An order property of partition cardinals

N. H. Williams

This note studies cardinal numbers κ which have a partition property which amounts to the following. Let v be a cardinal, η an ordinal limit number and m a positive integer. Let the m-length sequences of finite subsets of k be partitioned into ν parts. Then there is a sequence H_{1}, \ldots, H_{m} of subsets of K, each having order type η, such that for each choice of non-zero numbers n_{1}, \ldots, n_{m} there is some class of the partition inside which fall all sequences having in their i-th place (for $i=1, \ldots, m$) a subset of H_{i} which contains exactly n_{i} elements. The case when $m=l$ is thus seen to be the well known property $k \rightarrow(\eta)_{\nu}^{<\omega}$. The most interesting results obtained relate to the ordering of the least cardinals with the appropriate properties as m and η vary.

In order to define the partition property to be discussed, the following notation is helpful. Let S be any set, and let m be any positive integer. Then $[S]^{m}$ denotes the set of those subsets of S which have exactly m elements, ${ }^{m} S$ denotes the set of m-place sequences with values in S and $S^{* m}$ denotes the set $U\left\{\begin{array}{l}m \\ \left([S]^{n}\right)\end{array} ; n=1,2,3, \ldots\right\}$. The set of all finite subsets of S is denoted $[S]^{<\omega}$. Cardinal numbers are identified with the initial ordinals.

DEFINITION 1. Let κ and v be cardinals, let η be an ordinal limit number and let m be a positive integer. Suppose that for any partition $\Delta=\left\{\Delta_{Z} ; \tau<\nu\right\}$ of $\kappa^{{ }^{*} m}$ into ν parts the following situation prevails. There is a sequence H_{1}, \ldots, H_{m} (where each H_{i} is a subset of K having order type η) which is homogeneous for Δ, in the sense that for each n there is l less than v such that $\left[H_{1}\right]^{n} \times \ldots \times\left[H_{m}\right]^{n} \subseteq \Delta_{l}$. In this case, we say that k has the partition property $\mathrm{k} \rightarrow^{m}(\eta)_{\nu}^{<\omega}$.

The case when $m=1$ has been extensively studied in the literature (for example, [1] and [4]). In [4], cardinals having such a partition property where η is a cardinal are referred to as Erdös cardinals. Cardinals with the property $k \rightarrow^{l}(\kappa)_{2}^{<\omega}$ are known as Ramsey cardinals.

In this note, some consequences of the partition properties in which $m>1$ will be listed. These mainly parallel the case when $m=1$, and for the most part proofs will be merely sketched. The results of greatest interest are Theorems 5 and 7 , which deal with the ordering of the various partition cardinals.

Definition 1 is restricted to a consideration of those sequences of finite subsets of K for which all entries in the sequence have the same number of elements. This is an unnecessary restriction, as the result of Theorem 3 shows. The following lemme is needed.

LEMMA 2. Let η be a limit ordinal, and suppose $\kappa \rightarrow^{m}(\eta)_{2}^{<\omega}$. Then $k \rightarrow{ }^{m}(n)_{2}^{<\omega}{ }_{2}$.

The case $m=1$ is a theorem of Rowbottom [3].
THEOREM 3. Let η be a limit ordinal; let $k \rightarrow{ }^{m}(\eta)_{v}^{<\omega}$. Then for any partition $\Delta=\left\{\Delta_{Z} ; \mathcal{Z}<v\right\}$ of ${ }^{m}\left([\kappa]^{<\omega}\right)$ there is a sequence H_{1}, \ldots, H_{m} where each H_{i} is a subset of k having order type η, which is homogeneous for Δ in the extended sense, that is, for each sequence n_{1}, \ldots, n_{m} where each n_{i} is non-zero, there is l less than
\vee for which $\left[H_{1}\right]^{n_{1}} \times \ldots \times\left[H_{m}\right]^{n_{m}} \subseteq \Delta_{l}$.
Proof. Let a partition $\Delta=\left\{\Delta_{Z} ; \tau<v\right\}$ of ${ }^{m}\left([\kappa]^{<\omega}\right)$ be given. For each positive n, put

$$
F_{n}=\{f ; f \text { maps }\{1, \ldots, m\} \text { into }\{1, \ldots, n\}\}
$$

For each f in F_{n} define a partition $\Gamma(f)=\left\{\Gamma_{\ell}(f) ; \mathcal{Z}<\nu\right\}$ of ${ }^{m}\left([k]^{n}\right)$ by:

$$
\begin{aligned}
& \text { if } \alpha_{1}(i)<\ldots<\alpha_{n}(i)<\kappa \text { for } i=1, \ldots, m \text { then } \\
& \begin{array}{l}
\left.\left\langle\alpha_{1}(i), \ldots, \alpha_{n}(i)\right\} ; i=1, \ldots, m\right\rangle \in \Gamma_{Z}(f) \Leftrightarrow \\
\\
\end{array} \quad\left\langle\left\{\alpha_{1}(i), \ldots, \alpha_{f(i)}(i)\right\} ; i=1, \ldots, m\right\rangle \in \Delta_{l} .
\end{aligned}
$$

Then $\Gamma=\left\{\Gamma_{\imath}(f) ; \tau<\nu\right.$ and $\left.\exists n\left(f \in F_{n}\right)\right\}$ is a partition of $\kappa^{*_{m}}$, and Γ has power at most $v \times \kappa_{0}$. By virtue of the property $k \rightarrow{ }^{m}(\eta)_{v}^{<\omega}$, with an appeal to Lemma 2 if v is finite, it follows that there is a sequence H_{1}, \ldots, H_{m} (each H_{i} a subset of k having order type η) which is homogeneous for Γ. It is not difficult to see that this same sequence H_{1}, \ldots, H_{m} is also homogeneous for Δ in the extended sense. This proves Theorem 3.

The question of the existence of cardinals with the property of Definition l is of some interest. The following theorem provides for their existence.

THEOREM 4. Let v be a cordinal and n a limit ordinal. Suppose κ is a cardinal such that $\kappa \rightarrow^{1}(\eta \cdot m)_{v}^{<\omega}$. Then $\kappa \rightarrow^{m}(\eta)_{\nu}^{<\omega}$.

The proof is obtained by taking any partition $\Delta=\left\{\Delta_{2} ; Z<\nu\right\}$ of $\kappa^{*} m$, and defining from this a partition $\Gamma=\left\{\Gamma_{\ell} ; \ell<\nu\right\}$ of $[\kappa]^{<\omega}$ such that if $\left\langle a_{1}, \ldots, a_{m}\right\rangle$ from $\kappa^{*_{m}}$ is such that $\max \left(a_{i}\right)<\min \left(a_{i+1}\right)$
for each i, then

$$
\left\langle a_{1}, \ldots, a_{m}\right\rangle \in \Delta_{\mathcal{L}} \Leftrightarrow a_{1} \cup \ldots \cup a_{m} \in \Gamma_{\mathcal{Z}}
$$

Any subset H of K having order type $\eta \cdot m$ which is homogeneous for Γ may be divided $H=H_{1} \cup \ldots \cup H_{m}$ where each H_{i} has order type η and $\sup \left(H_{i}\right)<\min \left(H_{i+1}\right) \cdot$ But then H_{1}, \ldots, H_{m} is a sequence homogeneous for Δ.

Thus in particular, if $k+{ }^{l}\left(\kappa_{1}\right)_{v}^{<\omega}$ then $k \rightarrow m\left(\kappa_{0}\right)_{v}^{<\omega}$ for all m. If k is Ramsey, then $k \rightarrow m^{m}(n)_{2}^{<\omega}$ for all m and all η less than k. In fact, this last is the best that can be hoped for. No cardinal has even the property $k \rightarrow{ }^{2}(\kappa)_{2}^{<\omega}$, as may be seen by considering any partition $\Delta=\left\{\Delta_{0}, \Delta_{1}\right\}$ of $\kappa^{* 2}$ in which

$$
\langle\{\alpha\},\{\beta\}\rangle \in \Delta_{0} \Leftrightarrow \alpha \leqq \beta
$$

We come now to the two main theorems, concerning the ordering of these partition cardinals amongst themselves. The first theorem may be stated immediately.

THEOREM 5. Let ζ and η be limit ordinals such that $\eta . m<\zeta$. Let k be the least cardinal such that $k \rightarrow^{m}(n)_{v}^{<\omega}$, and let λ be any cardinal such that $\lambda \rightarrow^{1}(\zeta)_{\nu}^{<\omega}$. Then $\kappa<\lambda$.

Proof. Let k and λ be as mentioned in the theorem. By Theorem 4, $k \leqq \lambda$. Suppose that in fact $k \rightarrow^{1}(\zeta)_{\nu}^{<\omega}$, and seek a contradiction.

Since any β in k has power less than K, there is a partition $\Delta(\beta)=\left\{\Delta_{Z}(\beta) ; \mathcal{Z}<\nu\right\}$ of $\cdot \beta^{* m}$ which has no homogeneous sequence H_{1}, \ldots, H_{m} where each H_{i} has order type at least η. Take any partition $\Gamma=\left\{\Gamma_{Z} ; Z<\nu\right\}$ of $[K]^{<\omega}$ which has the following property: for all n and for all l less than v, if a_{i} is in $[k]^{n}$ (for $i=1, \ldots, m)$ and $\max \left(a_{i}\right)<\min \left(a_{i+1}\right), \max \left(a_{m}\right)<\alpha<k$, then

$$
a_{1} \cup \ldots \cup a_{m} \cup\{\alpha\} \in \Gamma_{\eta} \Leftrightarrow\left\{a_{1}, \ldots, a_{m}\right\rangle \in \Delta_{\eta}(\alpha)
$$

By virtue of the assumption $k \rightarrow^{l}(\zeta)_{V}^{<\omega}$, there is a subset H of K having order type ζ, which is homogeneous for Γ. However, for each α in H, let $\left\{\alpha^{\prime} \in H ; \alpha^{\prime}<\alpha\right\}$ be split into m sets $H_{1}(\alpha), \ldots, H_{m}(\alpha)$ all having the same order type, such that $\sup \left(H_{i}(\alpha)\right)<\min \left(H_{i+1}(\alpha)\right)$. (Any elements of $\left\{\alpha^{\prime} \in H ; \alpha^{\prime}<\alpha\right\}$ left over may be ignored.) Then $H_{1}(\alpha), \ldots, H_{m}(\alpha)$ is a sequence homogeneous for $\Delta(\alpha)$, and so each $H_{i}(\alpha)$ has order type less than η. From this it follows that the order type of $\left\{\alpha^{\prime} \in H ; \alpha^{\prime}<\alpha\right\}$ is smaller than n.m. Hence the order type of H does not exceed n.m. This contradicts the order type of H being ζ. The proof is complete.

The following lemma is required in order to establish the effect of changing the value of m.

LEMMA 6. Let $k \rightarrow m^{m}(n)_{v}^{<\omega}$ where η is a limit ordinal. Then for any partition $\Delta=\left\{\Delta_{Z} ; Z<v\right\}$ of $\kappa^{*_{m}}$ there is a sequence H_{1}, \ldots, H_{m} hornogeneous for Δ, (where each H_{i} is a subset of k hoving order type n) for which there is some permutation σ of $\{1, \ldots, m\}$ such that $\sup \left(H_{\sigma(i)}\right) \leqq \min \left(H_{\sigma(i+1)}\right)$ for each i.

The proof depends on Lemma 2 in the case that v is finite. For details, see [5].

THEOREM 7. Let η be a limit ordinal. Suppose k is the least cardinal such that $k \rightarrow{ }^{m}(n)_{\nu}^{<\omega}$ and let λ be any cardinal with the property $\lambda \rightarrow{ }^{m+1}(n)_{\nu}^{<\omega}$. Then $\kappa<\lambda$.

Proof. Let k and λ be as mentioned in the theorem. Clearly $\kappa \leqq \lambda$. Suppose that κ does have also the property $k \rightarrow^{m+1}(\eta)_{v}^{<\omega}$, and seek a contradiction.

As in the proof of Theorem 5, for each β in κ there is a
partition $\Delta(\beta)=\left\{\Delta_{Z}(\beta) ; Z<v\right\}$ of $\beta^{*_{m}}$ which has no homogeneous sequence H_{1}, \ldots, H_{m} where each H_{i} has order type at least η. Choose a partition $\Gamma=\left\{\Gamma_{Z} ; \ell<\nu\right\}$ of $k^{* m+l}$ which satisfies the following condition: if $\beta_{1}(i)<\ldots<\beta_{n}(i)$ for $i=1, \ldots, m+1$, and there is some j for which $\beta_{1}(j)>\max \left\{\beta_{n}(i) ; i \in\{1, \ldots, m+1\}-\{j\}\right\}$, then for each \mathcal{Z} less than v

$$
\begin{aligned}
\left\langle\left\{\beta_{1}(i), \ldots,\right.\right. & \left.\left.\beta_{n}(i)\right\} ; i \in\{1, \ldots, m+1\}\right\rangle \in \Gamma_{Z} \Longleftrightarrow \\
& \left\langle\left\{\beta_{1}(i), \ldots, \beta_{n}(i)\right\} ; i \in\{1, \ldots, m+1\}-\{j\}\right\rangle \in \Delta_{1}\left(\beta_{1}(j)\right)
\end{aligned}
$$

Let H_{1}, \ldots, H_{m+1} be any sequence homogeneous for Γ, where each H_{i} is a subset of K having order type η. By Lemma 6, it may be assumed further that in some reordering the H_{i} are increasing - suppose in fact that always $\sup \left(H_{i}\right) \leqq \min \left(H_{i+1}\right)$. Then if α is the least element of H_{m+1}, it follows that the sequence H_{1}, \ldots, H_{m} is homogeneous for $\Delta(\alpha)$. Moreover each H_{i} (for $i=1, \ldots, m$) is contained in α, and has order type η. However, this contradicts the choice of the partition $\Delta(\alpha)$. The theorem is thus proved.

Theorems 5 and 7 suffice to determine completely the ordering of the smallest cardinals with the properties $\kappa \rightarrow m^{m}(\eta)_{\nu}^{<\omega}$ for η an ordinal power of ω. For any given v, the least cardinals with the following properties form a strictly increasing sequence:

$$
\begin{aligned}
& k \rightarrow{ }^{1}(\omega)_{v}^{<\omega}, k \rightarrow^{2}(\omega)_{v}^{<\omega}, k \rightarrow^{3}(\omega)_{v}^{<\omega}, \ldots, k \rightarrow^{1}\left(\omega^{2}\right)_{v}^{<\omega}, \\
& \kappa \rightarrow^{2}\left(\omega^{2}\right)_{v}^{<\omega}, \kappa \rightarrow^{3}\left(\omega^{2}\right)_{v}^{<\omega}, \ldots, k \rightarrow^{1}\left(\omega_{1}\right)_{v}^{<\omega}, \\
& \kappa \rightarrow{ }^{2}\left(\omega_{1}\right)_{v}^{<\omega}, \kappa \rightarrow^{3}\left(\omega_{1}\right)_{v}^{<\omega}, \ldots, k \rightarrow^{1}(\kappa)_{v}^{<\omega} .
\end{aligned}
$$

In the case that η is not an ordinal power of ω, some questions remain. The first such questions are the following:

PROBLEM 8. Let k be the least cardinal with the property
$K \rightarrow{ }^{1}(\omega .2)_{\nu}^{<\omega}$, Let λ be the least cardinal with the property $\lambda \rightarrow{ }^{2}(\omega)_{v}^{<\omega}$ and let i be the least cardinal with the property $\iota^{3}(\omega)_{v}^{<\omega}$. Is it true that $\lambda<\kappa$? Or that $\kappa<\iota$?

The effect of varying v is also not determined. For the case $m=1$, Silver [4] has provided a complete solution with the following theorem.

THEOREM 9. Let η be a limit ordinal and let κ be the least cardinal such that $k \rightarrow^{l}(\eta)_{2}^{<\omega}$. Take any v less than κ. Then $\kappa \rightarrow^{l}(\eta)_{v}^{<\omega}$.

I do not know if this theorem holds for the case $m>1$.
I conclude this note with a few comments concerning the inaccessibility of the various partition cardinals. For the case $m=1$, the following theorem has been proved by Silver [4, p. 84].

THEOREM 10. If η is a limit ordinal and if k is least such that $K \rightarrow^{l}(\eta)_{2}^{<\omega}$, then K is strongly inaccessible.

For the case $m>1$, I can prove only a weaker version. Standard arguments (for example [2]) can be extended to yield:

THEOREM 11. Let η be a cardinal, and let k be the least cardinal such that $k \rightarrow^{m}(\eta)_{2}^{<\omega}$. Then k is strongly inaccessible.

Of course, Theorem 11 holds for η any limit ordinal, and likewise Theorem 9 holds for $m>1$, if Problem 8 leads to the trivial solution that a cardinal has the property $\kappa \rightarrow^{m}(n)_{2}^{<\omega}$ only by virtue of having the property $k \rightarrow{ }^{l}(\eta, m)_{2}^{<\omega}$.

References

[1] P. Erdös, A. Hajnal and R. Rado, "Partition relations for cardinal numbers", Acta. Math. Acad. Sci. Hungar. 16 (1965), 93-196.
[2] Michael Morely, "Partitions and models", Proceedings of the Summer School in Logic, Leeds, 1967. (Lecture notes in mathematics, 70, 109-158; Springer-Verlag, Berlin, Heidelberg, New York, 1968).
[3] Frederick Rowbottom, "Large cardinals and small constructible sets", Ph.D. Thesis, University of Wisconsin, Madison, 1964.
[4] Jack Howard Silver, "Some applications of model theory in set theory", Ph.D. Thesis, University of California, Berkeley, 1966.
[5] Neil Hale Williams, "Cardinal numbers with partition properties", Ph.D. Thesis, Australian National University, Canberra, 1969.

University of the Witwatersrand, Johannesburg, South Africa.

