
J. Appl. Prob. 44, 279–283 (2007)
Printed in England

© Applied Probability Trust 2007

A REMARK ON THE UNIQUENESS
OF WEIGHTED MARKOV
BRANCHING PROCESSES

ANYUE CHEN,∗ The University of Hong Kong and The University of Greenwich

PHIL POLLETT,∗∗ ∗∗∗ The University of Queensland

JUNPING LI,∗∗∗∗ Central South University, Changsha

HANJUN ZHANG,∗∗ ∗∗∗∗∗ The University of Queensland

Abstract

We present an elegant uniqueness criterion for the weighted Markov branching process
in the potentially explosive case.
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1. Introduction

The basic property that governs the evolution of Markov branching processes (MBPs) is the
branching property, i.e. that particles behave independently producing descendants according
to the same rule. This greatly simplifies their analysis; their study has proved to be a very
fruitful area of research in stochastic processes (standard references, among others, are Harris
(1963), Athreya and Ney (1972), and Asmussen and Hering (1983)). However, since particles
may interact, through collision or some other mechanism, the branching property may be lost.
For this reason, more general branching models have been proposed (see, for example, Athreya
and Jagers (1997)). A particularly interesting class, which we call here weighted Markov
branching processes (WMBPs), was considered by R. R. Chen (1997). Using the methods
and techniques developed by M. F. Chen (1992), R. R. Chen addressed questions concerning
regularity and eventual extinction (see also A. Y. Chen (2002a), (2002b)), but left open the
question of uniqueness in the potentially explosive case (see Definition 1, below). Our aim here
is to establish a uniqueness criterion which is easy to check. We begin with some definitions.

Definition 1. A q-matrix Q = (qij , i, j ∈ Z+) is called a weighted branching q-matrix
(WB-q-matrix) if

qij =
{

wibj−i+1, i ≥ 1, j ≥ i − 1,

0, otherwise,
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where wj > 0 (j ≥ 1), b0 > 0, bj ≥ 0 (j ≥ 2), and −b1 = ∑∞
j �=1 bj . It is called potentially

explosive if
∑∞

k=1 1/wk < ∞ and subexplosive if
∑∞

k=1 1/wk = ∞.

In order that the branching property holds for the ordinary MBP it is necessary that its
transition function obeys the Kolmogorov forward equation. Guided by this fact, we use the
following definition.

Definition 2. A Q-process is called a weighted Markov branching process (WMBP) if its
transition function P (t) = (pij (t), i, j ∈ Z+, t > 0) satisfies the Kolmogorov forward
equation P ′(t) = P (t)Q.

Chen et al. (2005) derived regularity conditions for WMBPs in terms of d := b0 (death rate)
and mb := ∑∞

j=1 jbj+1 (net birth rate). They proved that the subexplosive WB-q-matrix is
almost regular (meaning that it is regular if mb is finite), and they obtained a simple criterion
for regularity in the potentially explosive case.

Proposition 1. The potentially explosive WB-q-matrix Q is regular if and only if d ≥ mb.

From Proposition 1 we can see that a potentially explosive Q is explosive whenever d <

mb ≤ ∞, and general theory then dictates that there are infinitely many Q-processes, including
infinitely many honest ones (see Anderson (1991) orYang (1990)). However, for uniqueness of
the WMBP, we require the forward equation to hold. The following uniqueness criterion was
obtained by Chen et al. (2005).

Proposition 2. If Q is potentially explosive and d < mb ≤ ∞, then there is only one WMBP
if and only if

∑∞
n=1 Rn = ∞, where

R0 = 1,

Rn = 1

b0wn+1

(
1 +

n∑
k=1

wkτn−k+2Rk−1

)
for n ≥ 1, (1)

with τn = ∑∞
j=n bj , n ≥ 2.

However, this criterion is not easy to check in all cases. We shall provide an alternative
criterion, which is much easier to verify.

2. The main result

Let U be the generating function defined by U(s) = ∑∞
j=0 bj s

j . It is well known that if
d < mb ≤ ∞ then U(s) = 0 has two distinct roots, q and 1, with 0 < q < 1; we shall always
denote the smaller of these by q.

Theorem 1. If the WB-q-matrix Q is potentially explosive and d < mb ≤ ∞, then there is
more than one WMBP if and only if

∞∑
n=1

1

wnqn
< ∞. (2)

Moreover, if (2) holds then there are infinitely many WMBPs, exactly one of which is honest
(it is not the minimal Q-process). If (2) fails to hold then there is only one WMBP, being the
(dishonest) minimal Q-process.
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The following immediate corollary improves on the conclusions of Chen et al. (2005).

Corollary 1. Suppose that Q is potentially explosive and d < mb ≤ ∞. If

lim inf
n→∞

n
√

wn <
1

q

then there is only one WMBP, being the (dishonest) minimal Q-process; while if

lim inf
n→∞

n
√

wn >
1

q

then there is only one honest WMBP (which is not the minimal Q-process), together with
infinitely many dishonest WMBPs.

In order to prove Theorem 1, we will need two technical lemmas. Define G by

G(s) = q − s

U(s)
. (3)

Lemma 1. Viewed as a complex function, G(z) is analytic, at least on the unit disk D =
{z, |z| < 1}, and has a Taylor expansion

G(z) =
∞∑

n=0

gnz
n (4)

whose coefficients satisfy

0 < gn ≤ g0 = q

d
, n ≥ 0. (5)

Proof. Since d < mb ≤ ∞, we may let ρ0 = d/q (= b0/q) and ρk = ∑∞
m=1 bk+mqm−1,

k ≥ 1. It is easy to see that (ρk, k ≥ 0) is a nonnegative sequence with ρ0 > 0 and
∑∞

k=1 ρk =
ρ0. A little algebra together with (3) then immediately yields

G(z) =
(

ρ0 −
∞∑

k=1

ρkz
k

)−1

. (6)

Since ρ0 −∑∞
k=1 ρkz

k is analytic on D , and |ρ0 −∑∞
k=1 ρkz

k| ≥ ρ0(1−|z|) > 0 for all z ∈ D ,
we deduce that G is analytic on D and, so, has the Taylor expansion (4).

Since (4) and (6) hold for all z ∈ D , we obtain ρ0g0 = 1 and ρ0gn = ∑n
k=1 ρkgn−k , n ≥ 1,

and then (5) follows immediately.

Lemma 2. Define (Tn, n ≥ 0) by T0 = w1 and Tn = wn+1Rn, n ≥ 1, where Rn is given by
(1). Then T (s) := ∑∞

n=0 Tns
n has radius of convergence q and

T (s)U(s) = s + dw1(1 − s), 0 ≤ s < q. (7)

Proof. Theorem 5 of Chen et al. (2005) established that the power series T (s) has radius of
convergence q. Now we rewrite (1) as Tn = (1 + ∑n

k=1 Tk−1τn−k+2)/b0. A little algebra then
establishes (7).

We are now ready to prove Theorem 1.
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Proof of Theorem 1. By (3) and (4) we have, for |s| < q,

1

U(s)
= G(s)

q − s
= 1

q

∞∑
m=0

(
s

q

)m ∞∑
n=0

gns
n = 1

q

∞∑
n=0

Cns
n, (8)

where

Cn =
n∑

k=0

gk

(
1

q

)n−k

≡
n∑

k=0

(
1

q

)k

gn−k.

Now, (8) together with (7) yields, for |s| < q,

T (s) = dw1

q

∞∑
n=0

Cn(1 − s)sn + 1

q

∞∑
n=0

Cns
n+1. (9)

But, T (s) = ∑∞
n=0 Tns

n = ∑∞
n=0 wn+1Rns

n and, since (9) holds for all |s| < q, we find that

Rn = Cn − Cn−1

wn+1

dw1

q
+ Cn−1

wn+1

1

q
, n ≥ 1. (10)

The sequence (Cn, n ≥ 0) is nonnegative and increasing because

Cn − Cn−1 = gn + 1 − q

q

n∑
k=1

(
1

q

)k−1

gn−k > 0.

Therefore, both terms on the right-hand side of (10) are nonnegative. Thus, by Proposi-
tion 2, the WMBP is not unique if and only if both

∑∞
n=1(Cn − Cn−1)/wn+1 < ∞ and∑∞

n=1 Cn−1/wn+1 < ∞, or, equivalently,

∞∑
n=1

Cn

wn+1
< ∞. (11)

The proof will be complete if we can show that this is equivalent to (2). First assume that (2)
holds. Since (gn, n ≥ 0) is bounded above by q/d (see (5)), we have

Cn ≤ q

d

n∑
k=0

(
1

q

)k

= q2

d(1 − q)

((
1

q

)n+1

− 1

)
≤ q2

d(1 − q)

(
1

q

)n+1

,

for all n ≥ 0. Therefore, by (2),

∞∑
n=1

Cn

wn+1
≤ q2

d(1 − q)

∞∑
n=2

1

wnqn
< ∞,

thus establishing (11). Conversely, if (11) holds then, since Cn ≥ g0(1/q)n for all n ≥ 0, we
have ∞∑

n=1

g0

wn+1

(
1

q

)n

< ∞,

and so (2) follows because 0 < g0 < ∞ and q > 0. This completes the proof.
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