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ON PERIODIC SOLUTIONS TO AUTONOMOUS
RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

ZHANYUAN HOU

Under the assumption that Co = C([—r, 0], S""1^)) is positively invariant for
a > 0, two necessary and sufficient conditions are obtained for an autonomous
retarded functional differential equation to have a non-trivial periodic solution in
C*. Moreover, a feasible sufficient condition is given, which is better for n = 2
than that given by Dos Reis and Baroni.

1. INTRODUCTION

Let R be the set of real numbers, R+ the set of non-negative numbers and Rn

the real Euclidean space. For r ^ 0 let C = C([—r,0], Rn) be the space of continuous
functions from [—r,0] to Rn with the topology of uniform convergence given by the
norm||<A||= sup

Consider the autonomous retarded functional differential equation

(1) X'(t) = f(Xt)

where / : C —» Rn is a continuous map that takes bounded sets into bounded sets and
Xt is defined as Xt(9) = X(t + 8) for — r < 0 ^ 0. Suppose that unicity and continuity
with respect to initial values hold and that the solutions are defined on [—r, oo). Then
equation (1) defines a semi-dynamical system n: C x R+ —> C given by n(4>, t) = Xt{<j>).

Let X(t,to,<j>) be a solution to (1) on [-r,A) with Xt<3(to,4>) = 4>- For the sake
of convenience, we denote the solution X(t,0,4>) by X(t,</>) and Xt(0,(j>) by Xt((j>).

A solution X(t, <f>) defined on [—r, oo) is called periodic if there is a T > 0 such that
4> = 7r((^,r), or equivalent, 7r(«£,i) = *•(<£.< + T) for all t ^ 0. A set M C C is called
positively invariant if n((j>,t) £ M holds for all <f> € M and < > 0.

For a > 0, let S"- 1 ^) = {z <E Rn: |*| = a} and Ca = C([-r,0], 5n~1(a)) •
Suppose that Co is positively invariant. The problems which concern us are these:
Does (1) necessarily have periodic solutions in Co? What is the essential condition
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ensuring that (1) has a non-trivial periodic solution in Co? Many examples (see [3],
p.326) have shown that there may not be any periodic solutions to (1) although Ca

is positively invariant. Thus the first problem has already been solved. In the case of
n = 2 , [1] presented not only a good result but also a better method for the solution of
the second problem. The aim of this paper is to generalise the result in [1] to all cases
of n ^ 2. Indeed, we shall give necessary and sufficient conditions for (1) to have a
non-trivial periodic solution in Ca •

2. MAIN RESULTS

THEOREM 1 . Suppose that f: C —> Rn is a continuous map that takes bounded
sets into bounded sets. Let n be the semi-dynamical system defined by (1). If Co

is positively invariant, then (1) has a non-trivial periodic solution in Ca if and only
if there is a closed continuous curve La on Sn~1{o), a positively invariant closed set
CL C C([ - r ,0 ] , La) C Ca, a point X0 E La and a Tx > 0 satisfying:

(i) J = {<f> 6 CL : 0(0) = Xo} is non-empty;
(ii) /(<£) ^ 0 holds for all <j> 6 J;

(iii) for any <f> € J, there is a t' E (0,Ti] such that X(t'',<j>) = X0 .

To prove Theorem 1, the following lemmas are needed.

LEMMA 1 . Let r be the delay in (1). If the operator v*:C-*C defined by

7r*(0) = 7r(^,f) takes bounded sets into bounded sets, then for any bounded set B C C

and t > r, cl(7r45) (closure of Tr*B) is compact. Moreover, cl j |J nfB j is also

compact for any t ^ r.

PROOF: By the Ascoli-Arzela theorem, the compactness of c l ^ ' i ? ) can easily be

proved for t ^ r . This, together with continuity, implies that for any t0 € [r,t],

lim Tr1^ = Tr*0^ holds uniformly for <j> £ B. Suppose {^n} Q U Tf*B. We will show

that there is a convergent subsequence {i/>nk} Q {^n}- Clearly there are {<t>n} Q B
and {tn} C [r,t] such that irtn<f>n — if>n for n = 1,2, By the compactness of
[r, t ], we may suppose without loss of generality that lim tn = to. Then TT*° <f>neirto B

n—>oo

corresponds to irtn <f>neTTtn B. Because lim 7r*$n = ir*°^n holds uniformly for n, for
t-»io

any e > 0, there is a natural number N such that

holds for any n > N. Then the compactness of cl(ir*°B) implies that there exists a

subsequence {ir^^nt} Q {T*0^} and a V'o G cl(ir*°jB) such that lim ir*°^nk = ij>o-
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We assume that ||w*°0njt — -0O || < e/2 for k> ki, where nkl > N holds. Then,

holds for k > ki. Thus, lim il>n. = V>o . Namely, cl I M ir*B I is compact. D

LEMMA 2 . Suppose E is a fianach space, K either a cone or a truncated cone
in E, G C. E an open bounded set with 0 G G and dG the boundary of G. If
A: dG H K -> K is completely continuous and inf{||A<£|| : <j> G dG n K} > 0, then A
has an eigenvector in dG D K.

LEMMA 3 . Let F C E be a bounded, closed and convex set with 0 £ F. Then

the set K{F) = {x G E: (3z G F)(3t > 0)(a; = tz)} is a cone in E.

The proofs of Lemma 2 and Lemma 3 can be found in [1, 2, 4].

Proof of Theorem 1:

NECESSITY. Let X(t,<j>o) be a non-trivial periodic solution in C o . Then there is a
T > 0 such that X{t + T,^0) =X(t,<t>0) holds for all t > 0. Let La = {X{t,<t>0): 0 <
t ^ T } ; then La is a closed continuous curve on Sn~1(a). It is obvious that CL —

{Xt($o): 0 ^ t ^ T} C C([—r,0], La) is positively invariant. Because X(t,<f>o) is non-
trivial, there is a t0 G [0,T] such that d/dtX(t,(j>o) | t o ^ 0, that is f{Xto{(j>o)) ^ 0.
We denote X(<o,<£o) by Xo; then we have J = {<f> £ CL: <j>{0) = Xo} = {Xto(4>o)}.

Thus /((A) ^ 0 holds for <f> G J . Let 7\ = T and t' = T j . Then X( i ' , 0) = Xo for any
<f> £ J. Hence the necessity holds.

SUFFICIENCY. For r = 0 the result is trivial, so we assume r > 0.

Let F-{</)£ C: <£(0) = Xo and \\(f>\\ ^ 2a} . It is clear that F is closed, bounded,

convex and 0 £ F. Then Lemma 3 implies that K(F) is a cone and K — K(F) n{cj>e

C: \\<f>\\ ^ a} a truncated cone in C. Let

G = {4> G C: ||0|| < 2a} - {^ G C: ( 3 ^ G CL)(3a G [

Then G is an open bounded set and K HdG = {<f> e CL- <£(0) = Xo} = J.

We define the m a p - r : J -» [r,oo) by T ( ^ ) = inf{< ^ r : 7r((^,f) G J}. Then

(iii) implies r < T ( 0 ) < (fc0 + 1)7\ for all <f> G J and some natural number kQ with

fcoTi ^ '"• We assert that T is continuous in J . In fact, for any <f>n, <f> G J and

tn = r{<j)n), I — i"(^) with <f>n —> <j> as n —> oo, we only need to show („ - t I as

n -f co. By (ii) we know that d/dtX(t,^) \j = f{Xj(<j>)) ^ 0, which, together

with the definition of T , implies the existence of Si G [0,r) and s2 > t such that

X{t,lj>) ^ Xo holds on [ s i , ^ ] except at t = t. By continuity, X(t,<pn) —• X( t ,^ j
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holds uniformly on [ a i , ^ ] as n —> oo. Because {X(t,^j: si < t < S2}, as well as
{X(t,tj>n): Sx ^ t ^ S2}, is a section of the curve £ a , we must have tn £ [ s i , ^ ] when
n is large enough. H <n /» t as n —» co, then there is a subsequence {tnjt} such that

*nt -» ? e [«i,a2] as fc -> 00 but I ^ 7. Thus Xo = X(tnk,<f>nk) -> X (!,<&) ^ Xo as

fc —> 00, which is a contradiction. Therefore we have tn —> 7 as n —> 00.

Let A: J -» C be defined by A<£ = 7r(<£,r(0)). Then AJ C J. Since 7r(<£,i) is
continuous in (^, t) and T ( ^ ) is continuous in <j>, A is continuous. Clearly, we have
AJ C |J 7T*J which, by Lemma 1, implies that A is completely continuous.

Moreover, inf{||^4<^|| : <f> £ J } = a > 0 holds. By Lemma 2, there exist a <£o £ J and

a. fj. £ R such that Aĉ o = M ô • As Acj>o £ J , we have ||0o|| = a = ||A<^o|| = ||M<^O|| =

IMI-||4O|| thus, H = i-
By the definition of a cone [1], <$>o and — $0 cannot both belong to K. Thus fj, = 1,

that is J4<£O = ^0 • Since f(<f>) ^ 0 holds on J , it is obvious that Xt(<f>o) is a non-trivial
periodic solution. D

THEOREM 2 . Under the same general assumption as above, (1) has a non-trivial
periodic solution in Ca if and only if there is a closed continuous curve La on S71'1^),
a positively invariant compact set CL C C([—r,0], La) C Ca and a point Xo € La

satisfying:

(i) J = {<I>£CL: <j>(0) = Xo} is not empty;

(ii) f(<j>) ^ 0 holds for any <f> £ J;

(iii) for any <j) £ J, there is a t' > 0 such that Xti(<f>) £ J.

PROOF: From (i) — (iii) we know that for any (j) £ J, there is a <'(</>) > 0 such
that Xt,(<t>) £ J but that Xt(<f>) £ J for 0 < t < t'. Suppose {t'(4>): 4> £ J } is
unbounded. Then by the compactness of CL , we can select a sequence {<^n} C J and
a corresponding {tn} = {tn(<f>n)} such that both <j>n -* <f>0 £ J and tn —» oo hold as
n —» oo. By the continuity with respect to initial values, we conclude that Xt(<f>o) £ J

for all t ^ 0, which contradicts (iii). Hence {t'(<f>): <j> £ J } is a bounded set. By
Theorem 1, (1) has a non-trivial periodic solution. Thus the sufficiency is proved. The
necessity is obvious from Theorem 1. D

THEOREM 3 . Under the same general assumption as above, if there is a closed

continuous curve La on Sn~1(a) such that C([—r,0], La) C Ca is positively invariant

and f(<f>) ^ 0 holds for <j> £ C([—r,0], La) - B, then (1) has a non-trivial periodic

solution in C o . Here

B - {<t>€C([-r,0],La): f{4>) = 0, (f>{s) is not constant for s £ [—r,0]}
belongs to one of the following cases:

(i) B is empty;
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(ii) B is a Unite set;
(iii) all <f> G B, except for a Unite number of elements of B, satisfy <j>(s) ->

<f>(0)(s —» 0) along La in the same direction. Moreover, {<f>(0): <f> G B} ^

P R O O F : Suppose that B satisfies (iii). If there is a <j>o £ B and a <f> G
C([ - r ,0 ] , La) such that Xt,(<f>) = <j>0 = Xt»(<j>) holds for some t" > t' ^ 0, then
Xt(<fr) is a non-trivial periodic solution as 4>o(3) is not constant. If no such solution
exists, we first show that for any Xo G La and any <f> G C([—r,0], La), there is a t' > 0
such that X{t',(f>) = X0.

In fact, -X"(f, <f>) obviously exists on [0, oo) and moves along La. For convenience,
we denote one direction of La by (+) and the other by (—). Suppose that all <f> G B,
except for a finite number of elements of B, are in ( + ) . If X(t,<f>) changes direction at
some t > 0, then X'(t,</>) - 0 holds, that is f(X-^<j>)) = 0, which implies X-£<t>) G B
since /(</>) ^ 0 on C([—r,0], La) - B. If X(t,<f>) changes direction infinitely often,
then there is a sequence {tn} such that tn+i > tn > 0, Xtn{<f>) € Bt Xt3n+l(4>) in (+)
and Xt3n(4>) in (—) hold for all positive integers ra. Since Xt{^>) cannot coincide with
any element of B more than once, we have Xti(<j>) ^ Xt.(<f>) for t ^ j . Therefore B
has an infinite number of elements that are in (—). This contradicts the assumption.
Thus X(t, <f>) changes direction at most a finite number of times. Hence there must
be a Ti > 0 such that X(t, <f>) moves along La in a definite direction for t > T i . If
X(t,</>) —» Xi G La as t —> oo, then f(Xt(<j>)) —> 0 as / —> oo. Because / is continuous
and Xt(<f>) —> <j>i as t —* oo, where ^i(a) = Xj for s G [—r,0], we have f(<j>i) — 0
which implies <f>i G B. This contradicts the assumption too. Thus lim X(t,<j>) does

f—>oo

not exist. Therefore there must be a t' > Tt, such that X{t',<j>) = Xo.

Suppose ^o 6 C([—r,0], La) and v{<j>o) — {Xt(<f>o). t ^ 0 } . Let ui(<j)o) be the

limit set of v(<l>o)- Then w(^o) Q C([—r,0], La) is non-empty, compact and positively
invariant [3]. By the above conclusion we know that J = {$ G w(^0) : 0(0) = Xo} is
non-empty for any XQ G La. By {^(0) : <j> G B} ^ Zo we can choose Xo G La — {<f>(0) :
^ G B} so that / PI B is empty. Thus, f{<j)) ^ 0 holds on J. Furthermore, for any
4> G J, there is a t' > 0 such that Xti(<j>) £ J. By Theorem 2, (1) has a non-trivial
periodic solution in Ca.

If B satisfies either (i) or (ii), the proof is similar to the above. 0

3. REMARKS AND EXAMPLES

REMARK. OUT results generalise the theorem in [1] in the following aspects. Firstly,
[l] dealt only with the case of n = 2, while our results can be used for all cases of
n > 2. Secondly, [1] presented only a sufficient condition, whereas our results include
necessary and sufficient conditions, which are normally regarded as the best solution to
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any problem. Even our sufHcient condition (Theorem 3) is much better than that of [1]
because the theorem in [1] is only the special case of Theorem 3, when n = 2 and B
satisfies (i). Thus, our results can be used for a more general class of equations than
[1] can.

EXAMPLE 1. Consider the system

(3.1)

X[(t) = X3{i)J [X!{t + 0) - sin*]2<W[l + JT2(t - | ) + X2(t - 1)]

X2(t) = 2X1(t)Xs(t) I [Xx{i + 6)- sin 6}2d6[l + X2 (t-^)+ X2(t - 1)]
J-i \ lJ

r°
3 1 7-1

Let X = {Xu X2, X3f, f = (/x,/,,/,)21,

J [W) - s\n0]2d0[\

' ^ ( | ) ^ ( -1 ) ] and

2
~ sm6)2d8{\

Then (3.1) can be written as X'{t) = f(Xt). It is easy to verify that d/dt[Xl(t) +
Xl{t) + X$(t)] = 0, d/dt[X2(t) - X2[t)] = 0 and the general assumptions hold for
(3.1). Let La C S2(a) be defined by X2 + X\ + X\ = a2 with X2 = X2. Then Ca,

as well as C([-l ,0], La) C CO, is positively invariant. If a ^ yj(sin2 1 + 1/2)2 - 1/4
holds, we denote

<j>0(s) = (sin s, sin2 s, V o2 — sin2 s — sin4 s J,

$0(s) = (sin.s, sin2s, — v a 2 — sin2 s — sin4 3),

and J3 = {(£0,^0} • Then / (^) ^ 0 holds for <£ G C([-l,0], La) - B.

If 0 < a < ^/(sin2 1 + 1/2)2 - 1/4, then f(<f>) £ 0 holds for all <j> € C([-l,0], La). By
Theorem 3, (3.1) has a non-trivial periodic solution in Ca for any o > 0.
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EXAMPLE 2. Consider the system

(3.2)

X[(t) = X,(t) f {[X1(t + 9)-sin9]2

J-i

+[X3(t + 9) - y/4. - sin2 9 - sin4 9]2}d9[l + X\{t - 2)]

X'2{t) = 2X1(t)Xs(<) / ° {[Xi(t + 0) - sin*]2

+[Xs{t + 9)- y/4-an70-aa*0\*}dB[l + X|(t - 2)]

X'3(t) = Xx(0[l + 2X2(t)} [ {[XX(< + 9) - sin*]2

J-i

+[X,(< + 9) - V4-sin20-sin40]2}<W[l + Xs
2(t - 2)]

Let Lo C ^ ( a ) be defined by X\ + X% -\-X\ = a2 with X2 = A"2. Then both Ca and
C([-2,0], Lo) are positively invariant. If o ^ 2 (a > 0), then /(<£) ^ 0 holds for all
</> € C([-2,0], £o) . If o = 2, we put

B = {^£ C([-2,0], L2) : 4>{0) = (sin9, sin2 9, \ A - sin2 9 - sin4 fl) for tf 6 [-1,0]}.

Then /(^) ^ 0 holds for <f> £ C([-2,0], L2) - B. Furthermore, for all <j> G
(̂ (0)(« —» 0) are in the same direction along i2 • By Theorem 3, (3.2) has a non-trivial
periodic solution in Ca for any a > 0.

REMARK. Although the two examples above can be reduced to the case of n = 2, they
cannot be treated by the theorem of [1] because f(4>) may have zeros in Ca • Because
Theorem 3 is only a sufficient condition, there exist systems that cannot be treated by
this. In this case Theorems 1 and 2 may be helpful. The next example will show this.

EXAMPLE 3. Consider the system

(3.3)

for which / = (/1( f2f, U = ̂ (O)(2»n««o|01(«)|)/(|^(-l)| +

max

-1)|), h =

- l ) | + |^ ( -1) | ) and <f> = (<f>u<f>2f G C7([-l,0], R2).

Clearly, the general assumptions hold for (3.3). Moreover, Ca is positively invariant for
any a > 0 as d/dt[X2(t) + X|(<)] = 0. Let La = S^a) = {X £ R2 : X2 + X\ = a2},
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then C ( [ - l , 0 ] , La) = Ca. Let </>0(s) = (a ,0) T for - 1 < a < 0, Xo = (a,0)T G £ a ,
i/+(<£0) = {Xt{</>0) :t^0},CL= cl(v+(<f>0)) a n d J = {<f> e CL : <f>{0) = X 0 } . I t is easy

to verify that CL = v+{<j>Q) U « (^ 0 ) k(^o) is the positive limit set of v+{4>o) with
7r*a;(^o) = w(4>o) for any < > 0]. By Lemma 1, CL is a positively invariant compact
set. It is obvious that /(</>) ^ 0 holds on J. Furthermore, for any <f> 6 J and t > 0,
the solution X(t,<f>) satisfies

f*

Xi(t) = acos2ir I { max \Xi(£ + s)\ /[\Xi(£ — 1)| + \X2(£ — l)|]}<i£

X2(t) =-asin2w [ { max |Xj(£ + s) | /[|Xi(Z - 1)| + \X2{£ - l)\\\dt.

Thus max |Xi(£ + s)\ = a holds for 0 ^ £ < 1. Since
a = \X(i - 1)| < \Xiit - 1)| + \X*(l - 1)| < V2\X(£ - 1)| = v/2a

holds for any £ ^ 0, we have

/•i

v^Trt ^ 2TT / { max |JTi(Z + j) | /[|JTi(Z - 1)| + \X2{£ - 1)\]}M < 2nt
Jo —i$»^o

for < G [0,1]. Therefore there exists a i0 6 [1/2, 1/V2] such that A"x(t0) = - a .
Similarly, there is a t' £ [<0 + 1/2, <0 + 1/v^] such that Xt;(<^) € J . By Theorem 2
(3.3) has a non-trivial periodic solution in C o .
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