THE MINIMAL NUMBER OF PERIODIC ORBITS
OF PERIODS GUARANTEED IN SHARKOVSKII'S THEOREM

Bau-Sen Du

Let $f(x)$ be a continuous function from a compact real interval
into itself with a periodic orbit of minimal period m, where m
is not an integral power of 2. Then, by Sharkovskii's theorem,
for every positive integer n with $m < n$ in the Sharkovskii
ordering defined below, a lower bound on the number of periodic
orbits of $f(x)$ with minimal period n is 1. Could we
improve this lower bound from 1 to some larger number? In this
paper, we give a complete answer to this question.

1. Introduction

Let I be a compact real interval and let $f \in C^0(I, I)$. For any
x_0 in I and any positive integer k, we let $f^k(x_0)$ denote the kth
iterate of x_0 under f and call $\{f^k(x_0) \mid k \geq 0\}$ the orbit of x_0
(under f). If $f^m(x_0) = x_0$ for some positive integer m, we call x_0
a periodic point of f and call the cardinality of the orbit of x_0
(under f) the minimal period of x_0 and of the orbit (under f). If f
has a periodic orbit of a period m, must f also have periodic orbits
of periods $n \neq m$? In 1964, Sharkovskii [11] (see [1], [3], [7], [9],

Received 23 August 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84
$A2.00 + 0.00.$

89
[12], [13], also) had given a complete answer to this question. Arrange the positive integers according as the following new order (called Sharkovskii ordering):

\[
\begin{align*}
3 & \Delta 5 \Delta 7 \Delta \ldots \\
\Delta & 2 \cdot 3 \Delta 2 \cdot 5 \Delta 2 \cdot 7 \Delta \ldots \\
\vdots & \quad \vdots \\
\Delta & 2^n \cdot 3 \Delta 2^n \cdot 5 \Delta 2^n \cdot 7 \Delta \ldots \\
\vdots & \quad \vdots \\
\Delta & \ldots \Delta 2^3 \Delta 2^2 \Delta 2 \Delta 1.
\end{align*}
\]

Sharkovskii's theorem says that any function \(f \in C^0(I, I) \) with a periodic orbit of minimal period \(m \), must also have at least one periodic orbit of minimal period \(n \) precisely when \(m \Delta n \) in the above Sharkovskii ordering. Therefore, for every positive integer \(n \) with \(m \Delta n \), the number 1 is a lower bound on the number of distinct periodic orbits of \(f \) with minimal period \(n \). One question arises naturally: could we improve this lower bound from 1 to some larger number?

In 1976 Bowen and Franks [2] showed, among other things, that if \(f \in C^0(I, I) \) has a periodic orbit of minimal period \(n = 2^d m \), where \(m > 1 \) is odd, then there is a number \(M_n \) (independent of \(f \)) such that, for all integers \(k \geq M_n \), \(f \) has at least \(\left(\frac{2^{k/m}}{2^d} \right)^2 \) distinct periodic orbits of minimal period \(2^d k \).

In 1979, Jonker [8] also obtained a similar result on a class of unimodal maps. If \(a \) is an interior point of \(I \), let \(S_a \) denote the collection of all \(f \in C^0(I, I) \) which has either one maximum or one minimum point at \(a \), and is strictly monotone on each component of \(I \setminus \{a\} \) with \(f(3I) \subset 3I \). Jonker showed, among other things, that if \(m, n \) are any two odd integers with \(1 < m < n \), and if \(f \in S_a \) has a periodic orbit of minimal period \(2^k m \), where \(k \geq 0 \) is any integer, then \(f \) must also have at least \(2^{(n-m)/2} \) distinct periodic orbits of minimal period \(2^k n \).
In [6], a result along this line is also obtained. However, that result is only a partial one. In this paper we give a complete answer to that question.

In Section 2 we state our main results (Theorems 1, 2, and 3). In Section 3 we describe the method used to prove them. This method is the same as that used in [5] and [6]. The proofs of Theorems 1 and 2 will appear in Sections 4 and 5. Theorem 3 then follows easily from Theorems 1 and 2.

2. Statement of main results

Let \(\phi(m) \) be an integer-valued function defined on the set of all positive integers. If \(m = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r} \), where the \(p_i \)'s are distinct prime numbers, \(r \) and \(k_i \)'s are positive integers, we define

\[
\phi(1, \phi) = \phi(1)
\]

and

\[
\phi(m, \phi) = \phi(m) - \sum_{i=1}^{r} \phi(m/p_i) + \sum_{i_1 < i_2} \phi(m/(p_i p_{i_2})) - \sum_{i_1 < i_2 < i_3} \phi(m/(p_i p_{i_2} p_{i_3})) + \ldots + (-1)^r \phi(m/(p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r}))
\]

where the summation \(\sum_{i_1 < i_2 < \ldots < i_j} \) is taken over all \(i_1, i_2, \ldots, i_j \) with \(1 \leq i_1 < i_2 < \ldots < i_j \leq r \). If, when considered as a sequence, \(\langle \phi(m) \rangle \) is the Lucas sequence, that is if \(\phi(1) = 1, \phi(2) = 3 \), and \(\phi(m+2) = \phi(m+1) + \phi(m) \) for all positive integers \(m \), then, for simplicity, we denote \(\phi(m, \phi) \) as \(\phi_1(m) \). Note that if \(f \in C^0(I, I) \) and if, for every positive integer \(m \), \(\phi(m) \) is the number of distinct solutions of the equation \(f^m(x) = x \), then \(\phi(m, \phi) \) is, by the standard inclusion-exclusion argument, the number of periodic points of \(f \) with minimal period \(m \). Now we can state the following theorem.

Theorem 1. Let \(f : [1, 3] \to [1, 3] \) be defined by \(f(x) = -2x + 5 \)
if $1 \leq x \leq 2$ and $f(x) = x - 1$ if $2 \leq x \leq 3$. Then the following hold:

(a) for every positive integer m, if a_m is the number of distinct solutions of the equation $f^m(x) = x$, then the sequence (a_m) is the Lucas sequence;

(b) for every positive integer m, f has exactly $\phi_1(m)/m$ distinct periodic orbits of minimal period m;

(c) the sequence $(\phi_1(m)/m)$ is strictly increasing for $m \geq 6$ and $\lim_{n \to \infty} [\phi_1(m+1)/(m+1)]/\phi_1(m)/m = (1+\sqrt{5})/2$.

Fix any integer $n > 1$ and let

$$Q_n = \{(1, n+1)\} \cup \{(m, 2n+2-m) \mid 2 \leq m \leq n\} \cup \{(m, 2n+1-m) \mid n+1 \leq m \leq 2n\}.$$

For all integers i, j, and k, with $1 \leq i, j \leq 2n$ and $k \geq 1$, we define $b_{k,i,j,n}$ recursively as follows:

$$b_{1,i,j,n} = \begin{cases} 1 & \text{if } (i, j) \in Q_n, \\ 0 & \text{otherwise}, \end{cases}$$

and

$$b_{k+1,i,j,n} = \begin{cases} b_{k,i,2n+1-j,n} + b_{k,i,n+1,n}, & \text{if } 1 \leq j \leq n-1, \\ b_{k,i,n,n} + b_{k,i,n+1,n}, & \text{if } j = n, \\ b_{k,i,1,n}, & \text{if } j = n+1, \\ b_{k,i,2n+2-j,n}, & \text{if } n+2 \leq j \leq 2n. \end{cases}$$

We also define $c_{k,n}$ by letting

$$c_{k,n} = \sum_{i=1}^{2n} b_{k,i,i,n} + b_{k,n+1,n,n} + \sum_{i=n+2}^{2n} b_{k,i,n+1,n}.$$

Note that these sequences $(b_{k,i,j,n})$ and $(c_{k,n})$ have the following six properties. Some of these will be used later in the proofs of our main results. (Recall that $n > 1$ is fixed.)
(i) The sequence \(\{b_{k,l,n,n}\} \) is increasing, and for all integers \(k \geq 2 \), we have \(b_{k,l,n,n} \geq b_{k,n+1,l,n,n} \) and \(b_{k,l,i+1,n,n} \geq b_{k,l,i,n,n} \) for all \(1 \leq i \leq n-1 \).

(ii) The sequences \(\{b_{k,l,j,n}\} \), \(1 \leq j \leq n \), and \(\{b_{k,n+l,n,n}\} \) can also be obtained by the following recursive formulas:

\[
\begin{align*}
b_{1,l,j,n} &= 0, \quad 1 \leq j \leq n, \\
b_{2,l,j,n} &= 1, \quad 1 \leq j \leq n, \\
b_{1,n+l,n,n} &= b_{2,n+l,n,n} = 1, \\
b_{1,n+l,j,n} &= b_{2,n+l,j,n} = 0, \quad 1 \leq j \leq n-1.
\end{align*}
\]

For \(i = 1 \) or \(n+1 \), and \(k \geq 1 \),

\[
\begin{align*}
b_{k+2,i,n,n} &= b_{k,i,n,n} + b_{k+1,i,n,n}, \\
b_{k+2,i,j,n} &= b_{k,i,n,n} + b_{k,i,j+1,n}, \quad 1 \leq j \leq n-1.
\end{align*}
\]

(iii) For every positive integer \(k \), \(a_{k+2n-2,n} \) can also be obtained by the following formulas:

\[
a_{k+2n-2,n} = b_{k+2n-2,n+1,n,n} + 2 \sum_{j=1}^{n} b_{k+2n-2,1,j,n,n}
\]

\[
= b_{k+2n-2,n+1,n,n} + 2nb_{k,1,n,n} + \sum_{i=2}^{n} (2^{i-2}) b_{k,1,n+1-i,n,n}.
\]

The first identity also holds for all integers \(k \) with \(-2n+3 \leq k \leq 0\) provided we define \(b_{k,l,j,n} = 0 \) for all \(-2n+3 \leq k \leq 0\) and \(1 \leq j \leq n \).

(iv) For all integers \(k \) with \(1 \leq k \leq 2n \), \(c_{2k,n} = 2^{k+1} - 1 \).

(v) For all integers \(k \) with \(n+1 \leq k \leq 3n \),

\[
a_{2k+1,n} = 2a_{2k+1,n+1} - 1.
\]

(vi) Since, for every positive integer \(k \geq 2n+1 \),

\[
b_{k,l,n,n} = b_{k-1,l,1,n,n} + \sum_{i=2}^{2n} (-1)^{i} b_{k-i,l,1,n,n},
\]
there exist $2n + 1$ nonzero constants α_j's such that
\[b_{k, l, n, n} = \sum_{j=1}^{2n+1} \alpha_j x_j^k \] for all positive integers k, where \[x_j \mid 1 \leq j \leq 2n+1 \] is the set of all zeros (including complex zeros) of the polynomial $x^{2n+1} - 2x^{2n-1} - 1$.

For all positive integers k, m, n, with $n > 1$, we let $\phi_n(k) = c_{k,n}$ and let $\phi_n(m) = \phi(m, \phi_n)$, where ϕ is defined as above.

Now we can state the following theorem.

THEOREM 2. For every integer $n > 1$, let
\[f_n : [1, 2n+1] \rightarrow [1, 2n+1] \]
be the continuous function with the following six properties:

1. $f_n(1) = n + 1$,
2. $f_n(2) = 2n + 1$,
3. $f_n(n+1) = n + 2$,
4. $f_n(n+2) = n$,
5. $f_n(2n+1) = 1$, and
6. f_n is linear on each component of the complement of the set \{2, n+1, n+2\} in $[1, 2n+1]$.

Then the following hold:

(a) for every positive integer k, the equation $f_n^k(x) = x$ has exactly $c_{k,n}$ distinct solutions;

(b) for every positive integer m, $f_n(x)$ has exactly $\phi_n(m)/m$ distinct periodic orbits of minimal period m;

(c) $\lim_{m \to \infty} \left(\log[\phi_n(m)/m] \right)/m = \lambda_n$, where λ_n is the (unique) positive (and the largest in absolute value) zero of the polynomial $x^{2n+1} - 2x^{2n-1} - 1$.
From Theorems 1 and 2 above and Theorem 2 of [12, p. 243], we easily obtain the following result.

THEOREM 3. Assume that \(f \in C^0(I, I) \) has a periodic orbit of minimal period \(s = 2^k(2n+1) \), where \(n \geq 1 \) and \(k \geq 0 \), and no periodic orbits of minimal period \(r \) with \(r \neq s \) in the Sharkovskii ordering. Then for every positive integer \(t \) with \(s \neq t \) in the Sharkovskii ordering, \(f \) has at least \(\phi_n(t/2^k)/(t/2^k) \) (sharp) distinct periodic orbits of minimal period \(t \).

REMARK 1. We call attention to the fact that there exist continuous functions from \(I \) into \(I \) with exactly one periodic orbit of minimal period \(2^k \) for every positive integer \(k \) (and two fixed points), but no other periods (see [10]).

REMARK 2. With the help of Theorem 2 of [12, p. 243] on the distribution along the real line of points in a periodic orbit of odd period \(n > 1 \), when there are no periodic orbits of odd period \(m \) with \(1 < m < n \), our results give a new proof of Sharkovskii’s theorem.

REMARK 3. Table 1 (see p. 96) lists the first 31 values of \(\phi_n(m)/m \) for \(1 \leq n \leq 5 \). It seems that, for all positive integers \(n \) and \(m \), we have

\[
\phi_n(2m+1)/(2m+1) = 2^{m-n} \quad \text{for} \quad n \leq m \leq 3n+1 ,
\]

and

\[
\phi_n(2m+1)/(2m+1) > 2^{m-n} \quad \text{for} \quad m > 3n + 1 .
\]

REMARK 4. For all positive integers \(k \) and \(m \), let \(\psi(k) = 2^k \) and \(\psi(m) = \Phi(m, \psi) \), where \(\Phi \) is defined as in Section 2. It is obvious that \(\psi(m)/m \) is the number of distinct periodic orbits of minimal period \(m \)

for, say, the mapping \(g(x) = 4x(1-x) \) from \([0, 1]\) onto itself. Since, for all positive integers \(k \) and \(n \) with \(1 \leq k \leq 2n \), \(c_{2k,n} = 2^{k+1} - 1 \)

\(c_{1,n} = 1 \), we obtain that \(\phi_n(2k+2)/(2k+2) = \psi(k+1)/(k+1) \) for all
<table>
<thead>
<tr>
<th>m</th>
<th>$\Phi_1(m)/m$</th>
<th>$\Phi_2(m)/m$</th>
<th>$\Phi_3(m)/m$</th>
<th>$\Phi_4(m)/m$</th>
<th>$\Phi_5(m)/m$</th>
<th>$\Psi(m)/m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>99</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>186</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>335</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>630</td>
</tr>
<tr>
<td>14</td>
<td>58</td>
<td>23</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>1161</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2182</td>
</tr>
<tr>
<td>16</td>
<td>135</td>
<td>46</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>4080</td>
</tr>
<tr>
<td>17</td>
<td>210</td>
<td>66</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>7710</td>
</tr>
<tr>
<td>18</td>
<td>316</td>
<td>94</td>
<td>61</td>
<td>56</td>
<td>56</td>
<td>14560</td>
</tr>
<tr>
<td>19</td>
<td>492</td>
<td>136</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>27594</td>
</tr>
<tr>
<td>20</td>
<td>750</td>
<td>195</td>
<td>115</td>
<td>101</td>
<td>99</td>
<td>52377</td>
</tr>
<tr>
<td>21</td>
<td>1164</td>
<td>282</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>99858</td>
</tr>
<tr>
<td>22</td>
<td>1791</td>
<td>408</td>
<td>224</td>
<td>191</td>
<td>186</td>
<td>190557</td>
</tr>
<tr>
<td>23</td>
<td>2786</td>
<td>592</td>
<td>258</td>
<td>128</td>
<td>64</td>
<td>364722</td>
</tr>
<tr>
<td>24</td>
<td>4305</td>
<td>856</td>
<td>431</td>
<td>351</td>
<td>337</td>
<td>696870</td>
</tr>
<tr>
<td>25</td>
<td>6710</td>
<td>1248</td>
<td>520</td>
<td>256</td>
<td>128</td>
<td>1342176</td>
</tr>
<tr>
<td>26</td>
<td>10420</td>
<td>1814</td>
<td>850</td>
<td>668</td>
<td>635</td>
<td>2580795</td>
</tr>
<tr>
<td>27</td>
<td>16264</td>
<td>2646</td>
<td>1050</td>
<td>512</td>
<td>256</td>
<td>4971008</td>
</tr>
<tr>
<td>28</td>
<td>25350</td>
<td>3858</td>
<td>1673</td>
<td>1257</td>
<td>1177</td>
<td>9586395</td>
</tr>
<tr>
<td>29</td>
<td>39650</td>
<td>5644</td>
<td>2128</td>
<td>1026</td>
<td>512</td>
<td>18512790</td>
</tr>
<tr>
<td>30</td>
<td>61967</td>
<td>8246</td>
<td>3328</td>
<td>2402</td>
<td>2220</td>
<td>35790267</td>
</tr>
<tr>
<td>31</td>
<td>97108</td>
<td>12088</td>
<td>4320</td>
<td>2056</td>
<td>1024</td>
<td>69273666</td>
</tr>
</tbody>
</table>
1 \leq k \leq 2n. It seems that \(\frac{\phi_n(2k+2)}{(2k+2)} > \frac{\psi(k+1)}{(k+1)} \) for all \(k > 2n \). But note that

\[
\lim_{k \to \infty} \left(\log \left(\frac{\phi_n(2k+2)}{(2k+2)} \right) \right) / (2k+2)
= \log \lambda_n > \frac{1}{2} \log 2 = \frac{1}{2} \lim_{k \to \infty} \left(\log \left(\frac{\psi(k+1)}{(k+1)} \right) \right) / (k+1),
\]

where \(\lambda_n \) is the unique positive zero of the polynomial

\[x^{2n+1} - 2x^{2n-1} - 1. \]

3. Symbolic representation for continuous piecewise linear functions

In this section we describe a method. This method was first introduced in [4], and then generalized in [5] to construct, for every positive integer \(n \), a continuous piecewise linear function from \([0, 1]\) into itself which has a periodic orbit of minimal period 3, but with the property that almost all (in the sense of Lebesgue) points of \([0, 1]\) are eventually periodic of minimal period \(n \) with the periodic orbit the same as the orbit of a fixed known period \(n \) point. The same method was also used in [6] to give a new proof of a result of Block et al. [1] on the topological entropy of interval maps. In this paper we will use this method to prove our main results.

Throughout this section, let \(g \) be a continuous piecewise linear function from the interval \([a, b]\) into itself. We call the set \(\{ (x_i, y_i) \mid i = 1, 2, \ldots, k \} \) a set of nodes for (the graph of) \(y = g(x) \) if the following three conditions hold:

1. \(k \geq 2 \),
2. \(x_1 = a \), \(x_k = b \), \(x_1 < x_2 < \ldots < x_k \), and
3. \(g \) is linear on \([x_i, x_{i+1}]\) for all \(1 \leq i \leq k-1 \) and \(y_i = g(x_i) \) for all \(1 \leq i \leq k \).

For any such set, we will use its \(y \)-coordinates \(y_1, y_2, \ldots, y_k \) to represent the graph of \(y = g(x) \) and call \(y_1 y_2 \ldots y_k \) (in that order) a (symbolic) representation for (the graph of) \(y = g(x) \). For
1 \leq i < j \leq k$, we will call \(y_i y_{i+1} \ldots y_j \) the representation for \(y = g(x) \) on \([x_i, x_j]\) obtained by restricting \(y_1 y_2 \ldots y_k \) to \([x_i, x_j]\). For convenience, we will also call every \(y_i \) in \(y_1 y_2 \ldots y_k \) a node. If \(y_i = y_{i+1} \) for some \(i \) (that is, \(g \) is constant on \([x_i, x_{i+1}]\)), we will simply write \(y_1 \ldots y_i y_{i+1} y_{i+2} \ldots y_k \) instead of \(y_1 \ldots y_i y_{i+1} y_{i+2} \ldots y_k \). Therefore, every two consecutive nodes in a (symbolic) representation are distinct.

Now assume that \(\{(x_i, y_i) \mid i = 1, 2, \ldots, k\} \) is a set of nodes for \(y = g(x) \) and \(a_1 a_2 \ldots a_r \) is a representation for \(y = g(x) \) with \(\{a_1, a_2, \ldots, a_r\} \subset \{y_1, y_2, \ldots, y_k\} \) and \(a_i \neq a_{i+1} \) for all \(1 \leq i \leq r-1 \). If \(\{y_1, y_2, \ldots, y_k\} \subset \{x_1, x_2, \ldots, x_k\} \), then there is an easy way to obtain a representation for \(y = g^2(x) \) from the one \(a_1 a_2 \ldots a_r \) for \(y = g(x) \). The procedure is as follows. First, for any two distinct real numbers \(u \) and \(v \), let \([u : v]\) denote the closed interval with endpoints \(u \) and \(v \). Then let \(b_1, b_2, \ldots, b_{i-1}, t_i \) be the representation for \(y = g(x) \) on \([a_i : a_{i+1}]\) which is obtained by restricting \(a_1 a_2 \ldots a_r \) to \([a_i : a_{i+1}]\). We use the following notation to indicate this fact: \(a_i a_{i+1} b_{i-1} t_i b_{i+1} \) (under \(g \)) if \(a_i < a_{i+1} \), or \(a_i a_{i+1} t_i b_{i-1} b_{i+1} \) (under \(g \)) if \(a_i > a_{i+1} \).

The above representation on \([a_i : a_{i+1}]\) exists since \(\{a_1, a_2, \ldots, a_r\} \subset \{x_1, x_2, \ldots, x_k\} \). Finally, if \(a_i < a_{i+1} \), let \(z_{i,j} = b_{j-1} \) for all \(1 \leq j \leq t_i \). If \(a_i > a_{i+1} \), let \(z_{i,j} = b_{j-1} t_{i+1} \) for all \(1 \leq j \leq t_i \). It is easy to see that \(z_{i,t_i} = z_{i+1,1} \) for all \(1 \leq i \leq r-1 \). So, if we define

\[
Z = z_{1,1} \ldots z_{1,t_1} z_{2,2} \ldots z_{2,t_2} \ldots z_{r,2} \ldots z_{r,t_r},
\]

then it is obvious that \(Z \) is a representation for \(y = g^2(x) \). It is
also obvious that the above procedure can be applied to the representation Z for $y = g^2(x)$ to obtain one for $y = g^3(x)$, and so on.

4. Proof of Theorem 1

In this section we let $f(x)$ denote the map as defined in Theorem 1, that is $f(x) = -2x + 5$ if $1 \leq x \leq 2$, and $f(x) = x - 1$ if $2 \leq x \leq 3$. The proof of part (a) of Theorem 1 will follow from two easy lemmas.

LEMMA 4. Under f, we have

\[13 \rightarrow 312, \quad 31 \rightarrow 213, \quad 12 \rightarrow 31, \quad 21 \rightarrow 13. \]

In the following when we say the representation for $y = f^k(x)$, we mean the representation obtained, following the procedure as described in Section 3, by applying Lemma 4 to the representation 312 for $y = f(x)$ successively until we get to the one for $y = f^k(x)$.

For every positive integer k, let $u_{1,k}$ ($u_{2,k}$ respectively) denote the number of 13's and 31's in the representation for $y = f^k(x)$ whose corresponding x-coordinates are \leq (\geq respectively) 2. We also let $v_{1,k}$ ($v_{2,k}$ respectively) denote the number of 12's and 21's in the representation for $y = f^k(x)$ whose corresponding x-coordinates are \leq (\geq respectively) 2. It is clear that $u_{1,1} = v_{2,1} = 1$ and $u_{2,1} = v_{1,1} = 0$. Now from Lemma 4, we have

LEMMA 5. For every positive integer k and integers $i = 1, 2$

\[u_{i,k+1} = u_{i,k} + v_{i,k} \quad \text{and} \quad v_{i,k+1} = u_{i,k}. \]

Furthermore, if

\[w_k = u_{1,k} + v_{1,k} + u_{2,k}, \]

then $w_1 = 1$, $w_2 = 3$, and $w_{k+2} = w_{k+1} + w_k$. That is, $\{w_k\}$ is the Lucas sequence.

Since, for every positive integer k, the number of distinct solutions of the equation $f^k(x) = x$ equals w_k, part (a) of Theorem 1 follows from Lemma 5. Part (b) follows from the standard inclusion-exclusion argument. As for part (c), we note that, for every positive
integer k,
\[a_{k+2} = \sum_{i=1}^{k} a_i + 3. \]

So, for $k \geq 6$,
\[
(k+2)\phi_1(k+3) > (k+2)(a_{k+2} - a_{\lfloor (k+3)/2 \rfloor + 1})
> (k+3)(a_{k+2} - a_{\lfloor (k+3)/2 \rfloor + 1})
> (k+3)\phi_1(k+2),
\]
where \(\lfloor (k+3)/2 \rfloor\) is the largest integer less than or equal to \((k+3)/2\).
The proof of the other statement of part (a) is easy and omitted. This completes the proof of Theorem 1.

5. Proof of Theorem 2

In this section we fix any integer $n > 1$ and let $f_n(x)$ denote the map as defined in Theorem 2. For convenience, we also let S_n denote the set of all these \(\lfloor n \rfloor\) symbolic pairs: \((i+1)i, (i+1)i, 1 \leq i \leq n-1; n(n+2), (n+2)n, (n+1)(2n+1), (2n+1)(n+1), j(j+1), (j+1)j, n+2 \leq j \leq 2n\).

The following lemma is easy.

Lemma 6. Under f_n, we have
\[
n(n+2) \to (n+3)(n+2)n, (n+2)n \to (n+2)(n+2)(n+3),
(n+1)(2n+1) \to (n+2)n(n-1)(n-2) \ldots 321,
(2n+1)(n+1) \to 123 \ldots (n-2)(n-1)n(n+2),
\]
and $uv \to f_n(u)f_n(v)$ for every uv in
\[S_n = \{ n(n+2), (n+2)n, (n+1)(2n+1), (2n+1)(n+1) \}. \]

In the following when we say the representation for $y = f_n^k(x)$, we mean the representation obtained, following the procedure as described in Section 3, by applying Lemma 6 to the representation
\[
(n+1)(2n+1)(2n)(2n-1) \ldots (n+2)n(n-1)(n-2) \ldots 321
\]
for $y = f^k_n(x)$ successively until we get to the one for $y = f^k_n(x)$.

For every positive integer k and all integers i, j with $1 \leq i, j \leq 2n$, let $b_{k,i,j,n}$ denote the number of uv's and vu's in the representation for $y = f^k_n(x)$ whose corresponding x-coordinates are in $[i, i+1]$, where $uv = j(j+1)$ if $1 \leq j \leq n-1$ or $n+2 \leq j \leq 2n$, $uv = n(n+2)$ if $j = n$, and $uv = (n+1)(2n+1)$ if $j = n+1$. It is obvious that $b_{1,1,n+1,n} = 1$, $b_{1,i,2n+2-i,n} = 1$ if $2 \leq i \leq n$, $b_{1,i,2n+1-i,n} = 1$ if $n+1 \leq i \leq 2n$, and $b_{1,i,j,n} = 0$ elsewhere. From Lemma 6, we see that the sequences $\{b_{k,i,j,n}\}$ are exactly the same as those defined in Section 2.

Since

$$c_{k,n} = \sum_{i=1}^{2n} b_{k,i,i,n} + b_{k,n+1,n,n} + \sum_{i=n+2}^{2n} b_{k,i,n+1,n},$$

it is clear that $c_{k,n}$ is the number of intersection points of the graph of $y = f^k_n(x)$ with the diagonal $y = x$. This proves part (a) of Theorem 2. Part (b) follows from the standard inclusion-exclusion argument. As for part (c), we note that there exist $2n+1$ nonzero constants a_j's such that

$$b_{k,1,n,n} = \sum_{j=1}^{2n+1} a_j x^k_j$$

for all positive integers k, where $\{x_j \mid 1 \leq j \leq 2n+1\}$ is the set of all zeros (including complex zeros) of the polynomial $x^{2n+1} - 2x^{2n-1} - 1$. Since $c_{k+2n-2,n}$ can also be expressed as

$$b_{k+2n-2,n+1,n,n} + 2nb_{k,1,n,n} + \sum_{i=2}^{n} (2^i-2)b_{k,1,n+1-i,n},$$

part (c) follows from property (i) of the sequences $\{b_{k,i,j,n}\}$ stated in Section 2. This completes the proof of Theorem 2.
References

Institute of Mathematics,
Academia Sinica,
Nankang,
Taipei,
Taiwan 115,
Republic of China.