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There is a flaw in the reasoning in the original paper, just before equation (2.9).
Everything before that point is correct, essentially that −〈u · ∇P〉 is an exact
expression for dissipation in thermal convection. The conclusions obtained after
that point are essentially unfounded, first that γ − 1� 1 is the condition of validity
for the anelastic liquid approximation, second that the scaling P′ ∼ KT0α0T ′ applies
within the general anelastic approximation. Other conclusions are derived here, in this
corrected version, on the continuity equation in the anelastic approximation.

We first summarize the results that can be derived from the complete equations of
convection. The dissipation is exactly

〈τ : ε̇〉 =−〈u · ∇P〉, (0.1)

Alboussière & Ricard (2013, equation (1.6)). Decomposing P= P0+ P′ and ρ = ρ0+
ρ ′, where P0 and ρ0 are the adiabatic, hydrostatic pressure and density, we have

〈τ : ε̇〉 = −〈u · ∇P0〉 − 〈u · ∇P′〉, (0.2)
= 〈ρ0guz〉 + 〈P′∇ · u〉. (0.3)

The second line (0.3) has been obtained using the hydrostatic equation for the
reference adiabatic profile and a Gauss integration. The dissipation appears therefore
to have two contributions. The first one 〈ρ0guz〉 is exactly −〈ρ ′guz〉 by global mass
conservation. Because ρ ′ and uz are generally correlated in a convective system (light
material rises, dense material sinks), this term is positive, i.e. 〈uz〉 > 0. The second
term can be estimated using also the continuity equation ∂ρ ′/∂t+∇ · [(ρ0+ ρ ′)u] = 0
which implies that ρ0∇ · u=−ρ ′∇ · u− uzdρ0/dz− u · ∇ρ ′ − ∂ρ ′/∂t. In the limit of
vanishing viscosity and thermal diffusivity, it is expected that the state variables will
become close to the adiabatic hydrostatic profile, in particular ρ ′/ρ0 −→ 0, which
implies that ρ0∇ · u≈−uzdρ0/dz at leading order. Dissipation (0.3) can be written:

〈τ : ε̇〉 ≈−〈ρ ′guz〉 −
〈

P′uz
1
ρ0

dρ0

dz

〉
, (0.4)

Then the density perturbations can be written in terms of entropy and pressure
perturbations, as a linear expansion about the adiabatic profile:

ρ ′ ≈−α0ρ0T0

cp0
s′ − 1

ρ0g
dρ0

dz
P′, (0.5)
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(cf our equation (2.6)), leading to the more familiar

〈τ : ε̇〉 ≈
〈
α0ρ0T0g

cp0
uzs′

〉
. (0.6)

If we now start from the Navier Stokes equation in the anelastic approximation

ρ0
Du
Dt
=−ρ0∇

(
P′

ρ0

)
+ α0ρ0T0g

cp0
s′êz +∇ · τ (0.7)

Alboussière & Ricard (2013, equation (2.8)), we get exactly

〈τ : ε̇〉 =
〈
α0ρ0T0g

cp0
uzs′

〉
, (0.8)

and using (2.6),

〈τ : ε̇〉 =−〈ρ ′guz〉 −
〈

P′uz
1
ρ0

dρ0

dz

〉
. (0.9)

The expressions of dissipation in the exact case and in the anelastic approximation,
in terms of entropy perturbation, (0.6) and (0.8), or in term of density and pressure
perturbations (0.4) and (0.9) are very similar. However, and this is the weak point
of our previous reasoning and the cause of this corrigendum, we used the anelastic
mass conservation ∇ · (ρ0u)= 0 together with the exact dissipation expression (0.3) to
conclude that 〈ρ0guz〉= 0 and that dissipation in the anelastic approximation is simply
−〈u ·∇P′〉. In doing so, we have unduly mixed equations of two different formalisms.
In the framework of anelasticity, we can only prove (0.9), and the anelastic mass
conservation says nothing about 〈ρ ′guz〉. Therefore, we must consider unproven that
the dissipation in the anelastic formalism can be expressed in terms of pressure
variations only, i.e. we have no arguments to neglect the term involving 〈ρ ′uz〉 in
(0.9) and to retain that involving 〈P′uz〉. The rest of our paper, comparing the relative
amplitudes of terms in 〈s′uz〉, 〈P′uz〉 and 〈T ′uz〉 in the anelastic approximation is most
probably wrong and, in any case, not demonstrated.

The treatment of continuity is at the origin why the expression of dissipation −〈u ·
∇P〉 does not translate into −〈u ·∇P′〉 when using the anelastic approximation model.
If we want that property to hold in the anelastic model, and pressure fluctuations to be
a faithful image of that in the full model, one must substitute the continuity equation
∇ · [(ρ0+ ρ ′)u] = 0 for the equation usually used in the anelastic model ∇ · (ρ0u)= 0.
The fact that mass conservation is not well treated at first order in the perturbations
from the adiabatic state can be seen from the original anelastic equations. Energy
conservation (Alboussière & Ricard 2013, (2.4)) provides s′, while the momentum
equation (2.8) or (0.7) provides P′ and u (with continuity (2.2)). From s′ and P′, it is
possible to evaluate ρ ′ from the linearized equation of state. Then there is no equation
ensuring mass conservation, i.e. 〈ρ ′u〉 for instance is not constrained to be zero.

In the original anelastic equations, the horizontal average of uz is zero and 〈uz〉 = 0.
However, the analysis in this corrigendum (in particular (0.3) stresses the importance
of the mean upward vertical velocity 〈uz〉 6= 0. Finally, the combination of that
horizontally averaged vertical velocity uz and the adiabatic hydrostatic pressure
gradient produces a significant contribution to the expression of dissipation −〈u ·∇P〉,
of the form 〈uzρ0g〉. That contribution is not present in the original anelastic equations
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and is well accounted for in a modified version of the anelastic equations when
continuity is written ∇ · [(ρ0 + ρ ′)u] = 0.

To conclude, we have shown that the approximated continuity equation ∇ · (ρ0u)=0
is not compatible with the property that energy dissipation is equal to −〈u · ∇P〉.
Hence either dissipation and/or pressure are likely to be evaluated incorrectly in the
original anelastic approximation. This inconsistency is resolved when the modified
continuity equation ∇ · [(ρ0+ ρ ′)u] = 0 is used, without affecting the anelastic nature
of the approximation.
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