prove. Otherwise, let � ∈ {id({(0, 0)})} × Sym(�)k which flips
(0, i) and (n, i) and fixes everything else. Then we have �̂ ∈ N (N0, ... , Nk) ⊆ G . Now
let � := �̂–1�–1�̂�. Then � fixes every element outside Yi × {0, n}, and by Lemma
3.20 we have

�i0(�) = �i0(�̂–1�–1�̂�)

= (�i
�i (�̂–1�–1 �̂�)(0)(�̂))–1(�i

�i (�–1 �̂�)(0)(�))–1�i�i (�)(0)(�̂)�
i
0(�)

= (�in(�))–1�i0(�) = 
i .
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Now by conjugating �′ by the permutation �̂n′ where �n′ denotes the transposition
((i, n) (i, n′)) we obtain that for all n′ ∈ � there exists a permutation �′

n′ in G such
that �i0(�n′′) = 
i , and �′

n′ fixes every element outsideYi × {0, n′}. Since G is closed
this implies that G contains a permutation �′ such that �i0(�′) = 
 and �′ fixes
every element outside Yi × {0}. Then the permutation (
i , id({0})) is contained
in G(((Yi×{0})) = Ni × {id({0})}, and thus 
i ∈ Ni , and this is what we wanted to
show. �

Lemma 3.28. Let G be as in Lemma 3.27, and let H := {��0(�) : � ∈ G}. Then
N�H .

Proof. Let � ∈ N , 
 ∈ H . We have to show that 
–1�
 ∈ N . Let �0 be the
permutation of Ω(Y0, ... , Yk) which maps (a, 0) to (�(a), 0) for all a ∈ Y , and
fixes every other element. Then by definition �0 ∈ N (N0, ... , Nk) ⊂ G . Let 
̃ ∈ G
so that ��0(
̃) = 
. Then by permuting the Δ classes of Ω(Y0, ... , Yk) with elements
{�̂ : � ∈ {id({(0, 0)})} × Sym(�)k} we can assume without loss of generality that
�(
̃) fixes all (0, i) with i = 0, ... , k. In this case the permutation �′0 := 
̃–1�0
̃ ∈ G
fixes every element outside

⋃k
i=0 Yi × {0}, and by Lemma 3.20 we have

��0(�′0) = ��0(
̃–1�0
̃) = (�0(
̃))–1�0(�0)�0(
̃) = 
–1�
.

This implies that 
–1�
 ∈ N . �
Lemma 3.29. Let G1 and G2 be as in Lemma 3.27, and letHi := {��0(�) : � ∈ Gi}

for i = 1, 2. If H1 = H2, then G1 = G2.

Proof. It follows from our conditions that the groups G1 and G2 both contain
the group N (N0, ... , Nk) = {id(Y0 × {0})} ×

∏k
i=1(Ni 	 Sym(�)).

Lemma 3.27 implies that for all� ∈ G1 the coset��n(�)N does not depend on �n. Let
us denote this coset by h(�). By Lemma 3.28 we know that N is a normal subgroup
ofH1. Then it follows easily from Lemma 3.20 that h defines a homomorphism from
G1 to H1/N , and the kernel of h is exactly N (N0, ... , Nk).

Using this if � ∈ G1 then by definition it follows that ��0(�′) = ��0(�) for some �′ ∈
G2. This implies h(�) = h(�′), and thus h(�(�′)–1) = h(�)(h(�′))–1 = id, that is
��n(�(�′)–1) for all �n ∈ {0} × �k . This means exactly that �(�′)–1 ∈ N (N0, ... , Nk).
Therefore � = (�(�′)–1)�′ ∈ N (N0, ... , Nk)G2 = G2. Hence G1 ⊂ G2. The other
inclusion follows analogously. �

Lemma 3.30. Let G be as in Lemma 3.27. Then there exists a permutation group
H acting on Y which normalizes N, and such that G = G(H ;N0, ... , Nk).

Proof. Let H = H1 := {��0(�) : � ∈ G}. By Lemma 3.29 we already know
that H normalizes N. Let G1 = G,G2 = G(H ;N0, ... , Nk), and H2 = {��0(�) : � ∈
G2}. Then H2 = H = H1, and thus Lemma 3.29 implies G = G1 = G2 =
G(H ;N0, ... , Nk). �

Definition 3.31. We define the classes of permutation groups H′
–1,H′

0,H′
1, ...

recursively as follows:
• H′

–1 = ∅.
• For n ≥ 0 we define G ∈ H′

n if and only if there exist N0, ... , Nk,N,H as
in Definition 3.21 such that N1, ... , Nk,H ∈ H′

n–1 and G is isomorphic to
G(H ;N0, ... , Nk).
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We define H′ as the union of all classes H′
n : n ∈ �.

Remark 3.32. Later we will see that in fact the classes H′
n are closed under

finite direct products. Therefore we could drop the assumption thatN ∈ H′
n–1 in the

recursion. This fact can also be derived from the definition directly. We will also see
that we can drop the conditionH ∈ H′

n–1 as well.

Lemma 3.33. Every group in H′ is oligomorphic.

Proof. We show that every group in H′
n is oligomorphic by induction on n.

For n =– 1 there is nothing to show. For the induction step let us assume that
G = G(H ;N0, ... , Nk) for some H,N0, ... , Nk ∈ H′

n–1. Then G ≥ N (N0, ... , Nk).
By item (ii) of Lemma 2.4 we know that the groups Ni 	 Sym(�), 1 ≤ i ≤
k are oligomorphic. By the discussion in Section 2.4 we know that finite
direct products of oligomorphic groups are oligomorphic. Therefore, the group
N (N0, ... , Nk) = {id(Y0 × {0})} ×

∏k
i=1(Ni 	 Sym(�)) is oligomorphic. Hence G

is also oligomorphic. �

Lemma 3.34. Let G ∈ H′. Then G has finitely many closed normal subgroups
contained in H′, and all of these have a finite index in G.

Proof. We show the statement of the lemma for H′
n by induction on n. For

n =– 1 there is nothing to show. For the induction step let us assume that G =
G(H ;N0, ... , Nk) for some H,N0, ... , Nk,N =

∏k
i=0Ni ∈ H′

n–1. By Lemma 3.26 it
follows that |G : N (N0, ... , Nk)| = |H : N |. By definition N is a normal subgroup
of H ∈ H′

n–1. Since N,H ∈ Hn–1 this implies that |H : N | is finite by the induction
hypothesis. Therefore |G : N (N0, ... , Nk)| is finite. Now let G1 ∈ H′ be a closed
normal subgroup of G. By Lemma 3.33 we know that G1 is oligomorphic. Let
G2 := G1 ∩N (N0, ... , Nk). Then by the second isomorphism theorem we obtain

G1/G2 = G1/(G1 ∩ N (N0, ... , Nk))

� G1(N0, ... , Nk)/N (N0, ... , Nk) ≤ G/N (N0, ... , Nk).

In particular G1/G2 is finite. We know that a finite-index subgroup of an
oligomorphic group is oligomorphic (see for instance Proposition 6.23 in [11]).
ThereforeG2 is also oligomorphic.G2 is also closed since it is an intersection of two
closed groups. Thus by Lemma 3.25 it follows that N (N0, ... , Nk) ≤ G2 ≤ G . Since
|G : N (N0, ... , Nk)| <∞ this implies both statements of the lemma. �

Lemma 3.35. Every group in H′ is closed.

Proof. We show by induction on n that every group in H′
n is closed. For

n =– 1 there is nothing to prove. For the induction step let us assume that
G = G(H ;N0, ... , Nk) for some H,N0, ... , Nk,N =

∏k
i=0Ni ∈ H′

n–1. By item (i) of
Lemma 2.4 we know that the groups Ni 	 Sym(�) : 1 ≤ i ≤ k are closed. Thus the
direct product N (N0, ... , Nk) = id(Y0 × {0}) ×

∏k
i=1(Ni 	 Sym(�)) is also closed

(see Section 2.4). Since the groupN (N0, ... , Nk) is contained inH′
n, and it is a normal

subgroup of G(H ;N0, ... , Nk) it follows from Lemma 3.34 that |G : N (N0, ... , Nk)|
is finite. This means that G is a finite union of cosets of N (N0, ... , Nk), and thus a
finite union of closed sets. Hence G is closed. �
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By Lemma 3.35 we can remove the condition “closed” from the formulation of
Lemma 3.34.

Corollary 3.36. Let G ∈ H′. Then G has finitely many normal subgroups
contained in H′, and all of these have a finite index in G.

Lemma 3.37. H′
n ⊂ Hn for all n ∈ � (see Definition 3.4).

Proof. We prove the lemma by induction on n. For n =– 1 the statement is
trivial. For the induction step let us assume that G = G(H ;N0, ... , Nk) for some
H,N0, ... , Nk,N =

∏k
i=0Ni ∈ H′

n–1. By Corollary 3.18 and Lemma 3.19 it follows
that

∏k
i=1(Ni 	 Sym(�)) ×N0 = N (N0, ... , Nk) ∈ Hn. Since Hn is closed under

taking closed supergroups it follows thatG ∈ Hn. Finally we haveG = G by Lemma
3.35. �

Now we show that in fact Hn = H′
n for all n. We prove this by induction on

n. For the induction step we first show that if Hn–1 = H′
n–1, and if G ∈ H with �-

partitionP = (K,∇,Δ) with componentsG0, ... , Gk then G has a subgroup S which
is isomorphic to a group of the form {id(K)} ×

∏m
i=1(Gi 	 Sym(�)). First we show

this in the case when K = ∅, and ∇ is the universal congruence. The proof of this
step is based on the argument presented in Case 2 of the proof of Lemma 3.3, part
(i) in [34].

Lemma 3.38. Let us assume that Hn–1 = H′
n–1.

Let G ∈ Hn be a permutation group with Dom(G) = X , and let P = (∅, X 2,Δ) be
the �-partition of G. Let Y0 ∈ X/Δ. Then there exists a map p : X → Y0 such that:

(1) p|Y0 = id(Y0),
(2) p defines a bijection from Y to Y0 for all Y ∈ X/Δ, and
(3) for all � ∈ Sym(�) there exists a permutation �̂ ∈ G which acts on X/Δ as �,

and such that p(�̂(u)) = p(u) for all u ∈ X .

Proof. Let Y0, Y1, ... be an enumeration of all Δ-classes of X. For a subset S of
� we define YS :=

⋃
j∈S(Yj). Let

NS := (GX\YS ∩
⋂
j∈S
G{Yj})|YS , and HS := (

⋂
j∈S
G{Yj})|YS .

We use the notation Nj,Hj for the groups N{j} = G((Yj )) and H{j} = G(Yj ),
respectively. It follows from the definition that for all S ⊂ � the groupNS is closed,
and NS is a normal subgroup of HS . Also we have

∏
j∈S Nj ⊂ NS . By definition

every Nj is a component of the �-partition P. Therefore Nj ∈ Hn–1 for all j ∈ �.
Then Lemma 3.19 implies that if S is finite then

∏
j∈S Nj ∈ Hn–1. This also implies

that the groups NS and HS are contained in Hn–1 since Hn–1 is closed under taking
closed supergroups. SinceNS is closed, andNS �HS it follows that h–1NSh ∈ NS for
all h ∈ HS . Therefore NS is also a normal subgroup of HS . Since Hn–1 = H′

n–1 this
implies that |HS : NS | is finite by Corollary 3.36. Therefore |HS : NS | is also finite
(and thus in factHS is closed). This also implies that the groupGX\YS ∩

⋂
j∈S G{Yj}

is a finite-index normal subgroup of
⋂
j∈S G{Yj}. The group G acts on X/Δ as the

full symmetric group for all i. This means that
⋂
j∈S G{Yj} acts on (X \ YS)/Δ as the
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full symmetric group. Since Sym(�) has nontrivial finite index subgroup it follows
that the groupGX\YS ∩

⋂
j∈S G{Yj} acts on (X \ YS)/Δ as the full symmetric group

as well. In particular for any j1, j2 ∈ � \ S there exists a permutation � ∈ G such
that:

• � fixes every Yj with j �= j1, j2 setwise,
• � switches Yj1 and Yj2 , and
• �|YS ∈ NS .
LetKl := (G{Y0} ∩GY{1,...,l})|Y0 . ThenK0 = H0 ⊃ K1 ⊃ ··· , and since G is closed

it follows that
⋂∞
l=0Kl = N0. Since |H0 : N0| <∞ it follows that there exists an index

l such that Kl = N0, and hence Kl ′ = N0 for all l ′ ≥ l . For all subsets S ⊂ � \ {0}
with |S| ≥ l there exists a permutation � in G which fixes Y0, and which maps
Y{1,...,|S|} into YS . Then �(�) maps G{Y0} ∩GY{1,...,|S|} to G{Y0} ∩GYS , and thus it
mapsN0 = Kl toKS := (G{Y0} ∩GYS )|Y0 . On the other hand �(�) fixesN0 = G |((Y0))

since � fixes Y0. Therefore KS = NS for all S ⊂ � \ {0} with |S| ≥ l . (∗)
Let j ∈ � \ {0}. We claim that for every finite set S ⊂ � \ {0, j} there exists a

permutation �S of G such that:
• �S fixes YS pointwise,
• �S switches Y0 and Yj , and
• �2
S |Y0∪Yj = id(Y0 ∪ Yj).

We can assume without loss of generality that |S| ≥ l . Then we have seen that
there exists a permutation �S ∈ GS that switches Y0 and Yj . By (∗) it follows that
(�S)2|Y0 ∈ N0. This means that there exists a 
 ∈ G |X\Y0

such that 
|Y0 = �2|Y0 .
Let �S := 
–1�S . Then �S also switches Y0 and Yj , and it also fixes YS pointwise.
Moreover, we have

(�2
S)|Y0 = (
–1�S)2|Y0 = (
–1�S


–1|�S (Y0)�S)|Y0

= (
–1�2
S)|Y0 = 
|–1

Y0
(�S)2|Y0 = id(Y0).

It follows similarly that (�2
S)|Yj = id(Yj). This means that (�2

S)|Y0∪Yj = id(Y0 ∪
Yj).

Now let S0 be such any finite subset with |S0| ≥ l . We claim that for every finite
subset S of� \ {0, j} there exists a map �′S ∈ G |

YS
′ such that �′S |Y0∪Yj = �S0 |Y0∪Yj .

(†) This is enough to show in the case when S ′ ⊃ S0. In this case �S0�
–1
S fixes

Y0 setwise, and YS0 pointwise. Therefore by (∗) we know that there exists a

′ ∈ G |X\Y0

such that 
′|Y0 = (�S0�
–1
S )|Y0 . By symmetrical argument we can also

find a 
′′ ∈ G |X\Yj such that 
′′|Yj = (�S0�
–1
S )|Yj . Let 
 := 
′
′′. Then 
|Y0∪Yj =

(�S0�
–1
S )|Y0∪Yj . Let �′S := 
�S . Then �′S switches Y0 and Y1, fixes S pointwise, and

(�′S)|Y0∪Yj = 
Y0∪Yj�S |Y0∪Yj = (�S0�
–1
S )|Y0∪Yj�S)|Y0∪Yj = �S0 |Y0∪Yj .

Since G is closed it also follows from (†) that there exists a � ∈ G such that
�|Y0∪Yj = �S |Y0∪Yj and � fixes every element outside Y0 ∪ Yj . In particular �
switches the classes Y0 and Yj , and �2|Y0∪Yj = id(Y0 ∪ Yj), and thus �2 = id(X ).

We define p on Yj as �|Yj for the map � as above defined for j. We extend p to Y0

as the identity map. Then p satisfies conditions 1 and 2 of the lemma. We show that
it also satisfies condition 3.
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For a permutation � ∈ Sym(�) there exists a unique permutation �̂ ∈ Sym(X )
such that p(�̂(u)) = p(u) for all u ∈ X , and �̂/Δ = �. We have to show that
�̂ ∈ G for all � ∈ Sym(�). By the definition of p it follows that �̂ ∈ G for
every transposition � = (0 j) ∈ Sym(�). The map � �→ �̂ is a continuous group
homomorphism. Therefore {� ∈ Sym(�) : �̂ ∈ G} is a closed subgroup of Sym(�).
Since the transpositions of the from (0 j) : j ∈ � \ {0} generate a dense subgroup
of Sym(�) this implies that in fact {� ∈ Sym(�) : �̂ ∈ G} = Sym(�), i.e., �̂ ∈ G
for all � ∈ Sym(�). This finishes the proof of the lemma. �

Corollary 3.39. Assume that Hn–1 = H′
n–1.

Let G ∈ Hn be a permutation group with Dom(G) = X , and let P = (∅, X 2,Δ) be
the �-partition of G. Let Y0 ∈ X/Δ. Then G contains a group G∗ so that P is also an
�-partition ofG∗ with the same components, andG∗ is isomorphic toG((Y0)) 	 Sym(�).

Proof. Let p be as in the statement of Lemma 3.38, and let Y0, Y1, ... be the
Δ-classes in X. We define e : X → Y0 × �, u �→ (p(u), q(u)) where q(u) denotes
the unique j such that u ∈ Yj . Then e is a bijection between X and Y0 × �. Let
Ni := G((Yi )). Then since G is closed it is clear that G contains

∏∞
i=0Ni . The image

of this direct product according to �(e) is exactly N�0 . Using the map � �→ �̂ as in
the proof of Lemma 3.38 it is easy to see that the map � �→ e(�̂) maps Sym(�)
into {id(Y0)} 	 Sym(�). Therefore the image of e contains Y0 	 Sym(�). We put
G∗ := e–1(N0 	 Sym(�)). Then G∗ satisfies the conditions of the lemma. �

Lemma 3.40. Assume that Hn–1 = H′
n–1.

Let G ∈ Hn be a permutation group with Dom(G) = X , and let P = (K,∇,Δ)
be the �-partition of G. Let X1, ... , Xk denote the ∇-classes. Let Yi ∈ Xi/Δ for
all i = 1, ... , k. Let Ni := G((Yi )). Then G contains a group G∗ so that P is also
an �-partition of G∗ with the same components as G, and G∗ is isomorphic to
N ({id(Y0)}, N1, ... , Nk).

Proof. Let Gi := G((Yi )). Then the groups Gi are closed, and Pi := (∅, X 2
i ,Δ ∩

X 2
i ) is an �-partition of Gi with every component isomorphic to Ni . By Corollary

3.39 it follows thatGi contains a groupG∗
i such that Pi is also an �-partition ofG∗

i

andG∗
i is isomorphic toNi 	 Sym(�). By renaming the elements of X we can assume

that G∗
i = Ni 	 Sym(�) and K = Y0 × {0} for some set Y0 which is disjoint from⋃k

i=1 Yi . Then G∗ := {id(K)} ×
∏k
i=1(Ni 	 Sym(�)) = N ({id(Y0)}, N1, ... , Nk) is

a subgroup of G, and P is an�-partition ofG∗ with the same component as G. This
finishes the proof of the lemma. �

Theorem 3.41. Hn = H′
n.

Proof. Lemma 3.37 shows the inclusion H′
n ⊂ Hn.

Now we show Hn ⊂ H′
n by induction on n. For n =– 1 there is nothing to prove.

For the induction step let us assume that Hn–1 = H′
n–1, and let G ∈ H with an �-

partition P = (K,∇,Δ). Let G∗ be a subgroup as in Lemma 3.39. We can assume
without loss of generality that G∗ = N ({id(Y0)}, N1, ... , Nk) where Ni ∈ Hn–1 =
H′
n–1. It follows from the construction of G∗ that

G((Yi×{0})) = {(a, 0) �→ (�(a), 0) : a ∈ Yi , � ∈ Ni},
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where Yi = Dom(Ni). Let us observe that the equivalence relations ∇ and Δ as
defined in Definition 3.21 coincide with the relations ∇ and Δ coming from the
partition P. In particular G preserves these equivalence relations, and also preserves
the set K := Y0 × {0}. Therefore we can apply Lemma 3.30 to the groups G∗ =
N ({id(Y0)}, N1, ... , Nk) and G. We obtain that G = G(H ;N0, ... , Nk) for some
group H withN :=

∏k
i=0Ni � H . Therefore in order to prove thatG ∈ H′

n it remains
to show that N,H ∈ H′

n–1 = Hn–1. By Lemma 3.19 we know that N =
∏k
i=1Ni ∈

Hn–1. Since Hn–1 is closed under taking closed supergroups it follows thatH ∈ Hn–1.
The same argument as before shows that N is also a normal subgroup of H . Then
by Corollary 3.36 it follows that |H : N | <∞. Hence |H : N | is also finite, and thus
in fact H is closed, and thusH = H ∈ Hn–1. �

We give yet another description of the class Hn which we will need later in
Section 4.

Theorem 3.42. Let n ∈ �. Then a permutation group G is contained in Hn if and
only if there exists a sequence of groups G0, G1, ... , Gm = G such that:

(1) G0 = {id({∅})}.
(2) For all 0 ≤ i ≤ m one of the following holds:

(a) Gi � Gj for some j < i .
(b) Gi is a direct product of some groups Gj, j < i .
(c) Gi = Gj 	 Sym(�) for some j < i .
(d) Gi is a finite-index supergroup of some Gj, j < i .

(3) For every sequence of indices i0 < ··· < id for whichGil = Gil–1 	 Sym(�) holds
we have d ≤ n.

Theorem 3.42 has the following straightforward consequence.

Corollary 3.43. A permutation group G is contained in H if and only if there
exists a sequence of groupsG0, G1, ... , Gm = G which satisfy conditions (1) and (2) in
Theorem 3.42.

Corollary 3.43 means in other words that H is the smallest class of permutation
groups which contains G0 = {id({∅})} and is closed under isomorphisms, finite
direct products, wreath products with Sym(�), and finite-index supergroups.

Using Theorems 2.13 and 3.6, the statement of Corollary 3.43 can also be written
in terms of structures as follows.

Theorem 3.44. M is the smallest class of structures which contains a one-element
structure, is closed under isomorphisms, and is closed under taking finite disjoint unions,
infinitely many copies, and finite-index reducts.

Proof of Theorem 3.42. First we show the “if” direction by induction on m.
For m = 0 we have G0 = {id({∅})} ∈ H0 so in this case we are done. Let us assume
now that G0, G1, ... , Gm satisfy the conditions (1)–(3).

Case A. Gm � Gj for some j < m. By the induction hypothesis Gj ∈ Hn. Then
we also have Gm ∈ Hn since Hn is closed under isomorphisms.

Case B. Gm is a finite direct product of some groups Gj, j < m. In this case it
follows from the induction hypothesis thatGj ∈ Hn. Then Lemma 3.19 implies that
Gm ∈ Hn.
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Case C.Gm = Gj 	 Sym(�) for some j < m. In this case we can apply the induction
hypothesis for j < m and n – 1. We obtain that Gj ∈ Hn–1. Then Corollary 3.18
implies that Gm ∈ Hn.

Case D.Gm is a finite-index supergroup of someGj, j < m. It follows again by the
induction hypothesis that Gj ∈ Hn. Then Gj is closed, and thus so is Gm. We know
that the class Hn is closed under taking closed supergroups. Therefore Gm ∈ Hn.

Now we show the “only if” direction by induction on n.
If n = 0 then G is finite. Then we can assume that G ≤ Sym(k) for some

k ∈ �. Then the sequence of groups Gi := {id({i})} for i < k, Gk = {id(k)} =∏k–1
i=0{id({i})}, Gk+1 = G satisfy conditions (1)–(3).
For the induction step let us assume that G = G(H ;N0, ... , Nk) for some

H,N0, ... , Nk,N ∈ Hn–1. Then by the induction hypothesis we know that there is a
sequence G0, ... , Gm which satisfies conditions (1)–(3) for n – 1 and which contains
all groups H,N0, ... , Nk . Then let

Gm+1 := {id(Dom(N0) × {0})}, Gm+i+1 := Ni 	 Sym(�),

Gm+k+1 := N (N0, ... , Nk), Gm+k+2 := G = G(H ;N1, ... , Nk).

Then clearly the groupsG0, ... , Gm+k+1 satisfy conditions (1)–(3) with n. The only
thing we have to check that we can add G = Gm+k+2 to this sequence. For this it is
enough to show that |G : N (N0, ... , Nk)| is finite. Indeed, by Lemma 3.26 we know
that the subgroup N (N0, ... , Nk) is normal, and thus by Corollary 3.36 its index is
finite in G. �

3.2. The rank 1 case. Next we focus our attention on the class M1. Using
Corollary 3.9 it follows that A ∈ M1 if and only if Aut(A) ∈ H1. We call these
structures cellular. Using Theorem 3.41 and Remark 3.5 we know that G ∈ H1 if
and only if G can be written, up to isomorphism, asG = G(H ;N0, ... , Nk) for some
groups N0, ... , Nk,H ⊃ N :=

⋃k
i=0Ni with finite domains.

In this section we collect some equivalent characterizations of a structure being
cellular. We first show a few characterizations of cellular structures in terms of orbit
growth on subsets.

Definition 3.45. We say that a group G is P-oligomorphic if osn(A) < cnk for
some c > 0 and k ∈ �.

The class of closed P-oligomorphic groups are completely classified in [28]. The
following two lemmas follow from the results of [22, 28].

Lemma 3.46. Let G be a permutation groups acting on a countable set. Then the
following are equivalent:

(1) G is P-oligomorphic.
(2) osn(A) ∼ cnk for some c > 0 and k ∈ �.
(3) For all c > 0 we have osn(A) < ec

√
n if n is large enough.

Lemma 3.47. A structure A is cellular if and only if it is stable and its automorphism
group is P-oligomorphic.

We can also characterize cellular structure in terms of orbit growth on injective
tuples as follows.
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Lemma 3.48. A structureA is cellular if and only if oin(A) < cndn for some constants
c, d with d < 1.

The advantage of the characterization above is that here we do not have to assume
stability; it is automatically implied by the orbit growth condition.

In order to prove Lemma 3.48 we first describe cellularity of a structure in terms
of finite coverings. Then Lemma 3.48 is a direct consequence of the results of [11].

Definition 3.49. Let A and B be structures. A mapping 	 : A → B is called a
finite cover if:

(1) 	 is surjective,
(2) for each w ∈ B the set 	–1(w) is finite,
(3) the equivalence relation {(a, b) : 	(a) = 	(b)} is preserved by Aut(A),
(4) the image of Aut(A) under the induced homomorphism �(	) : Aut(A) →

Sym(B) is equal to Aut(B).

A structure A is called a finite covering of B if there is a finite cover 	 : A → B.

Definition 3.50. A structure is called unary if all of its relations are unary.

Using the notion of finite coverings we know the following.

Theorem 3.51. Let A be a structure. Then the following are equivalent.
(1) A is a finite covering of a reduct of some unary �-categorical structure.
(2) A is a reduct of a finite covering of some unary �-categorical structure.
(3) oin(A) < cndn for some constants c, d with d < 1.

Proof. See [11, Theorem 8.16, item (8.6)]. �
Now we show that a structure A satisfies condition 2 of Theorem 3.51 if and only

if it is cellular. Together with Theorem 3.51 this implies Lemma 3.48.

Lemma 3.52. A structure A is cellular if and only if it is a reduct of a finite covering
of some �-categorical unary structure.

Proof. First, let us assume that A is cellular. Then we can assume without
loss of generality that the automorphism group of A can be written as Aut(A) =
G(H ;N0, ... , Nk) for some finite domain permutation groups N0, ... , Nk and H ⊃
N :=

⋃k
i=0Ni . Let A′ be a structure with Aut(A′) = N (N0, ... , Nk). Then it is

enough to show that A′ is a finite covering of some unary �-categorical structure.
Let 	 be the map sending every element to its Δ class. We identify the image of 	
with {(0, 0)} ∪ {1, ... , k} × � as in Section 3.1. Then the image of Aut(A′) under
the homomorphism �(	) : Aut(A′) → Sym({(0, 0)} ∪ {1, ... , k} × �) induced by 	
is id({(0, 0)}) × Sym(�)[k]. This is exactly the automorphism group of the unary
structure B with domain set A/Δ and with relations for the subsets {(0, 0)} and
{i} × � for i = 1, ... , k. Clearly B is �-categorical which finishes the proof of the
“only if” direction of the lemma.

Now let us assume that A is a reduct of a finite covering A′ of some unary �-
categorical structure B. We claim that A is cellular. We have seen that the class
of cellular structure is closed under taking reducts; therefore, it is enough to show
that A′ is cellular. We know that Aut(B) can be written as

∏n
i=1 Sym(Ui) for some

finite partition U1, ... , Un of B (see for instance Lemma 3.1 in [11]). We can assume
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without loss of generality thatU1, ... , Uk are infinite, andUk+1, ... , Un are finite. Let
	 : A′ → B be a finite covering map. We define:

• K := 	–1(
⋃n
i=k+1Ui ),

• ∇ := {(u, v) : ∃i ≤ k((	(u), 	(v)) ∈ Ui )}, and
• Δ := {(u, v) : 	(u) = 	(v) ∈

⋃k
i=1Ui}.

Then it is straightforward to verify that P := (K,∇,Δ) is an �-partition of Aut(A′)
all of whose components having finite domains. By definition this means exactly
that A′ is cellular. �

Finally, we mention that in [23] the authors showed that a structure is cellular
if and only if it is �-categorical, and mutually algebraic. We skip the definition of
mutual algebraicity here, and refer the reader to the aforementioned paper.

We summarize the results mentioned in this section in the following theorem.

Theorem 3.53. Let A be a countable structure. Then the following are equivalent:
(1) A is cellular.
(2) A is a finite covering of a reduct of a unary �-categorical structure.
(3) A is a reduct of a finite covering of a unary �-categorical structure.
(4) Aut(A) ∈ H1.
(5) Aut(A) � G(H ;N0, ... , Nk) for some finite domain permutation groups Ni

and H ⊃
∏k
i=0Ni .

(6) A is stable, and osn(A) < cnk for some c > 0 and k ∈ �.
(7) A is stable, and osn(A) ∼ cnk for some c > 0 and k ∈ �.
(8) A is stable, and for all c > 0 we have osn(A) < ec

√
n if n is large enough.

(9) oin(A) < cndn for some constants c, d with d < 1.
(10) A is �-categorical and mutually algebraic.

§4. Homogeneity and finite boundedness. In [34] Lachlan showed that every
�-categorical monadically stable structure is finitely homogenizable. On the other
hand by Theorem 10.1’ in [32] we know that every stable homogeneous structure is
finitely bounded. Combining these two statements we obtain thatM ⊆ FBH. In this
section we reprove this containment using more elementary methods. Furthermore,
our proof uses some more general arguments which are not specific to the class M
(or stable structures), and they might work for other classes of structures as well.

Our key observation is that the class FBH is closed under taking finite-index
reducts; this will be shown in the following subsection. By Corollary 2.34 we know
that FBH is also closed under taking finite disjoint unions and infinite copies. Then
by Theorem 3.44 we can conclude that the class M is contained in FBH.

4.1. Finite-index reducts of homogeneous structures.

Lemma 4.1. Let A be an �-categorical structure, and let B be a reduct of A. For
i ∈ I , let αi be such that Aut(B) :=

⋃
i∈I (Aut(A)αi). Then �u ≈B �v iff �u ≈A αi(�v)

for some i ∈ I .

Proof. Since A and thus also B are �-categorical we have

�u ≈B �v ⇔ ∃(� ∈ Aut(B))(�u = �(�v))

⇔ (∃i ∈ I )(∃α ∈ Aut(A))(�u = ααi(�v)) ⇔ (∃i ∈ I )(�u ≈A αi(�v)). �
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Lemma 4.2. Let A be a homogeneous relational structure with m(A) = m, and let
B be a reduct of A with |Aut(B) : Aut(A)| = d <∞. Then B is interdefinable with
a homogeneous structure B′ with m(B′) = dm.

Proof. We check condition (4) of Lemma 2.21 for the structure B and dm. Let
�u, �v ∈ An such that �u �≈B �v. We have to show that �u	 �≈B �v	 for some 	 : dm → n.
Since |Aut(B) : Aut(A)| = d it follows that Aut(B) can be written as Aut(B) =⊔
i<d (Aut(A)αi) for some suitable αi , i < d . Then by Lemma 4.1 we know that

�u �≈A αi(�v) for all i < d . Then by using the implication (1)→(4) of Lemma 2.21 we
obtain that for all i < d there exists some 	i : m → n such that �u	i �≈A αi(�v	i ). Let

	 : dm → n, im + j �→ 	i(j), (i < d, j < m).

Then �u	 �≈A αi(�v	) for all i < d . By using Lemma 4.1 again this implies �u	 �≈B �v	,
and this is what we wanted to show. �

Lemma 4.2 immediately implies the following.

Corollary 4.3. The class FH is closed under taking finite-index reducts.

Proof. Let A ∈ FH, and let B be a reduct of A with |Aut(B) : Aut(A)| = d <
∞. We show that B ∈ FH. We can assume without loss of generality that A is
homogeneous and has a finite relational signature. Then Lemma 4.2 immediately
implies that B is interdefinable with a homogeneous structure with a finite relational
signature. �

Now we show that the class FBH is also closed under taking finite-index reducts.

Lemma 4.4. Let A be a homogeneous finitely bounded structure with signature �,
and letm := b(A). Let 
 ⊂ �, and let B be a 
-reduct of A which is also homogeneous.
Let C be a 
-structure, and let a0, ... , am be pairwise distinct elements in C. Then
C ∈ Age(B) if and only if for all i ≤ m there exists a �-expansion Di of the structure
Ci := C|C\{ai} such that for all i, j ≤ m we have:

(i) Di ∈ Age(A), and
(ii) Di |C\{ai ,aj} = Dj |C\{ai ,aj}.

Proof. We use the notation Ci := C \ {ai}, and Cij = C \ {ai , aj} = Ci ∩ Cj .
Let C ∈ Age(B). We can assume without loss of generality that C is a finite

substructure ofB. Then letD := A|C , andDi := A|Ci . Then obviouslyDi ∈ Age(A),
and Di |Cij = Dj |Cij = D|Cij .

For the other direction we define a �-structure D as follows. The domain set of
D is C, and for all relational symbols R ∈ �, a tuple �u ∈ C ar(R) is contained in RD

if and only if there exists some i such that �u ∈ RDi .
Claim 1. D|Ci = Di . Let R ∈ �. If �u ∈ RDi then it follows immediately from the

definition that �u ∈ RD. On the other hand if �u ∈ RD ∩ C ar(R)
i then by definition

�u ∈ RDj ∩ C ar(R)
i for some j ≤ m. Then �u ∈ C ar(R)

j ∩ C ar(R)
i = C ar(R)

ij , and thus
item (ii) implies that �u is also contained in the relation RDi .

Claim 2. D ∈ Age(A). Let us assume that this is not the case. Then let D′ be
a minimal substructure of D which is not in age Age(A). Then |D′| ≤ b(A) = m.
Therefore there exists some ai , 0 ≤ i ≤ m which is not contained in D′. Then the
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domain set of D′ is contained in Ci for some i, and thus D′ is substructure of
D|Ci = Di . In particular D′ ∈ Age(A), a contradiction.

Finally, let C be the 
-reduct of D. Then C ∈ Age(B). �

Lemma 4.5. Let A be an �-categorical structure with signature �, let 
 ⊆ �, and
let B be the 
-reduct of A. Let d := |Aut(B) : Aut(A)|. Then for every 
-type p which
is realizable in B there exist at most d many �-types q which are realizable in A and
such that p ⊂ q.

Proof. Let Aut(B) :=
⋃
i∈I (Aut(A)αi) with |I | = d , and let us choose �u ∈ Ak

with tpB(�u) = p. Then if q ⊃ p then there exists some �v ∈ Ak such that tpA(�v) = q
and tpB(�v) = p = tpB(�u). By Lemma 4.1 the second condition holds if and only
if �v ≈A αi(�u) for some i ∈ I . This implies that if tpB(�v) = p then q = tpA(�v) =
tpA(�i(�u)) for some i ∈ I . This shows the statement of the lemma. �

Lemma 4.6. Let A be a homogeneous finitely bounded structure with signature �,
and letm := b(A). Let 
 ⊂ �, and let B be a 
-reduct of A which is also homogeneous,
and let us assume that d := |Aut(B) : Aut(A)| is finite. Then b(B) ≤ mdm+1.

Proof. Let C ∈ Min(Age(B)c). We have to show that |C| ≤ mdm+1. Let
a0, ... , am ∈ C , and let Ci := C|C\{ai}. Then Ci ∈ Age(B). Therefore there exist
�-expansions Di of Ci which are contained in Age(A). Let �ui be a tuple which
enumerates all elements of Ci . Let Di0, ... ,Di(l(i)–1) be all the possible �-expansions
of Ci which are contained in Age(A). Then tpDij

(�u) with j < l(i) are pairwise
different �-types all of which contain tpC(�u). Since Dij ∈ Age(A) it follows that all
�-types tpDij

(�u) are realizable in A. Therefore by Lemma 4.5 it follows that l(i) < d
for all i ≤ m.

Since C �∈ Age(B), and all Dij with i ≤ m, j < l(i) are in Age(A) it follows by
Lemma 4.4 that for all functions f : m + 1 → d for which f(i) ≤ l(i) : i = 0, ... , m
we have Dif(i)|C\{ai ,aj} �= Djf(j)|C\{ai ,aj} for some i, j ≤ m. This implies that for
every function f as above there exist a tuple �uf from Cij := Ci ∩ Cj and an Rf ∈ �
such that �uf ∈ RDif(i)

f �⇔ �uf ∈ RDjf(j)
f . Now let C ′ be the union of element in all

tuples �uf . Then the length of the tuples �uf is at most m(A) ≤ b(A) ≤ m. Therefore
|C ′| ≤ mdm+1. Let C′ := C|C ′ .

Now we show that C′ �∈ Age(B) (∗). Let us assume for contradiction that C′ ∈
Age(B). LetC ′

i := Ci \ {ai},C ′
ij := C ′

i ∩ C ′
j , andC′

i := C|C ′\{ai}. Then by applying
Lemma 4.4 again it follows that there exist �-expansions D′

i of C′
i such that D′

i ∈
Age(A), andD′

i |C ′
ij

= D′
j |C ′

ij
. It follows from the homogeneity ofB that for all i there

exists a �-expansion D′′
i ∈ Age(A) of Ci such that D′′

i |C ′
i

= D′
i . Then D′′

i = Dif(i)

for some f(i) < l(i) for all i. This also implies that for all i, j < m we also have
Dif(i)|C ′

i ∩C
′
j

= Djf(j)|C ′
i ∩C

′
j
(†). On the other hand by definition we know that there

exist indices i, j ≤ m, a tuple �uf fromCij , and a relational symbolRf such that �uf ∈
R

Dif(i)
f �⇔ �uf ∈ RDjf(j)

f . By the construction of C ′ it follows that every coordinate
of �uf is fromC ′ and then also fromC ′ ∩ Cij = C ′ \ {ai , aj} = C ′

ij . Combining this

with the observation that Dif(i)|C ′
i

= D′
i it follows that RD

′
i (�uf) �⇔ RD

′
j (�uf). This

contradicts the equality (†), and thus finishes the proof of (∗).
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Since C was chosen to be a minimal 
-structure in Age(B)c , the statement (∗)
implies that in fact C = C′. Hence |C| = |C′| ≤ mdm+1 which finishes the proof of
the lemma. �

Lemma 4.7. Let A be a homogeneous finitely bounded structure with m := b(A),
and let B be a reduct of A with |Aut(B) : Aut(A)| = d . Then B is interdefinable with
a homogeneous structure B′ with b(B′) ≤ mddm+2.

Proof. LetB′ := Δdm(B). ThenB′ is homogeneous, and it is interdefinable with
B by Lemmas 4.2 and 2.21. Let A′ be the structure A expanded by all relations of
B′. Then A and A′ are interdefinable, and thus Aut(A) = Aut(A′), and A′ is also
homogeneous. Then by applying Lemma 4.6 to the structures A′ and B′ we obtain
b(B′) ≤ (dm)ddm+1 = mddm+2. �

Lemma 4.7 immediately implies the following.

Corollary 4.8. The class FBH is closed under taking finite-index reducts.

Theorem 4.9. M ⊂ FBH.

Proof. Follows immediately from Theorem 3.44, Corollary 2.34, and Corol-
lary 4.8. �

§5. Thomas’ conjecture for hereditarily cellular structures. In this section we show
that Thomas’ conjecture holds for the class M, i.e., every structure in M has finitely
many reducts up to interdefinability.

Notation 5.1. For a permutation group H we denote by aclH (∅) the union of the
finite orbits of H.

Remark 5.2. The notation acl stands for algebraic closure. For our discussion we
only need to define it for the empty set.

Let G ≤ Sym(X ) be a permutation group. Then we define w(G) to be the
supremum of the set

{| aclGx/E(∅)| : x ∈ X,E is a congruence of Gx onX}.

Lemma 5.3. If G is oligomorphic then w(G) is finite.

Proof. If x and y are in the same orbit of G then

sup{| aclGx/E(∅)| : E is a congruence of Gx} =

sup{| aclGy/E(∅)| : E is a congruence of Gy}.

Therefore, since G has finitely many orbits, it is enough to show that
sup{| aclGx/E(∅)| : E is a congruence of Gx} is finite for a fixed x. Since G is
oligomorphic, so is Gx , in particular Gx has finitely many 2-orbits. Since all
congruences of Gx are unions of 2-orbits of Gx , it also follows that Gx has finitely
many congruences. Therefore it is enough to show that aclGx/E(∅) is finite for a fixed
congruence E of Gx . Since Gx is oligomorphic, so is Gx/E. In particular Gx/E has
finitely many finite orbits, and therefore aclGx/E(∅) is finite. �
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Lemma 5.4. If G ≤ H then w(G) ≥ w(H ).

Proof. If E is a congruence ofHx for some x ∈ X then it is also a congruence of
Gx , andGx/E ≤ Hx/E. Therefore in this case aclHx/E(∅) ≤ aclGx/E(∅). Taking the
supremum over x and the congruences E ofHx the claim of the lemma follows. �

Lemma 5.5. Let G1, ... , Gk be permutation groups with pairwise disjoint domains,
and let G :=

∏k
i=1Gi . Then w(G) ≤

∑k
i=1w(Gi).

Proof. Let Xi := Dom(Gi) and X := Dom(G). Let x ∈ Xi , and let E be a
congruence ofGx . Let {[y1]E, ... , [ym]E} be a finite orbit ofGx/E for some y1, ... , ym
with y1 ∈ Xi . Then since Gx fixes the sets X1, ... , Xk it follows that we can find
y′1, ... , y

′
m ∈ Xi such that [y′l ]E = [yl ]E for all l = 1, ... , m. Then {[y′1]Ei , ... , [y

′
m]Ei }

is a finite orbit of (Gx |Xi )/Ei for Ei := E ∩ X 2
i . This implies that aclGx/E(∅)

can be written as a union of acl(Gx )|Xj /Ej
(∅) : j = 1 ... , k. Since G :=

∏k
i=1Gi

it follows that Gx |Xj = Gj if j �= i , and Gx |Xj = Gi |x if j = 1. Let xj ∈ Xj
be arbitrary with xi = x. Then since (Gj)xj ≤ (Gx)|Xj for all j, it follows that
acl(Gx )|Xj /Ej

(∅) ⊂ acl(Gj )xj /Ej
(∅), and thus | acl(Gx )|Xj /Ej

(∅)| ≤ w(Gj). Therefore

| aclGx/E(∅)| ≤
∑k
i=1w(Gi). Since this holds for every x ∈ X , and a congruence

E of Gx we obtain w(G) ≤
∑k
i=1w(Gi). �

Lemma 5.6. Let Y0, ... , Yk, Y,N0, ... , Nk,N,H be as in Section 3.1. Let Hi :=
H(Yi ). Then w(Hi) ≤ w(G(H ;N0, ... , Nk)) for all i = 0, 1, ... , k.

Proof. In this proof we use the notations from Section 3.1.
Let G := G(H ;N0, ... , Nk). We have to show that for all x ∈ Y and a congruence

E of (Hi)x we have | acl(Hi )x/E(∅)| ≤ w(G).
Let us assume that x ∈ Y0. Then aclG(∅) = Y0, and thus w(G) ≥ |Y0|. On the

other hand w((H0)x) ≤ |Dom(H0)| = |Y0|. Therefore the statement of the lemma
if true for i = 0.

Let x ∈ Yi for i > 0, and let E be a congruence of (Hi)x . Let E∗ the equivalence
relation on X whose equivalence classes are:

(a) Y0 × {0},
(b) all ∇-classes except Yi × �,
(c) all Δ-classes in Yi except Yi × {0},
(d) the set of the form C × {0} where C ∈ Yi/E.
We claim that E∗ is a congruence of G(x,0). Since G(x,0) preserves the relations ∇

and Δ it follows that G maps everyE∗ class corresponding to cases (a)–(d) to another
class corresponding to the same item. Let C ∈ Yi/Ex , and let � ∈ G(x,0). We have
to show that � maps C × {0} to C ′ × {0} for some C ′ ∈ Yi/Ex . Let �0 := (0, ... , 0).
Then by definition ��0(�) ∈ H . Since G(x,0) preserves (x, 0) and the relation Δ it
follows that � preserves [(x, 0)]Δ = Yi × {0}. Therefore �(a, 0) := (��0(�), 0) for all
a ∈ Yi . This also implies that ��0(�) ∈ Yi , and thus �′ := ��0(�)|Yi ∈ H(Yi ) = Hi .
Since �((x, 0)) = (x, 0) we have �′(x) = x. Then C ′ := �′(C ) ∈ Yi/E since E is a
congruence of (Hi)x , and thus

�(C × {0}) = ((��0(�)(C )) × {0} = �′(C ) × {0} = C ′ × {0}.
This shows that E∗ is a congruence of G(x,0).
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The definition of E∗ implies that acl(Hi )x/E(∅) × {0} ⊂ aclG(x,0)/E
∗(∅), and thus

| acl(Hi )x/E(∅)| ≤ | aclG(x,0)/E
∗(∅)| ≤ w(G) which finishes the proof of the lemma. �

Lemma 5.7. LetN0, ... , Nk,N,H ∈ H be as in Definition 3.21, and letHi := H(Yi ).

Then the groupH ∗ := 〈H,
∏k
i=0Hi〉 is closed, and N is a finite index normal subgroup

of H ∗.

Proof. By our assumption N is a normal subgroup of H; therefore, it is enough
to show that N is normalized by

∏k
i=0Hi . Since N�H it follows that id(Y0) ×

··· × id(Yi–1) ×Ni × id(Yi+1) ··· × id(Yk) is normalized by H |{Yi}. Therefore Ni
is normalized by Hi , and thus N =

∏k
i=1Ni is normalized by

∏k
i=0Hi . This also

means that N�H ∗. By Corollary 3.36 this implies that |H ∗ : N | ≤ |H ∗ : N | <∞,
and thus H ∗ is closed. �

Lemma 5.8. Let n,m ∈ �. Then there exist finitely many closed groups G ∈ Hn
with w(G) ≤ m up to isomorphism.

Proof. We prove the lemma by induction on n. For n =– 1 there is nothing to
show.

For the induction step let us consider a group G ∈ Hn with w(G) ≤ m for
some m ∈ �. By Theorem 3.41 we know that G is isomorphic to some group
G(H ;N0, ... , Nk) whereN0, N1, ... , Nk,H ∈ Hn–1. LetYi := Dom(Ni),Hi := H(Yi ),

H ∗ := 〈H,
∏k
i=0Hi〉, and Δ∗ :=

⋃k
i=0 Y

2
i . Then Δ∗ is a congruence of G, and

Dom(G/Δ∗) ≥ k + 1. Therefore k + 1 ≤ w(G) = m. By Lemma 5.7 we know that
N�H ∗ and H ∗ is closed. Hence H ∗ ∈ Hn–1. By Lemma 5.6 it follows that
w(Hi) ≤ m, and then Lemma 5.5 implies w(

∏k
i=0Hi) ≤ m(k + 1). By Lemma

5.4 we have w(H ∗) ≤ w(
∏k
i=0Hi); therefore, w(H ∗) ≤ m(k + 1) ≤ m2. By the

induction hypothesis this implies that we have finitely many choices for the group
H ∗ up to isomorphism. This means that it is enough to show that for a fixed
group H ∗ ∈ Hn–1 we have finitely many choices for groups N and H in Hn–1 such
that N�H ∗ and H ≤ H ∗. By Corollary 3.36 we know that we have finitely many
possible choices for the group N, and in all cases |H ∗ : N | is finite. Therefore if
bothH ∗ and N are fixed then we have finitely many choices forN ≤ H ≤ H ∗. This
finishes the proof of the lemma. �

Corollary 5.9. H contains countable many groups up to isomorphism.

Proof. Direct consequence of Lemma 5.8. �
Remark 5.10. By Theorem 2.1 in [30] we know that every�-stable�-categorical

structure is interdefinable with a structure which has a finite signature and which is
quasi-finitely axiomatizable. This also implies Corollary 5.9.

Now we can show that Thomas’ conjecture holds for the class M.

Theorem 5.11. Every hereditarily cellular structure has finitely many reducts up to
interdefinability.

Proof. Let A ∈ M. We will check condition (5) of Proposition 2.17 for A. Let
G := Aut(A). Then G ∈ H by Theorem 3.6, and thus G ∈ Hn for some n ∈ �. Let
m := w(G). Then for every closed supergroup H we have H ∈ Hn and w(H ) ≤ m

https://doi.org/10.1017/jsl.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.66


CLASSIFICATION OF �-CATEGORICAL MONADICALLY STABLE STRUCTURES 35

by Lemma 5.4. Therefore by Lemma 5.8 we have finitely many choices for H up to
isomorphism. �

Remark 5.12. We know by Theorem 4.9 (or by the results of [34]) that all
structures in M are finitely homogenizable. This implies that Theorem 5.11 is indeed
a special case of Thomas’ conjecture.

Acknowledgments. I would like to thank Andrés Aranda for a careful reading
and useful feedback on earlier versions of this article, and Manuel Bodirsky for
discussion and helpful comments.

Funding. The author has received funding from the European Research Council
(Grant Agreement No. 681988, CSP-Infinity). The research of the author was
supported by the grants TKP2021-NVA-09 of the Ministry for Innovation and
Technology, Hungary, and NKFIH-K138892.

REFERENCES

[1] L. Agarwal, The reducts of the generic digraph. Annals of Pure and Applied Logic, vol. 167 (2016),
pp. 370–391.

[2] L. Agarwal and M. Kompatscher, 2ℵ0 pairwise nonisomorphic maximal-closed subgroups of
Sym(N ) via the classification of the reducts of the Henson digraphs, Journal of Symbolic Logic, vol. 83
(2018), no. 2, pp. 395–415.

[3] J. T. Baldwin and S. Shelah, Second-order quantifiers and the complexity of theories. Notre Dame
Journal of Formal Logic, vol. 26 (1985), no. 3, pp. 229–303.

[4] L. Barto and M. Pinsker, Topology is irrelevant (in a dichotomy conjecture for infinite domain
constraint satisfaction problems). SIAM Journal on Computing, vol. 49 (2020), no. 2, pp. 365–393.

[5] B. Bennett, Spatial reasoning with propositional logics, Proceedings of the International Conference
on Knowledge Representation and Reasoning, Morgan Kaufmann, San Francisco, 1994, pp. 51–62.

[6] M. Bodirsky, Cores of countably categorical structures. Logical Methods in Computer Science,
vol. 3 (2007), no. 1, pp. 1–16.

[7] ———, Complexity classification in infinite-domain constraint satisfaction. Mémoire d’habilitation
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