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Abstract

Large deviation principles and related results are given for a class of Markov chains
associated to the ‘leaves’ in random recursive trees and preferential attachment random
graphs, as well as the ‘cherries’inYule trees. In particular, the method of proof, combining
analytic and Dupuis–Ellis-type path arguments, allows for an explicit computation of the
large deviation pressure.
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1. Introduction and results

In this paper we consider large deviations and related laws of large numbers and central
limit theorems for a class of Markov chains associated to the number of leaves, or nodes of
degree one, in preferential attachment random graphs and random recursive trees, and also the
number of ‘cherries’, or pairs of leaves with a common parent, in Yule trees. These random
graphs model various networks such as pyramid schemes, chemical polymerization, the Internet,
social structures, genealogical families, among others. In particular, the leaf and cherry counts
in these models are of interest, and have concrete interpretations.

Define the nondecreasing Markov chain {Zn : n ≥ 1} starting from the initial state Z1 =
k0 ≥ 0 by its one-step transitions

Pr(Zn+1 − Zn = v | Zn) =

⎧⎪⎨⎪⎩
1 − Zn

sn
if v = 1,

Zn

sn
if v = 0,

(1.1)

where {sn : n ≥ 1} is a sequence of positive numbers such that

sn ≥ k0 + n− 1 and
sn

n
→ α for some 1 < α < ∞ (1.2)
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with convention that 0/0 = 0. Additionally, we also consider two special sequences:

sn = n, α = 1, and k0 = 0, 1, (1.3)

and
sn = n

2
, α = 1

2 , and k0 = 0. (1.4)

The Markov chain Zn, with respect to certain sns and αs, will be seen to represent the count
of leaves in preferential attachment and recursive trees, and the count of cherries in Yule trees.
For most of these models, a law of large numbers (LLN) and a central limit theorem (CLT)
with respect to Zn have been proved.

Then, characterizing the associated large deviations is a natural problem which gives insight
into the properties of rare events, and seems less studied in random graphs. Previous large
deviations work on related models has concentrated on analytic methods with respect to some
urn schemes, not applicable in our setting [25], or on extensions of the Dupuis–Ellis weak
convergence approach (cf. [20]) to allocation counts different than ours [21], [44]. We also
note that some exponential bounds via martingale concentration inequalities are found in the
case where sn is linear with slope α [15]. See also [4], [6], [12], [18], [19], and [28] for other
types of large deviations work in various random tree models.

Our main results are to prove a large deviation principle (LDP) for Zn/n with an explicitly
computed ‘pressure’, or Legendre transform of the associated rate function (Theorem 1.1).
Such explicit computations are not commonplace, and our ordinary differential equation (ODE)
method, as described below, is quite different from the methods in [25], where a quasi-linear
partial differential equation (PDE) is solved, or in [44], where a finite-dimensional minimization
problem is obtained.

In addition, aside from a LLN, which is trivially obtained, we prove a CLT for Zn through
complex variable arguments with the pressure (Theorem 1.3). These proofs of the LLN and
CLT, although indirect, serve as alternate arguments when the LLN and CLT are already known
in model contexts.

In Subsection 1.2 we more carefully define the random graph models considered, provide
the related literature, and discuss applications of our results through Propositions 1.1–1.4. We
remark that Proposition 1.2 gives a quenched LLN, CLT, and LDPs for the count of certain
leaves in a randomized preferential attachment model which involves a random sn.

The large deviation arguments to handle the chain when α > 1, that is, under assump-
tion (1.2), and the cases α = 1 and α = 1

2 , that is, under assumptions (1.3) and (1.4),
respectively, make use of two different methods: an ODE method under assumption (1.2), and
a singularity analysis approach under assumptions (1.3) and (1.4). The ODE approach relies
on a large deviation principle for the path interpolation of Z�nt�/n (Theorem 1.2), perhaps of
interest in itself, that we establish by the Dupuis–Ellis weak convergence approach.

Our ODE technique to prove the LDP for Zn/n is to consider the recurrence relation for
mn(λ) = E[exp{λZn}] obtained from (1.1):

mn+1(λ) = (1 − eλ)
m′
n(λ)

sn
+ eλmn(λ). (1.5)

Dividing through by mn(λ), we write

mn+1(λ)

mn(λ)
= 1 − eλ

sn/n

m′
n(λ)

nmn(λ)
+ eλ. (1.6)
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The idea now is to take the limit on n in the above display. When the ‘pressure’� exists, it
satisfies �(λ) = limn→∞(1/n) logmn(λ). In this case, it is natural to suppose that the limits

�′(λ) = lim
n→∞

m′
n(λ)

nmn(λ)
, (1.7)

e�(λ) = lim
n→∞

mn+1(λ)

mn(λ)
(1.8)

both exist. Then, from (1.6) we can write the ODE

e�(λ) = 1 − eλ

α
�′(λ)+ eλ, �(0) = 0. (1.9)

This equation has unique solution (1.13), below.
The main task is to show that the pressure and limits (1.7) and (1.8) exist. But, the pressure

exists as a consequence of the path LDP for Z�nt�/n by the contraction principle. We note, in
principle, that we can try to compute the pressure or the rate function from (1.14), below, by
the calculus of variations, but we found it difficult to solve the associated Euler equations for
(5.1), below.

Finally, we show that (1.7) and (1.8) exist by extending mn(λ) to the complex plane, and
then analyzing its zeros and analytic properties. These estimates are also useful for the CLT
arguments.

The second approach to prove the LDP under assumptions (1.3) and (1.4), when α = 1
and α = 1

2 , uses the fact that sn is linear with slope α. In this approach, in the spirit of [25],
we compute the pressure from analysis of singularities for the generating function G(λ, z) =∑
n≥1mn(λ)z

n−1. From (1.5) we can write the linear PDE

∂G

∂z
(1 − eλz)+ eλ − 1

α

∂G

∂λ
= eλG. (1.10)

We can solve this PDE implicitly, and locate, at least heuristically, a singular point. Then,
formally, from root test asymptotics, the pressure would be the reciprocal of the location of the
singularity.

The difficulty is in establishing the analyticity of the solution and identifying its singularity.
Flajolet et al. [25] used this program to obtain large deviations and the CLT for a certain class of
urn models. However, the cases where sn is linear with slope α = 1

2 , 1, 2 and, more generally,
the urns associated with noninteger sn are not covered by their arguments. On the other hand,
we are able to supply the needed analyticity and singularity identification when sn has slopes
α = 1

2 , 1, 2, and in this way prove the LDP for Zn/n (Theorem 1.1) in these cases.
The plan of the paper is to state the results in Subsection 1.1, discuss applications to random

graphs in Subsection 1.2, prove the path LDP (Theorem 1.2) in Section 2, prove the LDP
for Zn/n (Theorem 1.1) and associated LLN and CLT (Theorem 1.3) in Section 3, reprove
Theorem 1.1 for sn = 2n by singularity analysis in Section 4, and conclude in Section 5.

1.1. Results

We recall the setting for large deviations. A sequence {Xn} of random variables with values
in a separable complete metric space X satisfies the LDP with speed n and rate function
I : X → [0,∞] if I has compact level sets {x : I (x) ≤ a} for a ≥ 0, and for every Borel
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set U ∈ BX,

− inf
x∈U◦ I (x) ≤ lim inf

n→∞
1

n
log Pr(Xn ∈ U)

≤ lim sup
n→∞

1

n
log Pr(Xn ∈ U)

≤ − inf
x∈Ū

I (x).

(Here U◦ is the interior of U and Ū is the closure of U .)
Often the rate function is given in terms of the Legendre transform of the pressure�(·)when

it exists. When X = R, this representation takes the form

I (x) = sup
λ∈R

{λx − log�(λ)}, (1.11)

where we recall that

�(λ) := lim
n→∞

1

n
log E[exp{λZn}]. (1.12)

Now recall the Markov chain Zn corresponding to sequence {sn}, (1.1).

Theorem 1.1. Suppose that one of the conditions (1.2), (1.3), or (1.4) holds. Then, the sequence
Zn/n satisfies the LDP with speed n and strictly convex rate function I given by (1.11) with
pressure

�(λ) = − log

(
α

eλ − 1

∫ λ

0

(
es − 1

eλ − 1

)α−1

ds

)
for λ �= 0 (1.13)

and �(0) = 0.

Remark 1.1. For α = 1
2 or for integer α ≥ 1, the integral in (1.13) can be evaluated explicitly;

cf. (3.4), (3.5), and (4.1), below.

We now consider the LDP for the family of stochastic processes {Xn(t) : 0 ≤ t ≤ 1} obtained
by linear interpolation of the Markov chain (1.1),

Xn(t) := 1

n
Z�nt�−k0+1 + nt − �nt�

n
(Z�nt�−k0+2 − Z�nt�−k0+1) for t ≥ k0

n

and Xn(t) := t for 0 ≤ t ≤ k0/n. The trajectories of Xn(t) are nondecreasing Lipschitz
functions with constant at most 1.

Theorem 1.2. Suppose that condition (1.2) holds. As a sequence of C([0, 1]; R)-valued ran-
dom variables, Xn satisfies the LDP with speed n and convex rate function I : C([0, 1]; R) →
[0,∞] given by

I (ϕ) =
∫ 1

0

(
ϕ̇(t) log

αtϕ̇(t)

αt − ϕ(t)
+ (1 − ϕ̇(t)) log

αt(1 − ϕ̇(t))

ϕ(t)

)
dt (1.14)

if ϕ(0) = 0, ϕ(t) is differentiable, and 0 ≤ ϕ̇ ≤ 1 for almost all t , and the integral converges;
otherwise, I (ϕ) = ∞.

By the contraction principle, Theorem 1.2 implies the LDP forZn/nwith rate function given
by the variational expression

I (x) = inf{I (ϕ) : ϕ(0) = 0, ϕ(1) = x}. (1.15)
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Figure 1: Thick curves are numerical solutions of the Euler equations for (1.15) with α = 2 for x =
0.13, 2

3 , 0.85, 1. Dashed, thin or thick, lines are straight lines from (0, 0) to (1, x).

In general, optimal trajectories are not straight lines—exceptions are the LLN trajectoryϕα(t) =
tα/(α + 1) and the extreme case ϕ(t) = t . But, the optimal trajectories try to stay near the
LLN line (for which I (ϕα) = 0) to minimize cost before going to destination x (cf. Figure 1).

Lemmas for the proof of Theorem 1.1 give normal approximation. The law of large numbers
also follows from Theorem 1.1.

Theorem 1.3. Suppose that one of the conditions (1.2), (1.3), or (1.4) holds. Then, we have

Zn

n
→ α

α + 1
almost surely (a.s.)

and also
1√
n
(Zn − E[Zn]) d−→ N(0, σ 2), where σ 2 = α2

(1 + α)2(2 + α)
,

and ‘
d−→’ denotes convergence in distribution.

1.2. Applications to random graph models

As alluded to in the introduction, the Markov chainZn, depending on parameters, represents
the number of leaves in at least two random graph models, that is, preferential attachment graphs
with linear-type weights, and uniformly and planar oriented trees. Also, Zn in a particular case
corresponds to the count of cherries in Yule trees.

1.2.1. Preferential attachment graphs. Preferential attachment graphs have a long history dating
back to Yule (cf. [35]). However, since the work of Barabasi–Albert [1], [5], these graphs have
been of recent interest with respect to modeling of various ‘real-world’ networks such as the
Internet (WWW), and social and biological communities. Leaves, or nodes with degree one,
in these networks of course represent sites with one link, or members at the periphery. (See
books [11], [15], and [23] for more discussion.)

The idea is to start with an initially connected graphG1 with a finite number of vertices, and
say no self-loops (so that the vertices have well-defined degrees). At step 1, add another vertex,
and connect it to a vertex x of G1 preferentially, that is, with probability proportional to its
weight, f (dx)/

∑
y∈G1

f (dy), to form a new graph G2. Continue in this way by adding a new

https://doi.org/10.1239/aap/1253281066 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281066


850 W. BRYC ET AL.

vertex and connecting it preferentially to formGk for k ≥ 1. Here, the ‘weight’ of a vertex is a
function f of its degree dx . When f : N → R+ is increasing, already well-connected vertices
tend to become better connected, a sort of reinforcing effect. We note when the initial graph
G1 is a tree, the later graphs {Gn} are also trees.

Our results will be applicable to linear weights, f (k) = k+β for β > −1, which correspond
to certain power-law mean degree sequences. Namely, let Tn(k) be the number of vertices in
Gn with degree k for k ≥ 1. It was shown, by martingale arguments in [9] and [36], and by
embedding into branching processes in [40], that the LLN Tn(k)/n → rk a.s. holds, where

rk = 2 + β

k + β

k∏
j=1

j + β

j + 2 + 2β
= O

(
1

k3+β

)
.

We note that a corresponding CLT for Tn(k) is proved in [36]. Part of the appeal, with respect
to applications, is that the parameter β can sometimes be matched to empirical network data
where similar power-law behavior is observed.

Let dG1 and |G1| be the total degree and number of vertices inG1, respectively. Define also
k
G1
0 as the number of leaves in G1. For the number of vertices with degree 1, or the leaves
Tn = Tn(1), we have the following result which in part reproves the associated LLN and CLT.

Proposition 1.1. The count Tn is the Markov chain Zn with

sn = 1

1 + β
(dG1 + 2(n− 1)+ (|G1| + n− 1)β),

k0 = k
G1
0 , and α = (2 + β)/(1 + β). Hence, as α > 1, the LLN, CLT in Theorem 1.3, and

LDPs in Theorems 1.1 and 1.2 apply.

Proof. The count Tn increases by one in the next step when a nonleaf is selected, and remains
the same when a leaf is chosen. Since at each step the total degree of the graph augments by
two, at step n, the total degree of Gn is dG1 + 2(n − 1), and so the total weight of Gn with
|G1| + n− 1 vertices is dG1 + 2(n− 1)+ (|G1| + n− 1)β. Therefore, the probability at step
n that a vertex x ∈ Gn is selected is (dx + β)/(dG1 + 2(n− 1)+ (|G1| + n− 1)β). Then, at
step n, given that the leaves have total weight Tn + Tnβ, the probability that a leaf is selected
is Tn(1 + β)/(dG1 + 2(n − 1) + (|G1| + n − 1)β). Therefore, Tn can be identified with the
Markov chain Zn with sn = (dG1 + 2(n − 1) + (|G1| + n − 1)β)/(1 + β), k0 = k

G1
0 , and

α = (2 + β)/(1 + β). The condition sn ≥ k0 + n− 1 is straightforwardly verified.

We can also randomize the model by adding a random number of edges at each step. Let {γi}
be a sequence of independent, identically distributed random variables on N with finite mean
γ̄ = E[γ1] < ∞. Consider the following evolution given a realization of the sequence {γi}. At
step n ≥ 1, we add a new vertex to the graphGn and connect it to a node selected preferentially
fromGn with γn+1 directed edges put between them, that is, one edge directed to the new vertex
and the remaining γn directed towards the selected node in Gn. Here, to select preferentially
means that a node in x ∈ Gn is selected with probability proportional to weight d in

x +β, where
d in
x is the in-degree of x. For simplicity, to allow the full range β > −1, in the following we

will assume that all nodes in the initial graph G1 have in-degree at least 1. The effect of these
random edge additions with respect to {γi} is to randomize further the weight given the nodes
in the graph. The deterministic model, that is, the model given above, is when P(γ1 = 1) ≡ 1
and the directions on edges are not taken in account. We note that the randomized model is
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similar to the one in [3]. See also [16] for a more general randomized model, and also [19] and
[32] for other random edge schemes.

In our randomized model we now define the notion of generalized leaves, that is, those nodes
which connect to exactly one other vertex, or in other words, those vertices with in-degree equal
to 1. Let T gen

n = T
gen
n (1) denote the number of generalized leaves at step n, and let d in

G1
be

the total in-degree of G1. Define also kgen
0 as the number of generalized leaves in G1. The

following result gives new quenched LLN, CLT, and LDPs with respect to T gen
n .

Proposition 1.2. Given the sequence {γi}, T gen
n is the Markov chain Zn with k0 = k

gen
0 , s1 =

(d in
G1

+ |G1|β)/(1 + β) and, for n ≥ 2,

sn = 1

1 + β

(
d in
G1

+
n−1∑
i=1

(γi + 1)+ (|G1| + n− 1)β

)
.

Hence, a.s. with respect to {γi}, since sn/n → α = (γ̄ + 1 + β)/(1 + β) > 1, the LLN, CLT
in Theorem 1.3, and LDPs in Theorems 1.1 and 1.2 hold for {Zn} conditioned on {γi}.

Proof. Similar to the leaves in the deterministic model, at each step, the generalized leaf
count increases by one when the new vertex connects to a nongeneralized leaf, and remains
the same when the new vertex links to a generalized leaf. In step n ≥ 1, the total in-
degree of the graph increases by γn + 1. Also, the total weight of the graph at step 1
is d in

G1
+ |G1|β, and at step n ≥ 2 is d in

G1
+ ∑n−1

i=1 (γi + 1)+ (|G1| + n− 1)β. Then, the
probability that the new vertex links to vertex x at step 1 is (d in

x +β)/(d in
G1

+|G1|β) and at step
n ≥ 2 is (d in

x + β)/(d in
G1

+ ∑n−1
i=1 (γi + 1)+ (|G1| + n− 1)β). Therefore, analogous to the

deterministic model, the probability a leaf is selected at step 1 is T gen
1 (1 + β)/(d in

G1
+ |G1|β)

and at step n ≥ 2 is T gen
n (1 + β)/(d in

G1
+ ∑n−1

i=1 (γi + 1)+ (|G1| + n− 1)β). Hence, T gen
n is

seen to be the Markov chain Zn with sn and k0 as desired, and satisfying sn ≥ k0 + n− 1.

1.2.2. Random recursive trees. Random recursive trees are also well-established models, dating
to the 1960s, with applications to data sorting and searching, pyramid schemes, spread of
epidemics, chemical polymerization, family trees (stemma) of copies of ancient manuscripts,
etc. Leaves in these trees correspond to ‘shutouts’ with respect to pyramid schemes, nodes with
small ‘affinity’ in polymerization models, ‘terminal copies’ in stemma of manuscripts, etc. See
[41], [42], and the references therein (e.g. [37]) for more discussion. Following the proof of
Proposition 1.3, below, we also mention connections with Stirling permutations.

These recursive schemes form a sequence of trees. We start with a single vertex labeled 0
with degree 1 (e.g. connected to a node outside the system), and then attach a new vertex
at step n ≥ 1, labeled n, to one of the n nodes already present. When the choice is made
uniformly over the labels 0, 1, . . . , n− 1, the model forms a growing uniformly recursive tree.
However, when the vertex, say x ∈ {0, 1, . . . , n−1}, is chosen with probability proportional to
its degree dx , and the new vertex is inserted at random uniformly in one of the dx gaps between
its dx − 1 children (the left and right of all child labels joining x are also considered gaps), a
plane oriented tree is grown. Here, unlike for the uniformly recursive tree scheme, different
orders of labels at each distance from the root 0 give rise to distinct trees.

Let Runif
n (k) and Rplan

n (k) be the numbers of vertices at step n with degree k in the uniform
and planar oriented schemes, respectively. With respect to both types of recursive schemes,
LLN and CLTs forRn(k) have also been proved by combinatorial, urn, and martingale methods
(see [23, Chapter 4], [29], and [41]). Part of the next result reproves the LLN and CLT with
respect to the leaves Runif

n = Runif
n (1) and Rplan

n = R
plan
n (1).
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Proposition 1.3. The count Runif
n is the Markov chain Zn with k0 = 1, sn = n, and α = 1.

However, Rplan
n is the chain Zn with k0 = 1, sn = 2n − 1, and α = 2. Hence, with respect

to Runif
n and Rplan

n , the LLN, CLT, and LDP in Theorems 1.1 and 1.3 apply. In addition, with
respect to Rplan

n , the path LDP in Theorem 1.2 holds.

Proof. The countsRunif
n andRplan

n increase by one in the next step when a nonleaf is selected,
and remain the same when a leaf is chosen. With respect to the uniform scheme, the probability
that at step n a vertex x ∈ {0, . . . , n− 1} is selected is 1/n. Hence, the probability that a leaf
is selected at this step is Runif

n /n. Since Runif
1 = 1 (the 0th labeled node), it follows that Runif

n

is identified with the Markov chain Zn with k0 = 1, sn = n, and α = 1.
On the other hand, with respect to the planar oriented scheme (which is similar to preferential

attachment with β = 0), at each step the total degree of the graph increases by two, and so the
total degree of the tree at step n, noting that the degree of 0 is initially 1, is 2(n−1)+1 = 2n−1.
Therefore, the probability that at step n a vertex x ∈ {0, . . . , n− 1} is selected is dx/(2n− 1).
Correspondingly, at step n, as there are Rplan

n leaves each with degree 1, the probability that a
leaf is selected is Rplan

n /(2n− 1). Since initially Rplan
1 = 1, Rplan

n is seen to be the chain Zn
with k0 = 1, sn = 2n− 1, and α = 2.

We now comment on recent connections of planar oriented trees with Stirling permutations
(cf. [30] and [31]). A Stirling permutation of length 2n is a permutation of the multiset
{1, 1, 2, 2, . . . , n, n} such that, for each i ≤ n, the elements occurring between the two is
are larger than i (cf. [27]).

It turns out that each permutation is a distinct code for a plane-oriented recursive tree with
n+ 1 vertices. Indeed, quoting from [30], consider the depth first walk which starts at the root
and goes first to the leftmost daughter of the root, explores that branch (recursively, using the
same rules), returns to the root, and continues to the next daughter, and so on. Each edge is
passed twice in the walk, once in each direction. Label the edges in the tree according to the
order in which they were added—edge j is added at step j and connects vertex j to a previously
labeled vertex. The plane recursive tree is coded by the sequence of labels passed by the depth
first walk. With respect to a tree with n+ 1 vertices, the code is of length 2n, where each of the
labels 1, 2, . . . , n appears twice. Adding a new vertex means inserting the pair (n+ 1)(n+ 1)
in the code in one of the 2n+ 1 places.

In a Stirling permutation a1a2 · · · a2n, the index 1 ≤ i ≤ 2n is a plateau if ai = ai+1 (where
a2n+1 = 0). Janson [30] showed that the number of leaves in a plane-oriented tree with n+ 1
vertices is the number of plateaux in a random Stirling permutation of length 2n. See [30] for
more details.

1.2.3. Yule trees. Since Yule’s influential 1924 paper [43], Yule trees, among other processes,
have been used widely to model phylogenetic evolutionary relationships between species
(see [2] for an interesting essay). In particular, the counts of various shapes and features
of these trees can be studied, and matched to empirical data to test evolutionary hypotheses.
In [34], an LLN and CLT is proved for the number of cherries, or pairs of leaves with a common
parent, in Yule trees. Associated confidence intervals are computed, and some empirical data
sets are examined to see their compatibility with ‘Yule tree’genealogies. Other related statistical
tests and limit results can be found in [7], [8], [26], and [39].

In the Yule tree process, we start with a root vertex. It will split into two daughter nodes at
step 1, each of which is equally likely to split into two children at step 2. At step n, one of the
n leaves in the tree is chosen at random, and it then splits into two daughters, and so on. Let

https://doi.org/10.1239/aap/1253281066 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281066


LDP for leaves in random trees 853

Cn be the number of cherries at step n ≥ 1. The following proposition reproves the LLN and
CLT for the cherry counts Cn, and also states an associated LDP.

Proposition 1.4. The cherry count Cn is the Markov chain Zn with k0 = 0, sn = n/2, and
α = 1

2 . Hence, the LLN, CLT, and LDP in Theorems 1.1 and 1.3 hold.

Proof. The counts Cn increase by one in the next step when a leaf not part of a cherry is
selected, and remains the same when a leaf in a cherry pair is chosen. At step n, as one of the
n leaves is selected at random, the probability that a leaf in a cherry pair is taken is 2Cn/n. As
initially C1 = 0 (only the root node is present), Cn is identified with the chain Zn with k0 = 0,
sn = n/2, and α = 1

2 .

2. Proof of Theorem 1.2

We follow the method and notation of Dupuis and Ellis [20]. Although some arguments are
analogous to those found in [20, Chapter 6], which considers random walk models with time-
homogeneous continuous statistics, and [44], where a different model with a time singularity
at t = 0 is examined, for completeness we give all details as several differ, especially in the
lower bound proof.

Let Xnj = Zj−k0+1/n for k0 ≤ j ≤ n, and set Xnj = j/n for 0 ≤ j ≤ k0. Then, noting
(1.1), given Xnj , we have Xnj+1 = Xnj + vnj /n, where vnj has Bernoulli distribution ρσn(j/n),Xnj .
Here,

σn(t) =
{
s�nt−k0+1�/n for t ≥ k0/n,

0 for t < k0/n,

ρσ,x(A) = x

σ
δ0(A)+

(
1 − x

σ

)
δ1(A) for A ⊂ R, 0 ≤ x ≤ σ ,

and ρ0,0 := δ1.
Define Xn· as the polygonal interpolated path connecting points (j/n,Xnj ) for 0 ≤ j ≤ n.

Also, for probability measures µ � ν such that dµ = f dν, define R(µ‖ν) = ∫
f log f dν,

the relative entropy; set R(µ‖ν) = ∞ when µ is not absolutely continuous with respect to ν.
Let h : C([0, 1],R) → R be a bounded continuous function. To prove Theorem 1.2, we

need only establish Laplace principle upper and lower bounds [20, p. 74]. The upper bounds
are to show that

lim sup
n→∞

1

n
log E[exp{−nh(Xn· )}] ≤ − inf

ϕ∈C([0,1],R){I (ϕ)+ h(ϕ)}

for a rate function I . The lower bounds are to prove the reverse inequality:

lim inf
n→∞

1

n
log E[exp{−nh(Xn· )}] ≥ − inf

ϕ∈C([0,1],R){I (ϕ)+ h(ϕ)}.

Define, for k0 + 1 ≤ j ≤ n, noting that Xnj = j/n for j ≤ k0 is deterministic,

Wn(j, xj , . . . , xk0+1) = −1

n
log E[exp{−nh(Xn· )} | Xnj = xj , . . . , X

n
k0+1 = xk0+1]

and

Wn := Wn(k0,∅) = −1

n
log E[exp{−nh(Xn· )}].
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Then, by the Markov property, for k0 + 1 ≤ j ≤ n− 1,

exp{−nWn(j, xj , . . . , xk0+1)}
= E[exp{−nWn(j + 1, Xnj+1, xj , . . . , xk0+1)} | Xnj = xj , . . . , X

n
k0+1 = xk0+1]

=
∫

exp

{
−nWn

(
j + 1, xj + v

n
, xj , . . . , xk0+1

)}
ρσn(j/n),xj (dv).

By a property of relative entropy [20, Proposition 1.4.2(a)], for k0 + 1 ≤ j ≤ n− 1,

Wn(j, xj , . . . , xk0+1)

= −1

n
log

∫
exp

{
−nWn

(
j + 1, xj + y

n
, xj , . . . , xk0+1

)}
ρσn(j/n),xj (dv)

= inf
γ

{
1

n
R(γ ‖ρσn(j/n),xj )+

∫
Wn

(
j + 1, xj + y

n
, xj , . . . , x1

)
γ (dy)

}
.

Also, the boundary condition Wn(n, xn, . . . , xk0+1) = h(x·) holds with respect to the linearly
interpolated path x· = xn· connecting {(�/n, x�/n)}k0≤�≤n.

The basic observation in the Dupuis–Ellis method is that Wn(j, xj , . . . , xk0+1) satisfies a
control problem (see [20, Section 3.2]) whose solution, for k0 ≤ j ≤ n− 1, is

V n(j, xj , . . . , xk0+1) = inf
{vni }

Ēj,xj ,...,xk0+1

[
1

n

n−1∑
i=j

R(vni (·)‖ρσn(i/n),X̄ni )+ h(X̄n· )
]
.

Here, vni (dy) = vni (dy; xk0 , . . . , xi) is a Bernoulli distribution given xk0 , . . . , xi for k0 ≤ i ≤
n − 1 and in the display vni (·) = vni (dy | X̄nk0

, . . . , X̄ni ); {X̄ni ; 0 ≤ i ≤ n} is the adapted path
satisfying X̄nl = l/n for 0 ≤ l ≤ k0 and X̄nl+1 = X̄nl + Ȳ nl /n for k0 ≤ l ≤ n − 1, where Ȳ nl ,
conditional on (X̄nl , . . . , X̄

n
k0
), has distribution vnl (·); X̄n· is the interpolated path with respect

to {X̄nl }; and Ēj,xj ,...,xk0+1 denotes the conditional expectation with respect to the X̄n· process
given the values {X̄nl = xl : k0 + 1 ≤ l ≤ j} at step k0 + 1 ≤ j ≤ n. The boundary conditions
are V n(n, xn, . . . , xk0+1) = h(x·) and

V n(k0,∅) = V n = inf
{vnj }

Ē

[
1

n

n−1∑
j=k0

R(vnj (·)‖ρσn(j/n),X̄nj )+ h(X̄n· )
]
. (2.1)

In particular, by [20, Corollary 5.2.1],

Wn = −1

n
log E[exp{−nh(Xn· )}] = V n. (2.2)

The goal will be to take Laplace limits using this representation. To simplify later expressions,
we will take vnj = δ1 for 0 ≤ j ≤ k0 − 1 when k0 ≥ 1.

2.1. Upper bound

To establish the upper bound, we first put the controls {vnj } into continuous-time paths. Let
vn(dy | t) = vnj (dy) for t ∈ (j/n, (j + 1)/n], 0 ≤ j ≤ n− 1, and vn(dy | 0) = vn0 . Define

vn(A× B) =
∫
B

vn(A | t) dt
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for A ⊂ R and B ⊂ [0, 1]. Also, define the piecewise constant path X̃n(t) = X̄nj for t ∈
(j/n, (j + 1)/n], 0 ≤ j ≤ n− 1, and X̃n(0) = 0. Then,

V n = inf
{vnj }

Ē

[∫ 1

0
R(vn(· | t)‖ρ

σn(�nt�/n),X̃n(t)) dt + h(X̄n· )
]
.

From this control representation, as |V n| = |Wn| ≤ ‖h‖∞ and ρσ,x is supported onK = {0, 1},
for each n, there are {vnj } supported on K and corresponding vn(dy × dt) = vn(dy | t) × dt
such that

Wn + ε = V n + ε ≥ Ē

[∫ 1

0
R(vn(· | t)‖ρ

σn(�nt�/n),X̃n(t)) dt + h(X̄n· )
]
.

As the sets K and

� = {ϕ ∈ C([0, 1]; R) : ϕ(0) = 0, ϕ ↑, Lipschitz, with bound 1}
are compact on R and C([0, 1],R), respectively, and {vnj } are probability measures on K and
{X̄n· } ⊂ �, by Prokhorov’s theorem, the distributions of (vn(dy× dt), X̄n· ) have a subsequence
which converges weakly to a limit distribution governing (v, X̄·), where, for each realization,
v is a probability measure on K × [0, 1] and X̄· ∈ �. More precisely, let (�̄, F̄ , P̄) be a
probability space where v : �̄ → probability measures on K × [0, 1], and X̄ : �̄ → �. Then,
[20, Lemma 3.3.1] shows that v is the subsequential weak limit of vn, and, P̄-a.s., for ω ∈ �̄,

v(A× B | ω) =
∫
B

v(A | t, ω) dt

for some kernel v(dy | t, ω) on K given t and ω.
Now, by the same proof given for [20, Theorem 5.3.5] (only [20, Equation (5.12)] in the

theorem statement differs; in our context µ there is replaced by ρ
σn(j/n),X̃

n
j
), as K is compact,

(vn, X̄n, X̃n) has a subsequential limit in distribution to (v, X̄, X̄) (the last coordinate with
respect to D([0, 1],R)). Also, P̄-a.s., for all t ∈ [0, 1],

X̄(t) =
∫

R×[0,1]
yv(dy × ds) =

∫ t

0

∫
K

yv(dy | s) ds.

In particular, P̄-a.s., ˙̄X(t) = ∫
K
yv(dy | t).

By the Skorokhod representation theorem we can assume that (vn, X̄n, X̃n) → (v, X̄, X̄)

converges a.s. In particular, X̄n converges uniformly to X̄ a.s., and it is clear that X̃n converges
uniformly to X̄ a.s. as X̄ is continuous (see [20, p. 154]).

Let µδ(·) = (1 − δ)−1 1[δ,1](·), and define measures vnδ (dy × dt) := vn(dy | t) × µδ dt .
Then, by [20, Lemma 1.4.3(f)] we have, for 0 < δ < 1,∫ 1

δ

R(vn(· | t)‖ρ
σn(�nt�/n),X̃n(t)) dt = (1 − δ)R(vnδ (dy × dt)‖ρ

σn(�nt�/n),X̃n(t) × µδ dt).

Write

lim inf
n→∞ V n ≥ lim inf

n→∞ Ē

[∫ 1

δ

R(vn(· | t)‖ρ
σn(�nt�/n),X̃n(t)) dt + h(X̄n· )

]
≥ lim inf

n→∞ Ē[(1 − δ)R(vnδ (dy × dt)‖ρ
σn(�nt�/n),X̃n(t) × µδ dt)+ h(X̄·)]

≥ Ē

[∫ 1

δ

R(v(· | t)‖ραt,X̄(t)) dt + h(X̄·)
]
,
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where in the last line we used Fatou’s lemma, noting lower semi-continuity ofR, vnδ (dy × dt) →
v(dy | t) × µδ dt a.s., and ρ

σn(�nt�/n),X̃n(t) converges in distribution to ραt,X̄(t) for t ∈ [δ, 1]
a.s. since σn(�nt�/n) → αt , X̃n(t) → X̄(t) uniformly on [0, 1] a.s., and ρσ,x is continuous on
{(σ, x) : δ ≤ σ ≤ 1, 0 ≤ x ≤ σ } (cf. [20, Section 6.2]).

By [20, Lemma 3.3.3(b)],

R(v(· | t)‖ραt,X̄(t)) ≥ L

(
αt, X̄(t),

∫
yv(dy | t)

)
,

where

L(t, x, y) = sup
θ

{
θy − log

∫
eθzρt,x(dz)

}
. (2.3)

We note that, for t > 0, L(t, x, y) diverges when x = 0 and 0 ≤ y < 1, and x = t and
0 < y ≤ 1, but is finite otherwise, and in this case evaluates to

L(t, x, y) = y log

(
ty

t − x

)
+ (1 − y) log

(
t (1 − y)

x

)
, (2.4)

understood with the usual convention that 0 log(0) = 0.

Since
∫
yv(dy | t) = ˙̄X(t), we have

lim inf
n→∞ V n ≥ Ē

[∫ 1

δ

L(αt, X̄(t), ˙̄X(t)) dt + h(X̄·)
]
.

As L ≥ 0 and X̄(·) ∈ �, letting δ ↓ 0, we obtain

lim inf
n→∞ V n ≥ inf

ϕ∈�

∫ 1

0
L(αt, ϕ(t), ϕ̇(t)) dt + h(ϕ).

Taking into account (2.2), the upper bound holds with I (ϕ) = ∫ 1
0 L(αt, ϕ(t), ϕ̇(t)) dt when

φ ∈ �, and I (ϕ) = ∞ otherwise.
We observe that I is convex as, for fixed t > 0, (0, t] × [0, 1] � (x, y) �→ L(αt, x, y) is

convex by [20, Lemma 1.4.3(b)]. Finally, I also has compact level sets by the proof of [20,
Proposition 6.2.4]. (We only note that we use 0 ≤ ϕ̇ ≤ 1 instead of their Condition 6.2.1,
so that the uniform integrability on line 21 of [20, p. 161] holds, and for the last display on
p. 163 of [20], for fixed t > 0 and 0 ≤ y ≤ 1, that [0, 1] � x �→ L(αt, x, y) is lower
semi-continuous.)

2.2. Lower bound

In the following, for typographical convenience, we write E[X; A] for
∫

A
X d P. Now let

ψ∗ ∈ � be such that I (ψ∗) < ∞, and fix a bounded, continuous (in the sup norm) function
h : C([0, 1]; R) → R. In view of (2.2), we need only show, for each ε > 0, that

lim sup
n→∞

V n ≤ I (ψ∗)+ h(ψ∗)+ 8ε. (2.5)

Step 1. Our first goal is to replace ψ∗ by its appropriate regularization. We use the trick of
considering a convex combination of paths,

ψθ(t) = (1 − θ)ψ∗(t)+ θt for 0 ≤ θ ≤ 1.
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Since ‖ψθ − ψ∗‖∞ ≤ 2θ , it is clear, for small enough θ > 0, that |h(ψθ ) − h(ψ∗)| < ε.
Furthermore, since I is finite on the line �(t) = t with slope 1, by convexity of I (cf. the
discussion at the end of Subsection 2.1), for small enough θ > 0,

I (ψθ ) ≤ (1 − θ)I (ψ∗)+ θI (�) ≤ I (ψ∗)+ ε.

We therefore fix θ > 0 such that I (ψθ ) < I (ψ∗)+ ε and h(ψθ ) < h(ψ∗)+ ε.
Next, following [20, p. 82], we write

ϕκ(t) =
∫ t

0
γκ(s) ds, (2.6)

where

γκ(t) = κ

∫ i+1/κ

i/κ

ψ̇θ (s) ds

for t ∈ (i/κ, (i + 1)/κ], 0 ≤ i ≤ κ − 1, and γκ(0) = γκ(1/κ). For large enough κ , we have

ϕκ(t)

t
≥ θ > 0, (2.7)

h(ϕκ) ≤ h(ψ∗)+ 2ε, (2.8)

I (ϕκ) ≤ I (ψ∗)+ 2ε. (2.9)

Inequality (2.7) is a property of ψθ , and is preserved by (2.6). Since

lim
κ→∞ sup

t∈[0,1]
|ψθ(t)− ϕκ(t)| = 0,

inequality (2.8) follows from continuity of h by our choice of θ . Then, since

ϕ̇κ (t) = κ

∫ �tκ�/κ

�tκ�/κ
ψ̇θ (s) ds → ψ̇θ (t) as κ ↑ ∞,

and (t, x, y) �→ L(αt, x, y) (cf. (2.3) and (2.4)) for α > 1 is bounded and uniformly continuous
on the compact set

{(t, x, y) : 0 ≤ t ≤ 1, θ t ≤ x ≤ t, θ ≤ y ≤ 1},
by the dominated convergence theorem, limκ→∞ I (ϕκ) = I (ψθ ). Inequality (2.9) follows due
to our choice of θ .

We now fix κ such that the above bounds hold.
Since (2.9) implies that I (ϕκ) < ∞, we now choose a 0 < δ < 1

3 such that∫ δ

0
L(αt, ϕκ(t), ϕ̇κ (t)) dt < ε. (2.10)

We will also need an estimate on sn. From assumptions (1.2), there exist 0 < η < 1
2 and

k1 ≥ k0 + 1 such that, for n ≥ k1,

η ≤ n

sn−k0+1
≤ 1 − η. (2.11)
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With respect to η and θ , we additionally impose the condition that δ satisfies

−δ log(δηθ) <
ε

10
. (2.12)

Step 2. We now build a sequence of controls based on ϕκ . Recall that we already set
vnj (dy) = δ1 for 0 ≤ j ≤ k0 − 1 when k0 ≥ 1. Define

vnj (dy; xk0 , . . . , xj ) =
{
ρσn(j/n),xj for k0 ≤ j ≤ k1,

ρ1,1−ϕ̇κ (j/n) for j ≥ k1 + 1.

Note that, for j ≥ k1 + 1, νnj does not depend on auxiliary inputs xk0 , . . . , xj , and is in fact the
Bernoulli distribution with success probability ϕ̇κ (j/n).

Define also X̄nl = l/n for 0 ≤ l ≤ k0 and X̄nj+1 = X̄nj + Ȳ nj /n for j ≥ k0, where

P̄(Ȳ nj ∈ dy | X̄n0 , . . . , X̄nj ) = vj (dy; X̄n0 , . . . , X̄nj ).

Thus, for j ≥ 1, X̄nj = (1/n)
∑j−1
�=0 Y

n
� , where the {Ynj }j≥k1+1 are independent Bernoulli

random variables with corresponding means {ϕ̇κ (j/n)}j≥k1+1.
Step 3. We now collect some useful estimates.

(A) Since Ȳ n0 ≡ 1 (when k0 = 0, recall that ρσ,0 = δ1), and the increments are at most one, we
have 1/n ≤ X̄nj ≤ j/n for 1 ≤ j ≤ n.

(B) We have

lim
n↑∞ sup

0≤j/n≤1

∣∣∣∣X̄nj − 1

n

j∑
l=0

ϕ̇κ

(
l

n

)∣∣∣∣ = 0 a.s. (2.13)

Indeed, for large enough n, as 0 ≤ ϕ̇κ ≤ 1, (1/n)
∑k1
j=0 |ϕ̇κ (j/n)| + k1/n < n−1/8. Then, by

Doob’s maximal inequality,

P̄

(
sup

0≤j/n≤1

∣∣∣∣X̄nj − 1

n

j∑
l=0

ϕ̇κ (l/n)

∣∣∣∣ > θ

2n1/8

)
≤ Cn1/2Ē|X̄nn − Ē[Xnn]|4

≤ 1

n7/2

[
C

n∑
l=0

ϕ̇κ

(
l

n

)(
1 − ϕ̇κ

(
l

n

))(
1 − 3ϕ̇κ

(
l

n

)
+ 3ϕ̇2

κ

(
l

n

))

+ C

( n∑
l=0

ϕ̇κ

(
l

n

)(
1 − ϕ̇κ

(
l

n

)))2]
≤ Cn−3/2, (2.14)

where C is a constant changing from line to line.

(C) For 0 ≤ j ≤ n, from (2.7), it follows that

1

n

j∑
l=0

ϕ̇κ

(
l

n

)
≥ θ

j

n
. (2.15)
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(D) Let j ≥ k1 + 1. Noting that 1/n ≤ X̄nj ≤ j/n (cf. part (A)) and bounds (2.11), we have

η ≤ 1 − j

sj−k0+1
≤ 1 − X̄nj

σn(j/n)
≤ 1,

1

sj−k0+1
≤ X̄nj

σn(j/n)
≤ 1 − η.

Hence,L(σn(j/n), X̄nj , ϕ̇κ (j/n)) can be well evaluated (cf. (2.3) and (2.4)), and we may rewrite
the relative entropy as

R(vnj ‖ρσn(j/n),X̄nj ) = ϕ̇κ

(
j

n

)
log

(
ϕ̇κ (j/n)

1 − X̄nj /σn(j/n)

)
+

(
1 − ϕ̇κ

(
j

n

))
log

(
1 − ϕ̇κ (j/n)

X̄nj /σn(j/n)

)
= L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
.

Furthermore, as 0 ≤ ϕ̇κ ≤ 1, we have

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
=

[
ϕ̇κ

(
j

n

)
log ϕ̇κ

(
j

n

)
+

(
1 − ϕ̇κ

(
j

n

))
log

(
1 − ϕ̇κ

(
j

n

))]
− ϕ̇κ

(
j

n

)
log

(
1 − X̄nj

σn(j/n)

)
−

(
1 − ϕ̇κ

(
j

n

))
log

(
X̄nj

σn(j/n)

)
≤ 0 − log η + log(sj−k0+1)

≤ log

(
j

η2

)
, (2.16)

where, for the last inequality, we have used (2.11) again.
Step 4. We now argue (2.5) via representation (2.1). Let

A =
{

sup
0≤j≤n−1

∣∣∣∣X̄nj − 1

n

j∑
l=0

ϕ̇κ

(
l

n

)∣∣∣∣ > θ

2n1/8

}
.

Since R(vnj ‖ρσn(j/n),X̄nj ) = 0 for k0 ≤ j ≤ k1, the sum in (2.1) equals

Ē

[
1

n

n−1∑
j=k0

R(vnj ‖ρσn(j/n),X̄nj )
]

= Ē

[
1

n

n−1∑
j=k1+1

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))]

= Ē

[
1

n

n−1∑
j=k1+1

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; A

]

+ Ē

[
1

n

n−1∑
j=k1+1

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; A

c
]

=: A1 + A2. (2.17)
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Step 5. We now treat termA1 in (2.17). Combining (2.16) with (2.14), we obtain, for large n,

Ē

[
1

n

n−1∑
j=k1+1

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; sup

0≤j≤n−1

∣∣∣∣X̄nj − 1

n

j∑
l=0

ϕ̇κ

(
l

n

)∣∣∣∣ > θ

2n1/8

]

≤ log

(
n

η2

)
P̄

[
sup

0≤j/n≤1

∣∣∣∣X̄nj − 1

n

j∑
l=0

ϕ̇κ

(
l

n

)∣∣∣∣ > θ

2n1/8

]
≤ C log

(
n

η2

)
n−3/2

< ε. (2.18)

Step 6. For term A2 in (2.17), we split it into two sums depending on whether index j ≤ δn

or j ≥ δn (recall δ from (2.10)):

Ē

[
1

n

�δn�∑
j=k1+1

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; A

c
]

+ Ē

[
1

n

n−1∑
j=�δn�

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; A

c
]

=: B1 + B2. (2.19)

Step 7. To estimate B1, we further divide it into two terms corresponding to sums on indices
j ≤ n7/8 and n7/8 ≤ j ≤ δn:

Ē

[
1

n

�n7/8�∑
j=k1+1

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; A

c
]

+ Ē

[
1

n

�δn�∑
j=�n7/8�

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; A

c
]

=: D1 +D2.

Term D1, using (2.16), is bounded for all large n by

n−1/8 log

(
n7/8

η2

)
< ε. (2.20)

For term D2, using the second-line equality stated in (2.16), we note that∣∣∣∣L(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))∣∣∣∣ ≤ − log η + log σn

(
j

n

)
− log X̄nj

= − log η + log

(
sj−k0+1

n

)
− log X̄nj .
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Then, D2 is bounded in absolute value by

− δ log η + 1

n

�δn�∑
j=�n7/8�

∣∣∣∣ log

(
sj−k0+1

n

)∣∣∣∣
− Ē

[
1

n

�δn�∑
j=�n7/8�

log X̄nj ; sup
0≤j≤n−1

∣∣∣∣X̄nj − 1

n

j∑
l=0

ϕ̇κ

(
l

n

)∣∣∣∣ ≤ θ

2n1/8

]
.

Now, note that (2.11) implies that, for j ≥ k1 + 1,

j

(1 − η)n
≤ sj−k0+1

n
≤ j

ηn
.

Then, as 0 < δ < 1
3 and 0 < η < 1

2 , we have, for large n,

1

n

�δn�∑
j=�n7/8�

∣∣∣∣ log

(
sj−k0+1

n

)∣∣∣∣ ≤ 2
∫ δ

0
max

{∣∣∣∣ log

(
x

1 − η

)∣∣∣∣, ∣∣∣∣ log

(
x

η

)∣∣∣∣} dx

≤ −4δ log δ − 2δ log η.

Also, noting (2.15), we have, for large n,

− Ē

[
1

n

�δn�∑
j=�n7/8�

log X̄nj ; sup
0≤j≤n−1

∣∣∣∣X̄nj − 1

n

j∑
l=0

ϕ̇κ

(
l

n

)∣∣∣∣ ≤ θ

2n1/8

]

≤ −1

n

�δn�∑
j=�n7/8�

log

(
θj

n
− θ

2n1/8

)

≤ −1

n

�δn�∑
j=�n7/8�

log

(
θj

2n

)

≤ −2
∫ δ

0
log

θx

2
dx

≤ −6δ log δ − 2δ log θ.

By combining these estimates,D2 is bounded by a function of δ, η, and θ , which, given (2.12),
can be made small:

D2 ≤ −10δ log δ − 3δ log η − 2δ log θ < ε. (2.21)

Step 8. We now estimate term B2 in (2.19). Note, for n > δ−8, by (2.15), the event{
sup

0≤j≤n−1

∣∣∣∣X̄nj − 1

n

j∑
l=0

ϕ̇κ

(
l

n

)∣∣∣∣ ≤ θ

2n1/8

}
⊂

{
inf
j≥δn X̄

n
j ≥ δθ

2

}
.

Hence, for large n,

B2 ≤ Ē

[
1

n

n−1∑
j=�δn�

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; A

c ∩
{

inf
j≥δn X̄

n
j ≥ δθ

2

}]
.
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Now, L(t, x, y) is continuous, and, therefore, also bounded and uniformly continuous on
the compact set (cf. (2.3) and (2.4)){

(t, x, y) : δ

1 − η
≤ t ≤ 1

η
,
δθ

4
≤ x ≤

(
1 − η

2

)
t, 0 ≤ y ≤ 1

}
. (2.22)

Also, from (2.11), when δ ≤ j/n ≤ 1, we have δ/(1 − η) ≤ σn(j/n) ≤ 1/η and both X̄nj
and (1/n)

∑j
l=0 ϕ̇κ (l/n) ≤ j/n = σn(j/n)(j/sj−k0+1) ≤ σn(j/n)(1 − η) for all large n. In

addition, on the set {infj≥δn X̄nj ≥ δθ/2}, and by (2.15), when δn ≤ j ≤ n, we have both X̄nj
and (1/n)

∑j
l=0 ϕ̇κ (l/n) ≥ δθ/2. Then,

lim sup
n→∞

Ē

[
1

n

n−1∑
j=�δn�

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
; A

c ∩
{

inf
j≥δn X̄

n
j ≥ δθ

2

}]

≤ lim sup
n→∞

1

n

n−1∑
j=�δn�

L

(
σn

(
j

n

)
,

1

n

j∑
l=0

ϕ̇κ

(
l

n

)
, ϕ̇κ

(
j

n

))
. (2.23)

Furthermore,

lim
n→∞ sup

1≤j≤n

∣∣∣∣1

n

j∑
l=0

ϕ̇κ

(
l

n

)
−

∫ j/n

0
ϕ̇κ (s) ds

∣∣∣∣ = 0, (2.24)

as ϕ̇k is piecewise constant and bounded. Hence, for all large n, when δn ≤ j ≤ n, we have
δθ/4 ≤ ∫ j/n

0 ϕ̇κ (s) ds ≤ j/n ≤ σn(j/n)(1 − η). Then, again by the uniform continuity of L
on the compact set (2.22), we may analogously bound (2.23) by

lim
n→∞

1

n

n−1∑
j=�δn�

L

(
σn

(
j

n

)
, ϕκ

(
j

n

)
, ϕ̇κ

(
j

n

))
=

∫ 1

δ

L(αt, ϕκ(t), ϕ̇κ (t)) dt. (2.25)

Step 9. Finally, with respect to the second term in (2.1), by (2.13) and (2.24), in the sup
topology, limn→∞ h(X̄n· ) = h(ϕκ(·)).

We now combine all bounds to conclude the proof of (2.5). By (2.1), and bounds (2.18),
(2.20), (2.21), and (2.25), we have

lim sup
n→∞

V n ≤ lim sup
n→∞

Ē

[
1

n

n−1∑
j=k1+1

L

(
σn

(
j

n

)
, X̄nj , ϕ̇κ

(
j

n

))
+ h(X̄n· )

]

≤ 3ε +
∫ 1

δ

L(αt, ϕκ(t), ϕ̇κ (t)) dt + h(ϕk).

Then, by (2.8), (2.9), and (2.10), we obtain (2.5).

3. Proofs of Theorems 1.1 and 1.3

As mentioned in the introduction, the differential equation for the pressure is easy to derive
heuristically from (1.6); the main technical difficulty is in justifying the convergence of various
expressions.

To this end, the key ingredient is the control of the complex zeros of mn(z), based on (the
proof of) [10, Theorem 1].
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Proposition 3.1. Suppose that mn(z) is defined by (1.5) with initial condition m1(λ) =
exp{k0λ} such that {sn} satisfies s1 ≥ k0, sn ≥ max{k0, 1} for n ≥ 2. We also assume
that there is an n0 ≥ 1 such that sn0 > k0 when k0 ≥ 1 and that there is an n1 ≥ 2 such that
sn1 > 1 when k0 = 0. Then mn(z) �= 0 in the strip | Im(z)| < π .

Proof. We note thatmn(λ) = pn(eλ) for a polynomial pn(u) with nonnegative coefficients.
Then, to prove the result, we recall the proof of [10, Theorem 1] to deduce that all complex
zeros of pn(u) are real, and nonnegative for n ≥ 1. (Some minor details differ from [10].)

Since m′
n(λ) = up′

n(u), (1.5) gives

pn+1(u) = u(1 − u)

sn
p′
n(u)+ upn(u)

= u

sn
(1 − u)sn+1 d

du

(
(1 − u)−snpn(u)

)
. (3.1)

Note thatp1(u) = uk0 and that s1 ≥ k0. We first give the proof for the case when s1 > k0 ≥ 1.
To reach our conclusion, we prove the following statement by induction.

• For n ≥ 2, pn(u) is a polynomial of degree mn + k0 with a root of multiplicity k0 at
u = 0 and mn ≥ 1 strictly negative simple roots.

As s1 > k0, polynomial p2(u) = (1/s1)uk0((s1 − k0)u+ k0) satisfies the inductive statement.
Suppose that, for some n ≥ 2, polynomial pn(u) is of degree mn + k0, has m = mn simple
negative roots u1 < u2 < · · · < um, and a root of multiplicity k0 at u = 0. Then, from the first
equality in (3.1),pn+1(u) also has a root of multiplicity k0 atu = 0. Clearly, {u1, u2, . . . , um, 0}
arem distinct roots of the expression under the derivative on the right-hand side of (3.1). Since
{uj } are simple roots, the function must cross the real line, so by Rolle’s theorem, pn+1(u) has
m distinct roots interlaced between the roots of pn(u). This shows that pn+1(u) has m + k0
real roots in the interval (u1, 0]. This ends the proof if the degree of pn+1 is m + k0, which
occurs when sn = m.

If sn �= m then the degree of pn+1 ism+ 1 + k0, and to end the proof, we want to show that
the last (m+ k0 + 1)th root of pn+1(u) is located to the left of u1, so that all negative roots of
pn+1(u) must be simple. To see this, we again follow [10]. The first equation in (3.1) shows
that pn+1(u1) and p′

n(u1) have opposite signs, and that p′
n(u1) �= 0 as u1 is a simple root. So

pn+1(u1) �= 0. Since polynomials pn+1(u) and pn(u) have positive leading coefficients and
their degrees differ by 1, their signs are opposite as u → −∞. Since u1 is the smallest root,
pn(u) has constant sign for u < u1, which matches the sign of pn+1(u1). Thus, pn+1(u) must
eventually cross the real line to the left of u1. This shows that pn+1(u) hasm+1 simple strictly
negative roots, and a root of multiplicity k0 at u = 0, ending the induction proof.

Next, suppose that s1 = s2 = sn0−1 = k0 ≥ 1, but sn0 > k0 for some n0 ≥ 2. Then
p1(u) = p2(u) = · · · = pn0(u) = uk0 and the inductive proof goes through with minor
modifications, starting with pn0+1(u) = (1/sn0)u

k0((sn0 − k0)u+ k0) that replaces p2(u) in
the previous argument.

Finally, if k0 = 0 then p1(u) = 1 and p2(u) = u. First choose n1 ≥ 2 such that sn1 > 1
but sn = 1 for 2 ≤ n < n1. Since in this case the value of s1 is irrelevant, we obtain
p2(u) = · · · = pn1(u) = u. The induction proof proceeds with minor modifications, starting
with pn1+1(u) = (1/sn1)u((sn1 − 1)u+ 1).
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Proposition 3.2. Under the assumptions of Proposition 3.1, suppose that

1

n
logmn(λ) → �(λ) as n → ∞. (3.2)

Then �(λ) is analytic, satisfies (1.9), and is given by (1.13).

The main step in the proof is the following.

Lemma 3.1. Let �(λ) be as in Proposition 3.2. Then � is analytic and

lim
n→∞

m′
n(λ)

nmn(λ)
= �′(λ).

Proof. Recall that if f (ζ ) is holomorphic in |ζ | ≤ R then, for 0 < r < R,

max|ζ |≤r |f (ζ )| ≤ R + r

R − r
|f (0)| + 2r

R − r
max|ζ |≤R Re f (ζ ) (3.3)

(cf. [14, Theorem 6.31(ii)]).
By Proposition 3.1, for fixed n ≥ 1, the function mn(z) is holomorphic and nonzero in the

strip | Im z| < π . Since mn(z) is a polynomial in ez with nonnegative coefficients, mn(t) > 0
for all t ∈ R, mn(t) is increasing on R, and |mn(z)| ≤ mn(|z|).

The function mn(z) has a holomorphic logarithm Ln(z) on the strip | Im z| < π . Because
mn(t) > 0 for t ∈ R, we may assume that Ln(t) = log(mn(t)) for all t ∈ R. For each t ∈ R,
we can apply (3.3) to f (ζ ) = n−1Ln(t + ζ ), |ζ | < π , with R = 2π/3 and r = π/3. This
gives

max|z−t |≤π/3 n
−1|Ln(z)| ≤ 3|n−1Ln(t)| + 2n−1 max|z−t |<π/3 | ReLn(ζ )|

= 3|n−1 log(mn(t))| + 2n−1 max|z−t |<π/3 log |mn(z)|

≤ 3|n−1 log(mn(t))| + 2 log

(
mn

(
|t | + 2π

3

))
.

Since e−n|t | ≤ mn(t) ≤ en|t |, {n−1Ln(z) : n ≥ 1} is a normal family (i.e. a uniformly bounded
family of holomorphic functions) in the disk |z− t | ≤ π/3.

We now note that {n−1Ln(t)} converges for all real t by (3.2). A version of Vitalli’s theorem
(see [22, p. 9]) implies that n−1Ln(z) → �(z) in the strip | Im z| ≤ π/3, the convergence is
uniform in each disc |z − t | ≤ π/3, the limit �(z) is an analytic function of the argument z
in that strip, and all derivatives of n−1Ln converge to the corresponding derivatives of �. In
particular, the sequence n−1m′

n(λ)/mn(λ) = n−1L′
n(λ) converges to �′(λ) for all real λ.

Proof of Proposition 3.2. By Lemma 3.1, the right-hand side of (1.6) converges, so the
left-hand side must converge too: mn+1(λ)/mn(λ) → eL(λ) for some L uniformly in a
neighborhood of λ. Since the limit of ratios implies the same limit for nth roots, we obtain
(1/n) logmn(λ) → L(λ), which identifiesL(λ) = �(λ) as the pressure. From Lemma 3.1, the
derivativem′

n(λ)/(nmn(λ)) → �′(λ), so passing to the limit in (1.6) we obtain the differential
equation for the pressure, (1.9).

It is straightforward to verify that the expression on the right-hand side of (1.13) satisfies (1.9).
Therefore, to end the proof, it remains to show that the initial value problem �(0) = 0 for
differential equation (1.9) has a unique solution. We proceed by contradiction. Suppose that
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�1 and �2 are two different solutions on (0,∞) with initial condition �(0) = 0. If �1(t) =
�2(t) for some t > 0 then they coincide for all t > 0. Therefore, one of the solutions,
say �1, is above the other and we must have �1(t) > �2(t) for all t > 0. By the mean
value theorem, there is a t0 > 0 such that �′

1(t0) − �′
2(t0) > 0. But the equation gives

�′
1(t)−�′

2(t) = α(exp{�1(t)} − exp{�2(t)})/(1 − et ) < 0 for all t > 0. This contradiction
shows that there is only one solution on (0,∞). Similarly, suppose that �1 and �2 are two
different solutions on (−∞, 0) with initial condition �(0) = 0. If �1(t) = �2(t) for some
t < 0 then they coincide for all t < 0. Therefore, one of the solutions, say �1, is above
the other and we must have �1(t) > �2(t) for all t < 0. By the mean value theorem, there
is a t0 < 0 such that �′

1(t0) − �′
2(t0) = (�1(t) − �2(t))/t < 0. But the equation gives

�′
1(t) − �′

2(t) = α(exp{�1(t)} − exp{�2(t)})/(1 − et ) > 0 for all t < 0, a contradiction.
Thus, the solution is unique on (−∞, 0) too.

Our final step is to prove that limit (3.2) exists under (1.3) or (1.4).

Proposition 3.3. If either (1.3) or (1.4) holds, then limit (3.2) exists, and is given by the smooth
function

�(λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

( √
eλ − 1

arctan(
√

eλ − 1)

)
if λ > 0,

log

( √
1 − eλ

arctanh(
√

1 − eλ)

)
if λ < 0,

for α = 1
2 , (3.4)

�(λ) = log
eλ − 1

λ
for α = 1, (3.5)

when λ �= 0, and �(0) = 0.

Proof. We follow analytic arguments adapted from [25]. Since 0 ≤ k0 ≤ Zn ≤ n+ k0 − 1,
we obtain 0 < mn(λ) ≤ exp{(n+ k0)λ

+} with λ+ = max{λ, 0}. Therefore, for all complex z
with |z| < e−λ+

,G(z, λ) is well defined and satisfies (1.10) with the initial conditionG(0, λ) =
exp{k0λ}. The coefficients of this PDE do not vanish in the regions

D+ = {(z, λ) : λ > 0, |z| < e−λ}, D− = {(z, λ) : λ < 0, |z| < 1}.
For λ �= 0, the PDE can be solved by the method of characteristics. Clearly, mn(λ) are
the coefficients in the Taylor expansion at z = 0 of the solution, and e−�(λ) is the radius of
convergence of the series that can be determined by singularity analysis.

For α = 1 and k0 = 0, 1, using the initial condition G(0, λ) = exp{k0λ}, we obtain

G(λ, z) = exp{k0(z(e
λ − 1)− λ)} eλ − 1

1 − exp{z(eλ − 1)− λ} .

Hence, the singularity of G as a function of z nearest to the origin is a simple pole at

z0 = λ

eλ − 1
.

By Darboux’s asymptotic method [38, Chapter 8],

1

n
log E[exp{λZn}] → log

eλ − 1

λ

and (3.5) follows.
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Next, consider α = 1
2 . In this case, the solutions of the PDE differ depending on the region

D±, but are explicit so there are no difficulties in constructing their analytic extensions. Using
the initial condition k0 = 0, we have G(0, λ) = 1, and the solution of (1.10) is

G(λ, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

eλ − 1

tan(arctan
√

eλ − 1 − z
√

eλ − 1)
, λ > 0,

√
1 − eλ

tanh(arctanh
√

1 − eλ − z
√

1 − eλ)
, λ < 0.

Hence, the singularity of G as a function of z nearest to the origin is a simple pole at

z0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arctan

√
eλ − 1√

eλ − 1
, λ > 0,

arctanh
√

1 − eλ√
1 − eλ

, λ < 0.

Once again, by Darboux’s asymptotic method [38, Chapter 8],

1

n
log E[exp{λZn}] → log

1

z0

and (3.4) follows.

Proof of Theorem 1.1. We first observe that sn, given by (1.2), (1.3), or (1.4), satisfies the
assumptions of Proposition 3.2, that is, those inherited from Proposition 3.1.

Next, we verify that assumption (3.2) of Proposition 3.2 is also satisfied. To do so, we first
consider the case when condition (1.2) holds. Since

Zn

n
= n+ k0 − 1

n
Xn+k0−1(1),

by the contraction principle, Theorem 1.2 implies Theorem 1.1, except for the form of the rate
function I . As x �→ λx is a bounded continuous function on [0, 1], by Varadhan’s integral
lemma (see [17, Theorem 4.3.1] or [20, Theorem 1.3.4]), this implies that limit (1.12) exists.
Thus, (3.2) holds in this case.

Finally, when either (1.3) or (1.4) holds, limit (3.2) exists by Proposition 3.3.
The LDP with rate function I , noting smoothness and convexity of �, is now obtained by

the Gärtner–Ellis theorem [17, Theorem 2.3.6] from Proposition 3.2.
The strict convexity of I on its domain follows from the strict convexity of� on (−∞,∞).

The latter is most easily seen from (1.9), which has no solutions that are linear on an interval.

Proof of Theorem 1.3. For the CLT, we recall [13, Proposition 2] in our context. When
supn mn(ε)

1/n < ∞ for some ε > 0, 0 �∈ closure(
⋃
n≥1 Zen), where Zen is the zero set

of mn(z) = E[exp{zZn}], and Zn/n satisfies an LDP, then (Zn − E[Zn])/√n converges in
distribution to N(0, σ 2), where σ 2 = �′′(0).

To verify the assumptions of [13, Proposition 2], note that as part of the proof of Theorem 1.1
we have already verified convergence (3.2) for all λ ∈ R, and that, by Proposition 3.1, mn(z)
has no zeros in the strip | Im(z)| < π for n ≥ 1. Finally, we may use (1.9) to verify that
�′′(0) = α2/[(1 + α)2(2 + α)] to finish the proof.

Also,�′(0) = α/(1+α), and the LLN follows from the strict convexity of I near α/(1+α)
in Theorem 1.1, given that � is analytic and �′′(0) > 0.
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4. Singularity analysis for sn = 2n

Formula (1.13) was in fact obtained by us from heuristic singularity analysis for sn = αn;
once (1.13) is available, it is easy to verify that it gives the solution of ODE (1.9). Since the
singularity technique [25] is virtually unknown to probabilists, it is therefore of interest to
provide a nontrivial example.

The following result is a version of Proposition 3.3 and can also be derived by explicit
evaluation of the integral in (1.13).

Proposition 4.1. If sn = 2n then limit (1.12) (or (3.2)) exists, and is given by the smooth
function

�(λ) = log

(
(eλ − 1)2

2(eλ − 1 − λ)

)
(4.1)

when λ �= 0, and �(0) = 0.

For α = 2, the method of characteristics gives the following solution of (1.10).

Lemma 4.1. Suppose that ϕ is a function of one complex variable, analytic in a domain D
containing (−∞,−2). Then

G(z, λ) := (eλ − 1)2ϕ(z(eλ − 1)2 + 2λ− 2eλ)

satisfies PDE (1.10) for all λ �= 0 and small enough |z| with α = 2. Furthermore, the initial
condition is fulfilled at λ �= 0 if

ϕ(2λ− 2eλ) = exp{k0λ}
(1 − eλ)2

. (4.2)

Proof. The verification of the initial condition is trivial, and the verification of the PDE is a
straightforward calculation. Denoting, for conciseness, ψ(z, λ) = ϕ(z(eλ − 1)2 + 2λ − 2eλ)
and ψ(1)(z, λ) = ϕ′(z(eλ − 1)2 + 2λ− 2eλ), we verify, for λ �= 0 and z such that z(eλ − 1)2 +
2λ− 2eλ ∈ D , that

∂G(z, λ)

∂λ
= 2(eλ − 1)eλψ(z, λ)+ 2(eλ − 1)3(zeλ − 1)ψ(1)(z, λ)

and
∂G(z, λ)

∂z
= (eλ − 1)4ψ(1)(z, λ).

Equation (1.10) now follows by a calculation.

Our next goal is to show that we can find a solution of (1.10) which can be analytically
extended in variable z to a large enough domain. To this end, we need to analyze (4.2) for
complex λ. The basic plan consists of noting that the function f (x) = 2(x − ex) is analytic,
strictly decreasing forx > 0, strictly increasing forx < 0, andf (0) = −2. The derivativef ′(x)
vanishes only atx = 0, sof | [0,∞) andf | (−∞,0] have continuous inversesh+ : (−∞,−2] →
[0,∞) and h− : (−∞,−2] → (−∞, 0], and both are analytic on (−∞,−2).

Clearly, if we define

ϕ±(λ) = exp{k0h±(λ)}
(exp{h±(λ)} − 1)2

,

then ϕ+ satisfies (4.2) for λ > 0, and ϕ− satisfies (4.2) for λ < 0. The goal is therefore to find
the appropriate analytic extensions of the functions h±.
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iπ

2iπ

z

� ζ

g(ζ)
w = f(z)

w

ez

–1 1

–2 1

–1 10

Figure 2: Composition of maps f (z) = g(ez) for the proof of Lemma 4.3.

To accomplish this goal, we need to analyze f (z) = 2(z− ez). The closely related function
z + ez appears in [33, p. 116], but proofs are not included there; we give details for f (z) =
2(z− ez) for completeness.

The proof relies on the following univalence criterion.

Lemma 4.2. (Wolff–Warschawski–Nishiro.) If g is holomorphic in a convex region � and
g′(�) ⊂ H , a half-plane with 0 ∈ ∂H , then g is one-to-one on �.

Proof. This is [22, Theorem 2.16, p. 47] applied to the function eiθg(z) with a real constant
θ chosen appropriately to rotate H .

Lemma 4.3. Let f be a one-to-one mapping of the half-closed strip� = {z : 0 < Im(z) ≤ π}
onto a slit closed half-plane: {w : Im(w) ≤ π} \ (−∞,−2]. The boundary correspondence
is as follows: f maps R + π i injectively onto R + 4π i, and f is one-to-one on both [0,+∞)

and (−∞, 0], and maps each onto (−∞,−2] (cf. Figure 2).

Proof. We write f (z) = g(ζ ), where ζ = ez, g(ζ ) = 2(log ζ − ζ ) and log denotes the
principal branch of the logarithm. The function ζ = ez is a one-to-one mapping on the strip�.
The image of the interior of � is the upper half-plane H = {ζ : Im(ζ ) > 0}. Furthermore,
the upper edge R + π i of � is mapped onto (−∞, 0) and the bottom edge R is carried onto
(0,+∞).

The derivative of g(ζ ) is g′(ζ ) = 2ζ̄ /|ζ |2 − 2. In particular,

Im(g′(ζ )) = −2 Im(ζ )

|ζ |2 < 0 for ζ ∈ H.

By Lemma 4.2 with � = H, g is one-to-one on the half-plane H. Under g, the image of H is
{w : Im(w) ≤ 2π} \ (−∞,−2], and on the boundary we have g(R−) = R+2π i and g(R+) is
the slit (−∞,−2] twice covered with g(1) = −2. Perhaps this latter statement is easier seen
directly from f ; the slit is covered twice: f ((−∞, 0]) = f ([0,+∞)) = (−∞,−2].
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iπ

H
–

2iπ

–2iπ

�–

�+

γ

–2 1

–1 1

S

f

Figure 3: Conformal maps f | �− and f | �+.

We investigate the conformal mapping f | � in more detail. The preimage of [−2,∞)

under f | � is the curve γ given by Re z = log(Im z/ sin Im z), 0 ≤ Im z < π . This curve
begins at the origin and becomes asymptotic to R + π i in the positive direction. By removing
the curve γ , � is cut into two parts, �− and �+. The region �− is bounded by R

−, γ , and
R + π i, with the latter line part of�−. The region �+ is bounded by γ and R

+. Then f | �−
is a conformal mapping of �− onto the half-closed strip S = {w : 0 < Imw ≤ 2π} with
f (R + π i) = R + 2π i, f (R−) = (−∞,−2), and f (γ ) = [−2,+∞). Similarly, f | �+ is
a conformal mapping of �+ onto the lower half-plane H = {z̄ : z ∈ H}, where z̄ denotes the
complex conjugate of z, with f (R+) = (−∞,−2) and f (γ ) = [−2,+∞). (See Figure 3.)

Both maps f | �− and f | �+ extend to conformal maps of larger regions. Because f (z̄) =
f (z), f maps �+ conformally onto H. As f (R+) = (−∞,−2), f is a conformal map of
�+ := �+ ∪ R

+ ∪ �+ onto the slit plane H̄ ∪ (−∞,−2) ∪ H = C \ [−2,+∞). Let
h+ : C \ [−2,+∞) → �+ be the inverse function for f | �+. The conformal extension
of f | �− is more involved to describe. The fact that f (z̄) = f (z) implies that f maps �−
conformally onto S̄. Since f (R−) = (−∞,−2), f is a conformal map of�0 = �−∪R

−∪�−
onto the slit closed strip S0 = S ∪ (−∞,−2) ∪ S̄ = {w : | Imw| ≤ 2π} \ [−2,+∞) with the
upper and lower edges of �0 respectively corresponding to the upper and lower edges of S0.
It is straightforward to verify that f (z + 2π i) = f (z) + 4π i for each n ∈ Z. This functional
relationship implies that f is a conformal map of �n = �0 + 2πni onto Sn = S0 + 4πni
for each n ∈ Z. Hence, f is a conformal map of �− := ⋃

n∈Z
�n onto the infinitely slit

plane S∞ := ⋃
n∈Z

Sn = C \ ⋃
n∈Z

([−2,+∞)+ 4πni). Let h− : S∞ → �− be the inverse
function of f | �−. Because C \ [−2,+∞) ⊃ S∞, we may regard h+ as defined on S∞, so
h± have a common domain. (See Figure 4.)
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�–1
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3iπ

Figure 4: Conformal maps f | �+ and f | �− with �+ := �+ ∪ R
+ ∪�+ and �− = ⋃∞

n=−∞�n.

The two conformal maps h± just constructed provide analytic extensions to S∞ of the real-
valued functions h±. This allows us to define a pair of functions

ϕ±(z) := exp{k0h±(z)}
(exp{h±(z)} − 1)2

,

which are analytic in S∞.

Lemma 4.4. For each point u ∈ (−∞,−2), the power series expansion of ϕ± has radius of
convergence 2 − u, ϕ± is analytic in the slit disk D(u, r) \ [−2,+∞), where r = r(u) =√
(u+ 2)2 + 16π2. Furthermore, ϕ±(w) ≈ −1/(w + 2) as w → −2 in S∞.

Proof. For each point u ∈ (−∞,−2), the power series expansion of h± has radius of
convergence |u + 2|, the distance from u to −2 because −2 is the closest singularity of h±.
Also, h± is analytic in the slit diskD(u, r)\ [−2,+∞), where r = r(u) = √

(u+ 2)2 + 16π2

is the distance from u to −2 ± 4π i.
Note that singularities of ϕ− that arise from h−(w) = 2nπ i are located at the slits taken out

of S∞ and that h+(w) ∈ �+ cannot take values in 2nπ i. Thus, ϕ± is also analytic in the slit
disk D(u, r) \ [−2,+∞).

Substituting w = 2(z− ez), we see that

lim
w→−2
w∈S∞

(w + 2)ϕ±(w) = lim
w→−2
w∈S∞

exp{k0h±(w)} w + 2

(exp{h±(w)} − 1)2

= 2 lim
z→0
z∈�±

exp{k0z}1 + z− ez

(ez − 1)2

= −1.
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Proof of Proposition 4.1. We now prove (1.12) and identify the limit. Using functions ϕ±
constructed above, define

G̃(z, λ) :=
{
(eλ − 1)2ϕ+(z(eλ − 1)2 + 2λ− 2eλ) if λ > 0,

(eλ − 1)2ϕ−(z(eλ − 1)2 + 2λ− 2eλ) if λ < 0.

From Lemma 4.1 we see that the function G̃(z, λ) satisfies (1.10) for all (z, λ) ∈ D+ ∪D−. By
uniqueness of the PDE solution in each of the two regions, G(z, λ) = G̃(z, λ) for all (z, λ) ∈
D+ ∪ D−. In particular, for each fixed λ �= 0, lim supn→∞(mn(λ))1/n is the reciprocal of the
radius of convergence of the series expansion of G̃(z, λ) at z = 0. The latter is (1−eλ)−2 times
the radius of convergence for ϕsgn(λ)(w) at u = 2λ− 2eλ ∈ (−∞,−2), which by Lemma 4.4
is 2(eλ − λ − 1). Furthermore, the lemma implies that there is an η = η(λ) > 0 such that
ϕsgn(λ)(w) is analytic on the slit disk {w : |w−u| < 2(eλ−λ−1)(1+η)}\[−2,∞). Since after
appropriate translation and rescaling this slit disk is larger than the indented disk �(π/4, η)
introduced in [24, Equation (2.5)], and the second part of Lemma 4.4 givesϕ±(w) ≈ −1/(w+2)
as w → −2, we can apply [24, Corollary 2] to obtain (1.12).

Finally, as mn(0) = 1, the convergence at λ = 0 holds trivially.

5. Concluding remarks

1. Variational methods. ByVaradhan’s integral lemma, Theorem 1.2 implies that limit (1.12)
exists, and equals

�(λ) = sup
ϕ

{λϕ(1)− I (ϕ)}

= sup
{ϕ : ϕ(0)=0}

{∫ 1

0

[
λϕ̇(t)− ϕ̇(t) log

αtϕ̇(t)

αt − ϕ(t)

− (1 − ϕ̇(t)) log
αt(1 − ϕ̇(t))

ϕ(t)

]
dt

}
. (5.1)

Direct derivation of (1.13), or even (4.1) from (5.1) seems quite challenging (cf. [44]).
2. Cases α = 1

2 , 1. Although we prove a LDP for Zn/n when sn = n or s2 = n/2
(Theorem 1.1), the proof of Theorem 1.3 for a path LDP with respect to Z�nt�/n, especially the
lower bound argument, does not cover these cases. The difficulty is in controlling the boundary
behavior as estimate (2.11) is not available. In particular, it would be interesting to investigate
if Theorem 1.1 holds true when assumption (1.3) is relaxed to sn/n → 1.

3. Higher-order statistics. With respect to random graph models, one might ask about
LDPs for the vector T k

n /n = 〈Tn(1), . . . , Tn(k)〉/n, where the j th component Tn(j) counts
the number of vertices with degree j ≤ k for k ≥ 2. In principle, our method to analyze the
leaves can be used to study T k

n /n. Indeed, the Dupuis–Ellis-type arguments given here for a
path LDP for the leaves T�nt�(1)/n (Proposition 1.1) would seem to extend to the vector-valued
paths T k�nt�/n.

However, to calculate the pressure

�k(λ1, . . . , λk) = lim
n→∞

1

n
log E

[
exp

{ k∑
i=1

λiTn(i)

}]
,

as in Theorem 1.2 with respect to the leaves, the differential equation which now arises for �k ,
in place of the ODE for� (1.9), is a quasilinear PDE with k ≥ 2 independent variables. These
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PDEs, although in principle implicitly solved by the method of characteristics, unfortunately
do not seem to admit explicit solutions, at least to the extent found here with respect to Tn(1)/n,
a reason why we have focused on detailed investigations of the leaves. It would be of interest
to better study these higher-order questions.
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