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THE MINIMAL NUMBER OF PERIODIC ORBITS
OF PERIODS GUARANTEED IN SHARKOVSKII'S THEOREM

BAU-SEN DU

Let f(x) be a continuous function from a compact real interval

into i t se l f with a periodic orbit of minimal period m , where m

is not an integral power of 2 . Then, by Sharkovskii's theorem,

for every positive integer n with m -*• n in the Sharkovskii

ordering defined below, a lower bound on the number of periodic

orbits of f(x) with minimal period n is 1 . Could we

improve this lower bound from 1 to some larger number? In this

paper, we give a complete answer to this question.

1. Introduction

Let I be a compact real interval and le t f € C (T, J) . For any

a; in J and any positive integer k , we le t f (xn) denote the feth

iterate of x~ under / and call •(/C(x0) | k > 0 \ the orbit of xQ

(under / ). If / [xA = x^ for some positive integer m , we call x

a periodic point of f and call the cardinality of the orbit of x

(under / ) the minimal period of x and of the orbit (under / ). If /

has a periodic orbit of a period m , must / also have periodic orbits

of periods n # m 1 In 196U, Sharkovskii [17] (see [ J ] , [3], [7], [9] ,
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90 Bau-Sen Du

[72], [73], also) had given a complete answer to this question. Arrange

the positive integers according as the following new order (called

Sharkovskii ordering):

3 A 5 A 7 A . . .

A 2*3 A 2-5 A 2*7 A . . .

A 2 * - 3 A 2W«5 A 2 n «7 A . . .

A . . . A 2 3 A 2 2 A 2 A 1 .

Sharkovskii's theorem says that any function f € C (I, I) with a periodic

orbit of minimal period m , must also have at least one periodic orbit of

minimal period n precisely when m A n in the above Sharkovskii

ordering. Therefore, for every positive integer n with m A n , the

number 1 is a lower bound on the number of distinct periodic orbits of f

with minimal period n . One question arises naturally: could we improve

this lower bound from 1 to some larger number?

In 1976 Bowen and Franks [2] showed, among other things, that if

/ € C (I, I) has a periodic orbit of minimal period n = 2 m , where

m > 1 is odd, then there is a number M (independent of f ) such that,

for all integers k 2: M , / has at least (2 'm)/[2<lt) distinct

periodic orbits of minimal period 2 k .

In 1979, Jonker [S] also obtained a similar result on a class of

unimodal maps. If 0 is an interior point of J , let S denote the
G

collection of all f (. C (J, I) which has either one maximum or one

minimum point at c , and is strictly monotone on each component of

I - {a} with /( dl) c 81" . Jonker showed, among other things, that if

m, n are any two odd integers with 1 < m < n , and if f € S has a

c

periodic orbit of minimal period 2m, where k i 0 is any integer, then

/ must also have at least 2 distinct periodic orbits of minimal

period 2 n .
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In [6], a result along this line is also obtained. However, that

result is only a partial one. In this paper we give a complete answer to

that question.

In Section 2 we state our main results (Theorems 1, 2, and 3). In

Section 3 we describe the method used to prove them. This method is the

same as that used in [5] and [6]. The proofs of Theorems 1 and 2 will

appear in Sections h and 5. Theorem 3 then follows easily from Theorems 1

and 2.

2. Statement of main results

Let <{)(m) be an integer-valued function defined on the set of a l l

\ k2 k
posi t ive in tegers . If m = p p ... p , where the p . ' s are d is t inc t

prime numbers, r and fe.'s are posi t ive i n t ege r s , we define

and

I 4 > ( m / ( p . p . p . ) ) + . . . + ( - l ) r t ( » / ( p p . . . p )) ,
* 3 1 2 3 1 2 r

where the summation £ is taken over all i , •£„, ..., i . with
i <i<...<i . 3

1 2 Q
1 5 i < i < . . . < i . S r . I f , when c o n s i d e r e d as a sequence , < <(>(m) >

-L ^ 0

is the Lucas sequence, that is if <J>(l) = 1 , <J>(2) = 3 , and

<i>(m+2) = (j>(m+l) + 4>(m) for all positive integers m , then, for

simplicity, we denote H-m, <j>) as tAm) . Note that if / € C (I, I)

and if, for every positive integer m , <j)(m) is the number of distinct

solutions of the equation f (a;) = x , then $(m, (J>) is , by the standard

inclusion-exclusion argument, the number of periodic points of / with

minimal period m . Now we can state the following theorem.

THEOREM 1. Let f : [ l , 3] •+ [ l , 3] be defined by f(x) = -2x + 5
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if 1 5 x 2 2 and f(x) = x - l £/ 2 < x < 3 . Iften the following hold:

(a) for every positive integer m , if a is the number of

distinot solutions of the equation j (x) = x , then the

sequence (a ) is the Lucas sequence;

(b) for every positive integer m , f has exactly § Am)/m

distinct periodic orbits of minimal period m ;

(c) the sequence ($ Am)/m} is strictly increasing for m > 6

and l im [$ (m+1)/(m+1)] / [$Am)/m] = (l+\/5)/2 ..
n"*>n-"*>

Fix any integer n > 1 and l e t

Q = {(1, n+1)} u {(m, 2n+2-m) | 2 5 m < «}

5 m S 2n}

For a l l integers i , j , and k , with 1 < i , j S 2n and k 2; 1 , we

define £>,
k recursively as follows:

1 , i f (i, j) €

b . . = •
±,i-,3,n

0 , otherwise,

and

ki2n+ljn k

k,i,n,n k,i,n+X,n

bk,i,l,n '

k,i,2n+2-j,n '

We also define e, by le t t ing

if 1 5 j < n-1 ,

if j = n ,

if 3 = n + 1 ,

if n+2 5 j 5 2n .

Ck,n

2n

k,n+l,n,n

Note that these sequences (b, . . ) and (c, \ have the following six

properties. Some of these will be used later in the proofs of our main

results. (Recall that n > 1 is fixed.)
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( i ) The sequence (b, ) i s increas ing , and for a l l integers

k > 2 , we have Z>, , > i>, and 2>, ., . . > b, . for a l l
k,l,n,n k,n+l,n,n k,l,i+l,n k,l^,n

1 5 i 2 n-1 .

(ii) The sequences <ifc>1>J->n> , 1 S j < n , and <*fc>n+1,n>B) =an

also be obtained by the following recursive formulas:

b2,lJ,n = 1 ' 1 = ̂  » •

l,n+l,n,n ~ 2,n+l,n,n '

For i = 1 or n + 1 , and fe i 1 ,

k+2,i,n,n ~ k,i,l,n+ k+l,i,n,n '

k+2,i,j,n ~ k,i,l,n k,i,j+l,n '

( i i i ) For every positive integer k , a, o _ can also be

obtained by the following formulas:

n

~ fe+2w-2,n+l,n,n + A k+2n-2j ,1 ,j ,n
3 ~̂ -

n
k+2n-2,n+l,n,n k,l,n,n .^ I. ~ ) k,l,n+l-i,n

The first identity also holds for all integers k with -2n+3 5 k 5 0

provided we define fc, =0 for all -2n+3 S fe S 0 and 1 5 j < n .
K j-l- J<7 > n

fe+1(iv) For al l integers k with 1 5 k S 2n , e9, = Z~ - 1 .

(v) For all integers k with n+1 < k < 3« ,

e , n = 2a2k+l,n+l ~ 1 '

(vi) Since, for every posi t ive integer k 2 2«+l ,

2n i

bk,l,n,n = bk-l,X,n,n + -?P
 ( ~ l ) hk-i,\,n,n '
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there exist Zn + 1 nonzero constants cx.'s such that
3

k
i>, = £ a .x . for all positive integers k , where
K,±sn,n • Q Q

\x. | 1 2 J S 2n+l} is the set of all zeros (including complex zeros) of
3

the polynomial a; - 2x - 1 .

For a l l posit ive integers k, m, n , with n > 1 , we l e t

<j> (fe) = c, and l e t $ (m) = $(m, ((> ) > where $ is defined as above.
Yt K. ^Yl YL Yl'

Now we can state the following theorem.

THEOREM 2. For every integer n > 1 , l e t

fn : [ 1 , 2M+1] -»• [ 1 , 2n+l]

2?e t?je continuous function with the following six properties:

(1) / n ( l ) = n + 1 ,

(2) fn(2) = 2n + 1 ,

(3) fn(«+l) = « + 2 ;

(U) /n(n+2) = n ,

(5) fM(2n+l) = 1 , and

(6) _f i s linear on each component of the complement of the set

{2, n+1, n+2} in [ l , 2n+l] .

Then the following hold:

(a) for every positive integer k , the equation j(x) = x has

exactly c, distinct solutions;

(b) for every positive integer m 3 f (x) has exactly $ (m)/m

distinot periodic orbits of minimal period m ;

(c) lim (log[_4> (m)/m])/m = X , where X is the (unique)
m**> n n

positive (and the largest in absolute value) zero of the
, . ., 2n+l „ 2n-lpolynomial x - 2x - 1 .
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From Theorems 1 and 2 above and Theorem 2 of [72, p . 2l»3], we eas i ly

obtain the following r e s u l t .

THEOREM 3. Assume that f € C°(I, I) has a periodic orbit of

minimal period s = 2 (2n+l) , where n > 1 and fe 2 0 , and no periodic

orbits of minimal period r with r A s in the Sharkovskii ordering.

Then for every positive integer t with s A t in the Sharkovskii

ordering, f has at least $n{t/2k)/[t/2 ) (sharp) distinct periodic

orbits of minimal period t .

REMARK I. We call attention to the fact that there exist continuous

functions from I into J with exactly one periodic orbit of minimal

period 2 for every positive integer i (and two fixed points), but no

other periods (see [JO]).

REMARK 2. With the help of Theorem 2 of [72, p. 21*3] on the

distribution along the real line of points in a periodic orbit of odd

period n > 1 , when there are no periodic orbits of odd period m with

1 < m < n , our results give a new proof of Sharkovskii's theorem.

REMARK 3. Table 1 (see p. 96) l i s t s the f i rs t 31 values of $ (m)/m

for 1 2 n 5 5 • I t seems that , for a l l positive integers n and m , we

have

$n(2nH-l)/(2m-l) = 2m~n for n S m £ 3«+l ,

and

$ (2m+l)/(2m+l) > 2m~* for m > 3n + 1 .

REMARK 4. For a l l positive integers k and m , let i|j(fc) = 2 and

V(m) = $(m, ty) , where * is defined as in Section 2. I t is obvious that

y(m)/m is the number of distinct periodic orbits of minimal period m

for, say, the mapping £?(x) = kx(l-x) from [0, l ] onto i tself . Since,

k+1for a l l positive integers k and n with 1 2 k 5 2n , c , = 2 - 1

c, = 1 , we obtain that $ (2fc+2)/(2fc+2) = ¥(fc+l)/(Zc+l) for a l ll w rc
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TABLE 1

m

1

2

3

1*

5

6

7

8

9

10

11

12

13

1U

15

16

17

18

19

20

2 1

22

23

21*

25

26

27

28

29

30

31

$Am)/m

1

1

1

1

2

2

1*

5

8

1 1

18

25

1*0

58

90

135

210

316

1*92

750

1161*

1791

2786

1*305

6710

10U20

16261*

25350

39650

61967

97108

•2(m)/»

1

1

0

1

1

2

2

3

1*

6

8

1 1

16

23

32

1*6

66

91*

136

195

282

1*08

592

856

121*8

181U

261*6

3858

561*1*

821*6

12088

1

1

0

1

0

2

1

3

2

6

1*

9

8

18

16

32

32

61

61*

115

128

221*

258

1*31

520

850

1050

1673

2128

3328

1*320

1

1

0

1

0

2

0

3

1

6

2

9

l*

18

8

30

16

56

32

101

6k

191

128

351

256

668

512

1257

1026

21*02

2056

$ (m)/m

1

1

0

1

0

2

0

3

0

6

1

9

2

18

1*

30

8

56

16

99

32

186

61*

337

128

635

256

1177

512

2220

1021*

¥<»>/«

2

1

2

3

6

9

18

30

56

99

186

335

630

1161

2182

1*080

7710

1U56O

27591*

52377

99858

190557

361*722

698870

131*2176

2580795

1*971008

9586395

18512790

35790267

69273666
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1 5 k 5 2n . It seems that $ (2k+2)/(2k+2) > 4'(k+l)/(k+l) for all
n

k > 2n . But note that

lim (log[$n(2k+2)/(2k+2)])/(2k+2)

= log X > h log 2 = k lim
M k-x»

where A is the unique positive zero of the polynomial

3. Symbolic representation for continuous piecewise linear functions

In this section we describe a method. This method was first

introduced in [4], and then generalized in [5] to construct, for every

positive integer n , a continuous piecewise linear function from [0, l]

into itself which has a periodic orbit of minimal period 3 , but with the

property that almost all (in the sense of Lebesgue) points of [0, l] are

eventually periodic of minimal period n with the periodic orbit the same

as the orbit of a fixed known period n point. The same method was also

used in [6] to give a new proof of a result of Block et at [/] on the

topological entropy of interval maps. In this paper we will use this

method to prove our main results.

Throughout this section, let g be a continuous piecewise linear

function from the interval [a, d] into itself. We call the set

{ [x., y .) | i = 1, 2, . .. , k} a set of nodes for (the graph of) y = g(ar)

if the following three conditions hold:

(1) k > 2 ,

(2) x± = a , x^= d , x± < x2 < ... < a^ , and

(3) g is linear on [x., x. ] for all 1 < i « k-1 and

y. = g(x.) for all 1 < i 5 k .

For any such set, we will use its ^-coordinates y , y , ..., y, to

represent the graph of y = g(x) and call i/,*̂  ••• Dv (in tnat order) a

(symbolic) representation for (the graph of) y = g{x) . For
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1 s i < 3 5 k , we will call y .y. . . . . y . the representation for
I' ^ ' J . Q

y = g(x) on [x., x.] obtained by restricting */..£/„ • •. J/, to
1 3 i. c. K

[x., x.J . For convenience, we wi l l also ca l l every y. in y,2/o •

a node. I f y. = j / . for some i (that i s , g i s constant on

)> w e w i l 1 simply write y± ... i / ^ + 2 • • • hk instead of

£/•• ••• y-y • .->y • p ••• J/r. • Therefore, every two consecutive nodes in a

(symbolic) representat ion are d i s t i n c t .

Now assume t h a t { ( # . , J/.) | i = 1 , 2, . . . , k\ i s a se t of nodes for

y = g(x) and a a~ ... a i s a representation for y = g(x) with

{a , a , . . . , a } c \y , y ..., y \ and a. £ a. for a l l

1 2 i 5 r - 1 . I f {# , y , . . . , !/,} c {x , x , . . . , x ,} , then there i s an
J- c. K X ci K

2
easy way to obtain a representation for y = g (x) from the one

a a_ . . . a for z/ = g(x) . The procedure is as follows. First , for any

two distinct real numbers u and v , le t [u : v] denote the closed

interval with endpoints u and V . Then let b. b. ... b. . be the

representation for y = ^(x) on Qz. : a. J which is obtained by

restr ict ing a-iao ••• a to [a. : a. 1 . We use the following notation

to indicate this fact: a .a. -*• b. b. ... b. (under g ) if

a . < a . , or a .0.. •*• b . ... b. ob . (under g ) i f <z . > a..

The above representation on [a. : "•.•,] exists since

{al5 a2> . . . , a^} c {x1, xg, . . . , xfe} . Finally, if a^ < a^+1 , le t

z. . = b. . for a l l l < i < t . . If a. > a. n , l e t z .

for all 1 5 ,7 5 t. . It is easy to see that z. = z. for all

1 5 •£ 2 r-1 . So, if we define

2
then i t i s obvious tha t Z i s a representation for y = g (x) . I t i s
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also obvious that the above procedure can be applied to the representation

Z for y = g (x) to obtain one for y = g ix) , and so on.

4. Proof of Theorem 1

In t h i s s e c t i o n we l e t fix) denote t he map as def ined in Theorem 1 ,

t h a t i s fix) = -2.x + 5 i f 1 2 x 5 2 , and f(x) = x - l i f 2 £ x £ 3 .

The proof of p a r t (a) of Theorem 1 w i l l follow from two easy lemmas.

LEMMA 4. Under f , we have

13 -»• 312 , 31 -»• 213 ,

12 ^ 31 , 2 1 + 1 3 .

In the following when we say the representat ion for y = j(x) , we

mean the representat ion obtained, following the procedure as described in

Section 3, by applying Lemma h to the representat ion 312 for y = fix)

successively u n t i l we get to the one for y = j (x) .

For every pos i t ive integer k , l e t u. , [uo , respectively) denote

the number of 13 's and 31's in the representat ion for y = j (x) whose

corresponding x-coordinates are £ (2 respect ively) 2 . We also l e t
v-\ v (vo v respectively) denote the number of 12's and 21's in the

representation for y = jix) whose corresponding x-coordinates are 5

( i respectively) 2 . I t i s clear tha t u = vo . = 1 and

Up = u = 0 . Now from Lemma It, we have
c ,X 1 , 1

LEMMA 5. For every positive integer k and integers i = 1, 2 ,

Wk = ul,k + vl,k + U2,k > then w
1=

 1 ' W2 = 3 ' ^ wk+2 = Wk+1 + Wk •

That is, ( u»,} ^ s the Lucas sequence.

Since, for every positive integer k , the number of distinct

solutions of the equation j (x) = x equals w, , part (a) of Theorem 1

follows from Lemma 5. Part (b) follows from the standard inclusion-

exclusion argument. As for part (c) , we note that, for every positive
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in teger k ,

So, for k > 6 ,

where [(/c+3)/2] is the largest integer less than or equal to {k+3)/2 .
The proof of the other statement of part (a) is easy and omitted. This
completes the proof of Theorem 1.

5. Proof of Theorem 2

In this section we fix any integer n > 1 and let f (x) denote the

map as defined in Theorem 2. For convenience, we also le t S denote the

set of a l l these hn symbolic pairs: i{i+l), (i+l)i , 1 £ i 2 n-1 ;

n(n+2), (n+2)n, (n+l)(2n+l), (2n+l)(n+l), j ( j+ l ) , (j+l)j , n+2 5 j 5 2n .

The following lemma is easy.

LEMMA 6. Under f 3 we have

n(n+2) •* (n+3)(n+2)n , (n+2)n -*• n(«+2)(n+3) j

) -»• (n+2)n(n-l)(n-2) . . . 321 ,

) H- 123 . . . ( (

and uv -+ f (u)f (v) for every uv in

Sn - {n(n+2), (n+2)n,

In the following when we say the representation for y = j(x) , we

mean the representat ion obtained, following the procedure as described in

Section 3 , by applying Lemma 6 to the representation

l ) . . . (n+2)n(n-l)(n-2) . . . 321
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for y = f (x) successively un t i l we get to the one for y = 7 (x) .

For every pos i t ive integer k and a l l integers i , 3 with

1 5 i , j 5 2n , l e t b, . . denote the number of uv's and vu's in

the representation for y = j(x) whose corresponding x-coordinates are

in [i, i + l ] , where uv = 3(3+1) i f 1 2 3 5 n-1 or n+2 < j £ 2n ,

MU = n(n+2) i f 3 = n , and wu = (n+l)(2rc+l) i f j = n + 1 . I t i s

obvious tha t i> , , = 1 , b . _ „ . = l i f 2 < i « n ,

. = 1 i f n+1 5 i S 2n , and £> . . = 0 elsewhere. From
i,n \,v,Q,n

Lemma 6, we see that the sequences (bv • . ) are exactly the same as

those defined in Section 2.

Since

2n 2n
e, = V b, . . + b. , + y fc, .
fe." ^ k,z^,n k,n+l,n,n i=£ ki

i t i s c lear tha t 0, i s the number of in te rsec t ion points of the graphK,n

o f h ~ j(x) with the diagonal y = x . This proves par t faj of Theorem

2. Part ("W follows from the standard inclusion-exclusion argument. As

for part (c), we note t ha t there ex is t 2n + 1 nonzero constants a . ' s
3

such that

2n+l

1
3=

for all positive integers k , where {x. | 1 £ j £ 2n+l} is the set of

b, = > a .x.
k,l,n,n H^ 3 3

al l zeros (including complex zeros) of the polynomial x - 2x - 1

Since e, can also be expressed as
K"T£lYld n

bk+2n-2,n+l,n,n T ""fc.l.n.n T > o

part fcj follows from property (i) of the sequences (b, . . \ stated in

Section 2. This completes the proof of Theorem 2.
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