An order property of partition cardinals

N. H. Williams

This note studies cardinal numbers κ which have a partition property which amounts to the following. Let ν be a cardinal, η an ordinal limit number and m a positive integer. Let the m-length sequences of finite subsets of κ be partitioned into ν parts. Then there is a sequence H_1, \ldots, H_m of subsets of κ , each having order type η , such that for each choice of non-zero numbers n_1, \ldots, n_m there is some class of the partition inside which fall all sequences having in their *i*-th place (for $i = 1, \ldots, m$) a subset of H_i which contains exactly n_i elements. The case when m = 1 is thus seen to be the well known property $\kappa \neq (\eta)_{\nu}^{<\omega}$. The most interesting results obtained relate to the ordering of the least cardinals with the appropriate properties as m and η vary.

In order to define the partition property to be discussed, the following notation is helpful. Let S be any set, and let m be any positive integer. Then $[S]^m$ denotes the set of those subsets of S which have exactly m elements, ${}^{m}S$ denotes the set of m-place sequences with values in S and S^{*m} denotes the set $\bigcup \left\{ {}^{m}([S]^{n}); n = 1, 2, 3, \ldots \right\}$. The set of all finite subsets of S is denoted $[S]^{<\omega}$. Cardinal numbers are identified with the initial ordinals.

Received 15 May 1970.

DEFINITION 1. Let κ and ν be cardinals, let η be an ordinal limit number and let m be a positive integer. Suppose that for any partition $\Delta = \{\Delta_{l}; l < \nu\}$ of κ^{*m} into ν parts the following situation prevails. There is a sequence H_{1}, \ldots, H_{m} (where each H_{i} is a subset of κ having order type η) which is homogeneous for Δ , in the sense that for each n there is l less than ν such that $[H_{1}]^{n} \times \ldots \times [H_{m}]^{n} \subseteq \Delta_{l}$. In this case, we say that κ has the partition property $\kappa + {}^{m}(\eta)_{\nu}^{<\omega}$.

The case when $m \approx 1$ has been extensively studied in the literature (for example, [1] and [4]). In [4], cardinals having such a partition property where η is a cardinal are referred to as Erdös cardinals. Cardinals with the property $\kappa \neq \frac{1}{2}(\kappa)_{2}^{<\omega}$ are known as Ramsey cardinals.

In this note, some consequences of the partition properties in which m > 1 will be listed. These mainly parallel the case when m = 1, and for the most part proofs will be merely sketched. The results of greatest interest are Theorems 5 and 7, which deal with the ordering of the various partition cardinals.

Definition 1 is restricted to a consideration of those sequences of finite subsets of κ for which all entries in the sequence have the same number of elements. This is an unnecessary restriction, as the result of Theorem 3 shows. The following lemma is needed.

LEMMA 2. Let n be a limit ordinal, and suppose $\kappa \neq {}^{m}(n)_{2}^{<\omega}$. Then $\kappa \neq {}^{m}(n)_{\infty}^{<\omega}$.

The case m = 1 is a theorem of Rowbottom [3].

THEOREM 3. Let n be a limit ordinal; let $\kappa \neq {}^{m}(n)_{\nu}^{<\omega}$. Then for any partition $\Delta = \{\Delta_{l}; l < \nu\}$ of ${}^{m}([\kappa]^{<\omega})$ there is a sequence H_{1}, \ldots, H_{m} where each H_{i} is a subset of κ having order type n, which is homogeneous for Δ in the extended sense, that is, for each sequence n_{1}, \ldots, n_{m} where each n_{i} is non-zero, there is l less than

$$\vee$$
 for which $[H_1]^{n_1} \times \ldots \times [H_m]^{n_m} \subseteq \Delta_{\mathcal{L}}$

Proof. Let a partition $\Delta = \{\Delta_{l}; l < v\}$ of ${}^{m}([\kappa]^{<\omega})$ be given. For each positive n, put

$$F_n = \{f ; f maps \{1, ..., m\} into \{1, ..., n\} \}$$
.

For each f in F_n define a partition $\Gamma(f) = \{\Gamma_l(f); l < \nu\}$ of $\binom{m}{[\kappa]^n}$ by:

if
$$\alpha_1(i) < \ldots < \alpha_n(i) < \kappa$$
 for $i = 1, \ldots, m$ then

$$\left\langle \{ \alpha_1(i), \ldots, \alpha_n(i) \}; i = 1, \ldots, m \right\rangle \in \Gamma_{\mathcal{I}}(f) \iff \\ \left\langle \{ \alpha_1(i), \ldots, \alpha_{f(i)}(i) \}; i = 1, \ldots, m \right\rangle \in \Delta_{\mathcal{I}} .$$

Then $\Gamma = \left\{ \Gamma_{\mathcal{L}}(f) ; \mathcal{L} < \nu \text{ and } \exists n \left(f \in F_n \right) \right\}$ is a partition of κ^{*m} , and Γ has power at most $\nu \times \aleph_0$. By virtue of the property $\kappa \neq {}^m(\eta)_{\nu}^{<\omega}$, with an appeal to Lemma 2 if ν is finite, it follows that there is a sequence H_1, \ldots, H_m (each H_i a subset of κ having order type η) which is homogeneous for Γ . It is not difficult to see that this same sequence H_1, \ldots, H_m is also homogeneous for Δ in the extended sense. This proves Theorem 3.

The question of the existence of cardinals with the property of Definition 1 is of some interest. The following theorem provides for their existence.

THEOREM 4. Let ν be a cardinal and η a limit ordinal. Suppose κ is a cardinal such that $\kappa \neq \frac{1}{\nu}(\eta,m)_{\nu}^{<\omega}$. Then $\kappa \neq \frac{m}{\nu}(\eta)_{\nu}^{<\omega}$.

The proof is obtained by taking any partition $\Delta = \{\Delta_{l}; l < v\}$ of κ^{*m} , and defining from this a partition $\Gamma = \{\Gamma_{l}; l < v\}$ of $[\kappa]^{<\omega}$ such that if (a_{1}, \ldots, a_{m}) from κ^{*m} is such that $\max(a_{i}) < \min(a_{i+1})$

for each i , then

$$(a_1, \ldots, a_m) \in \Delta_{\mathcal{I}} \iff a_1 \cup \ldots \cup a_m \in \Gamma_{\mathcal{I}}$$
.

Any subset H of κ having order type $\eta.m$ which is homogeneous for Γ may be divided $H = H_1 \cup \ldots \cup H_m$ where each H_i has order type η and $\sup(H_i) < \min(H_{i+1})$. But then H_1, \ldots, H_m is a sequence homogeneous for Δ .

Thus in particular, if $\kappa \neq {}^{1}(\kappa_{1})_{\nu}^{<\omega}$ then $\kappa \neq {}^{m}(\kappa_{0})_{\nu}^{<\omega}$ for all m. If κ is Ramsey, then $\kappa \neq {}^{m}(\eta)_{2}^{<\omega}$ for all m and all η less than κ . In fact, this last is the best that can be hoped for. No cardinal has even the property $\kappa \neq {}^{2}(\kappa)_{2}^{<\omega}$, as may be seen by considering any partition $\Delta = \{\Delta_{0}, \Delta_{1}\}$ of κ^{*2} in which

$$\langle \{\alpha\}, \{\beta\} \rangle \in \Delta \iff \alpha \le \beta$$
.

We come now to the two main theorems, concerning the ordering of these partition cardinals amongst themselves. The first theorem may be stated immediately.

THEOREM 5. Let ζ and η be limit ordinals such that $\eta.m < \zeta$. Let κ be the least cardinal such that $\kappa \neq {}^{m}(\eta)_{\nu}^{<\omega}$, and let λ be any cardinal such that $\lambda \neq {}^{1}(\zeta)_{\nu}^{<\omega}$. Then $\kappa < \lambda$.

Proof. Let κ and λ be as mentioned in the theorem. By Theorem 4, $\kappa \leq \lambda$. Suppose that in fact $\kappa \rightarrow \frac{1}{\zeta} (\zeta)_{\nu}^{\zeta \omega}$, and seek a contradiction.

Since any β in κ has power less than κ , there is a partition $\Delta(\beta) = \{\Delta_{\underline{l}}(\beta) ; l < \nu\} \text{ of } \beta^{*\underline{m}} \text{ which has no homogeneous sequence}$ $H_1, \ldots, H_m \text{ where each } H_i \text{ has order type at least } \eta \text{ . Take any}$ partition $\Gamma = \{\Gamma_l; l < \nu\} \text{ of } [\kappa]^{<\omega} \text{ which has the following property:}$ for all n and for all l less than ν , if a_i is in $[\kappa]^n$ (for $i = 1, \ldots, m$) and $\max(a_i) < \min(a_{i+1})$, $\max(a_m) < \alpha < \kappa$, then

174

$$a_1 \cup \ldots \cup a_m \cup \{\alpha\} \in \Gamma_{\mathcal{I}} \iff \langle a_1, \ldots, a_m \rangle \in \Delta_{\mathcal{I}}(\alpha)$$

By virtue of the assumption $\kappa \rightarrow {}^{1}(\zeta)_{v}^{<\omega}$, there is a subset H of κ having order type ζ , which is homogeneous for Γ . However, for each α in H, let $\{\alpha' \in H; \alpha' < \alpha\}$ be split into m sets $H_{1}(\alpha), \ldots, H_{m}(\alpha)$ all having the same order type, such that $\sup\{H_{i}(\alpha)\} < \min\{H_{i+1}(\alpha)\}$. (Any elements of $\{\alpha' \in H; \alpha' < \alpha\}$ left over may be ignored.) Then $H_{1}(\alpha), \ldots, H_{m}(\alpha)$ is a sequence homogeneous for $\Delta(\alpha)$, and so each $H_{i}(\alpha)$ has order type less than η . From this it follows that the order type of $\{\alpha' \in H; \alpha' < \alpha\}$ is smaller than $\eta.m$. Hence the order type of H does not exceed $\eta.m$. This contradicts the order type of H being ζ . The proof is complete.

The following lemma is required in order to establish the effect of changing the value of m .

LEMMA 6. Let $\kappa \rightarrow {}^{m}(n)_{\nu}^{<\omega}$ where n is a limit ordinal. Then for any partition $\Delta = \{\Delta_{l}; l < \nu\}$ of κ^{*m} there is a sequence H_{1}, \ldots, H_{m} homogeneous for Δ , (where each H_{i} is a subset of κ having order type n) for which there is some permutation σ of $\{1, \ldots, m\}$ such that $\sup\{H_{\sigma(i)}\} \leq \min\{H_{\sigma(i+1)}\}$ for each i.

The proof depends on Lemma 2 in the case that ν is finite. For details, see [5].

THEOREM 7. Let n be a limit ordinal. Suppose κ is the least cardinal such that $\kappa \neq {}^{m}(\eta)_{\nu}^{<\omega}$ and let λ be any cardinal with the property $\lambda \neq {}^{m+1}(\eta)_{\nu}^{<\omega}$. Then $\kappa < \lambda$.

Proof. Let κ and λ be as mentioned in the theorem. Clearly $\kappa \leq \lambda$. Suppose that κ does have also the property $\kappa \neq {m+1 \choose \nu}^{<\omega}$, and seek a contradiction.

As in the proof of Theorem 5, for each β in κ there is a

partition $\Delta(\beta) = \{\Delta_{\mathcal{I}}(\beta) ; \mathcal{I} < \nu\}$ of β^{*m} which has no homogeneous sequence H_1, \ldots, H_m where each H_i has order type at least η . Choose a partition $\Gamma = \{\Gamma_{\mathcal{I}} ; \mathcal{I} < \nu\}$ of κ^{*m+1} which satisfies the following condition: if $\beta_1(i) < \ldots < \beta_n(i)$ for $i = 1, \ldots, m+1$, and there is some j for which $\beta_1(j) > \max\{\beta_n(i) ; i \in \{1, \ldots, m+1\} - \{j\}\}$, then for each \mathcal{I} less than ν

$$\left\langle \{\beta_{\underline{i}}(i), \ldots, \beta_{n}(i)\} ; i \in \{1, \ldots, m+1\} \right\rangle \in \Gamma_{\underline{i}} \Leftrightarrow \\ \left\langle \{\beta_{\underline{i}}(i), \ldots, \beta_{n}(i)\} ; i \in \{1, \ldots, m+1\} - \{j\} \right\rangle \in \Delta_{\underline{i}}(\beta_{1}(j)) .$$

Let H_1, \ldots, H_{m+1} be any sequence homogeneous for Γ , where each H_i is a subset of κ having order type η . By Lemma 6, it may be assumed further that in some reordering the H_i are increasing - suppose in fact that always $\sup(H_i) \leq \min(H_{i+1})$. Then if α is the least element of H_{m+1} , it follows that the sequence H_1, \ldots, H_m is homogeneous for $\Delta(\alpha)$. Moreover each H_i (for $i = 1, \ldots, m$) is contained in α , and has order type η . However, this contradicts the choice of the partition $\Delta(\alpha)$. The theorem is thus proved.

Theorems 5 and 7 suffice to determine completely the ordering of the smallest cardinals with the properties $\kappa + \frac{m}{\nu}(\eta)_{\nu}^{<\omega}$ for η an ordinal power of ω . For any given ν , the least cardinals with the following properties form a strictly increasing sequence:

$$\kappa + {}^{1}(\omega)_{\nu}^{<\omega}, \kappa + {}^{2}(\omega)_{\nu}^{<\omega}, \kappa + {}^{3}(\omega)_{\nu}^{<\omega}, \ldots, \kappa + {}^{1}(\omega^{2})_{\nu}^{<\omega}, \\ \kappa + {}^{2}(\omega^{2})_{\nu}^{<\omega}, \kappa + {}^{3}(\omega^{2})_{\nu}^{<\omega}, \ldots, \kappa + {}^{1}(\omega_{1})_{\nu}^{<\omega}, \\ \kappa + {}^{2}(\omega_{1})_{\nu}^{<\omega}, \kappa + {}^{3}(\omega_{1})_{\nu}^{<\omega}, \ldots, \kappa + {}^{1}(\kappa)_{\nu}^{<\omega}.$$

In the case that η is not an ordinal power of ω , some questions remain. The first such questions are the following:

PROBLEM 8. Let κ be the least cardinal with the property

 $\kappa + {}^{1}(\omega.2)_{\nu}^{<\omega}$, let λ be the least cardinal with the property $\lambda + {}^{2}(\omega)_{\nu}^{<\omega}$ and let ι be the least cardinal with the property $\iota + {}^{3}(\omega)_{\nu}^{<\omega}$. Is it true that $\lambda < \kappa$? Or that $\kappa < \iota$?

The effect of varying v is also not determined. For the case m = 1, Silver [4] has provided a complete solution with the following theorem.

THEOREM 9. Let η be a limit ordinal and let κ be the least cardinal such that $\kappa \neq {}^{1}(\eta)_{2}^{<\omega}$. Take any ν less than κ . Then $\kappa \neq {}^{1}(\eta)_{\nu}^{<\omega}$.

I do not know if this theorem holds for the case m > 1 .

I conclude this note with a few comments concerning the inaccessibility of the various partition cardinals. For the case m = 1, the following theorem has been proved by Silver [4, p. 84].

THEOREM 10. If n is a limit ordinal and if κ is least such that $\kappa \neq {}^{1}(n)_{2}^{<\omega}$, then κ is strongly inaccessible.

For the case m > 1, I can prove only a weaker version. Standard arguments (for example [2]) can be extended to yield:

THEOREM 11. Let η be a cardinal, and let κ be the least cardinal such that $\kappa \rightarrow {}^{m}(\eta)_{2}^{<\omega}$. Then κ is strongly inaccessible.

Of course, Theorem 11 holds for η any limit ordinal, and likewise Theorem 9 holds for m > 1, if Problem 8 leads to the trivial solution that a cardinal has the property $\kappa \rightarrow {}^{m}(\eta)_{2}^{<\omega}$ only by virtue of having the property $\kappa \rightarrow {}^{1}(\eta.m)_{2}^{<\omega}$.

References

 P. Erdös, A. Hajnal and R. Rado, "Partition relations for cardinal numbers", Acta. Math. Acad. Sci. Hungar. 16 (1965), 93-196.

- [2] Michael Morely, "Partitions and models", Proceedings of the Summer School in Logic, Leeds, 1967. (Lecture notes in mathematics, 70, 109-158; Springer-Verlag, Berlin, Heidelberg, New York, 1968).
- [3] Frederick Rowbottom, "Large cardinals and small constructible sets", Ph.D. Thesis, University of Wisconsin, Madison, 1964.
- [4] Jack Howard Silver, "Some applications of model theory in set theory", Ph.D. Thesis, University of California, Berkeley, 1966.
- [5] Neil Hale Williams, "Cardinal numbers with partition properties", Ph.D. Thesis, Australian National University, Canberra, 1969.

University of the Witwatersrand, Johannesburg, South Africa.