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The purpose of this paper is to bridge kinetic plasma descriptions and low-frequency
single-fluid models. More specifically, the asymptotics leading to magnetohydrodynamic
regimes starting from the Vlasov—Maxwell system are investigated. The analogy with the
derivation, from the Vlasov—Poisson system, of a fluid representation for ions coupled to
the Boltzmann relation for electrons is also outlined. The aim is to identify asymptotic
parameters explaining the transitions from one microscopic description to a macroscopic
low-frequency model. These investigations provide groundwork for the derivation of
multi-scale numerical methods, model coupling or physics-based preconditioning.
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1. Introduction

The aim of this paper is to propose a continuation of the work initiated in Degond,
Deluzet & Navoret (2006), Degond et al. (2010) and Degond, Deluzet & Doyen
(2015) focusing on the derivation of asymptotic-preserving schemes for kinetic plasma
descriptions in the quasi-neutral limit. The purpose of these numerical methods is to
provide a quasi-neutral description of the plasma with no constraints on the simulation
parameters related to the Debye length but with the ability to perform local up-scalings
with non-neutral plasma descriptions. This brings a gain in the computational efficiency,
since the discretization parameters can be set according to the physics of interest rather
than the small scales (namely the Debye length) described by the model.

The methodology introduced in those former achievements is aimed to be generalized
here to more singular limits. In this series of prior works, the limit models remain
kinetic and the scales of interest are related to the electron dynamics. For instance, the
quasi-neutral limit of the Vlasov—Maxwell system investigated in Degond et al. (2015)
can be interpreted as a kinetic description of the electron magnetohydrodynamics (MHD)
(Gordeev, Kingsep & Rudakov 1994; Swanekamp et al. 1996; Cho & Lazarian 2004),
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accounting for the electron inertia, the massive ions being assumed at rest or slowly
evolving. In the present paper, the objective is to go beyond the kinetic electron MHD
with the aim of bridging the Vlasov—Maxwell system and MHD models. In MHD system:s,
the scales of interest are defined by the overall plasma dynamic which is governed by
the ions, the fast scales associated with the electron inertia being filtered out from the
equations.

The present work is therefore devoted to the derivation of a model hierarchy
bridging either the Vlasov—Maxwell system and MHD models for magnetized plasmas,
or the Vlasov—Poisson system and the electron adiabatic response, also referred to
as the Boltzmann relation (see Langmuir (1929) and Tonks & Langmuir (1929a,b)
for seminal works and De Cecco er al. (2017) for numerical investigations), for
electrostatic frameworks. A wide range of applications of the present investigations
can be named, specifically low-variance particle-in-cell methods or more generally
numerical discretization of kinetic models implementing a micro—macro decomposition
of the distribution function. We refer for instance to Crestetto, Crouseilles & Lemou
(2012), Crouseilles & Lemou (2011), Dimarco, Mieussens & Rispoli (2014) and
Lemou & Mieussens (2008) for micro-macro methods, and to Degond, Dimarco &
Pareschi (201156) for the moment guided method, fluid-preconditioned fully implicit
methods (Chen, Chacén & Barnes 2011; Chen et al. 2014; Chen & Chacén 2015) and
asymptotic-preserving numerical methods (Jin 1999; Degond & Deluzet 2017). In these
methods, macroscopic models are operated to either filter out the numerical noise of
particle-in-cell methods (moment guided, micro—macro particle methods) or speed up the
convergence of nonlinear implicit solvers (fully implicit particle-in-cell methods). The
efficiency of these methods is closely related to that of the reduced models and adequacy
of the kinetic plasma description. Another application can be envisioned with the hybrid
coupling of particle-in-cell methods and MHD descriptions (Schumer et al. 2001; Daldorff
et al. 2014) and more generally coupling strategies such as the current-coupling scheme
and the pressure-coupling scheme (see Park et al. (1992), Tronci et al. (2014) and
references therein).

The aim here is to clarify how the asymptotic parameters interact with each other
and define reduced models, but also to relate these parameters to meaningful physical
quantities. The MHD regime is sometimes derived by letting &, the vacuum permittivity,
go to zero (e.g. Jang & Masmoudi 2012; Tronci & Camporeale 2015) which is referred to as
the full Maxwell or to the low-frequency pre-Maxwell asymptotic equations in Freidberg
(2014, see §2.3.3). It is also common to let the electron to ion mass ratio go to zero
to explain the vanishing of the electron inertia (Freidberg 2014; Klingenberg, Pirner &
Puppo 2016) in deriving either MHD modelling or the Boltzmann relation. Although the
right asymptotic models are recovered by this means, these assumptions do not account
for changes in the system characteristics that may explain a regime transition: the electron
to ion mass ratio remains constant and the same property holds true for the vacuum
permittivity.

The outline of the paper is the following. The plasma kinetic description is introduced
in § 2 together with the Maxwell system driving the evolution of the electromagnetic field.
A dimensionless form of the system is stated in order to develop an asymptotic analysis
and the derivation of reduced models. A hierarchy of quasi-neutral models is proposed
in § 3 for the Vlasov—Maxwell system. It encompasses fully kinetic, hybrid as well as
single-fluid (MHD) plasma descriptions. The electrostatic framework is investigated in
§ 4. The electrostatic limit of the Maxwell system is performed. A hierarchy of models,
similar to that of the electromagnetic framework, is derived. Finally, a synthesis of these
asymptotic analyses is proposed in § 5 devoted to conclusions.
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2. The Vlasov-Maxwell system in a dimensionless form
2.1. Objectives

In this section, the purpose is to unravel a series of asymptotic limits bridging the gap
between the Vlasov—Maxwell system and a MHD model. The difficulty is therefore to
identify parameters explaining the transition from one description to the other and to
relate these parameters to specific characteristics of the system. The tools mobilized to
achieve this aim are based on the asymptotic analysis of the Vlasov—Maxwell system.
Since the low-frequency plasma modelling is related to a fluid plasma description,
the kinetic model is upgraded with collision operators. Therefore, the most refined
modelling consists of a Vlasov equation for the electrons and the ions, augmented with
a collision operator and coupled to the Maxwell system. Even if the physical model is
non-collisional or weakly collisional, the transition towards a fluid limit is accounted
for by a collisional process, thanks to a Bhatnager—Gross—Krook (BGK) operator. This
choice of collision operator is questionable from a strict modelling viewpoint; nonetheless,
the purpose here is to easily derive the fluid limit at a limited computational cost. In
this respect the BGK collision operator is a good candidate. First, the whole collisional
processes are considered, including both intra- and inter-species collisions. Nonetheless,
only the minimal collisional process will be accounted for to derive a MHD regime
from the kinetic model. This point will be outlined in the following sections. The
introduction of non-dimensional quantities will naturally reveal dimensionless parameters
in the equations. Letting some of these parameters go to zero shapes the hierarchy
of models derived for the Vlasov—Maxwell system and bridging the gap with MHD
models.

2.2. The Vlasov—-BGK—Maxwell system

The most refined description of the plasma is constituted by two Vlasov equations, f; and
/. being the ion and electron distribution functions:

a,fi+v-vxfi+%<E+v x B)-V,fi = Q, Q1)
0fe+v-Vifi— L(E+vxB)-V,f. = Q. 2.2)
s

In these equations, ¢ is the elementary charge and m, is the mass of the species o (¢ = e
for the electrons and i for the ions). The BGK collision operator Q, is given by (Huba
2011)

th = Qaa + Qaﬂ7
] 2.3)
Qaa = vaa(MnD,,uD,,Ta _fot)y Qaﬁ == Vaﬁ(Mna,ﬁﬁ,Tﬁ _fut)~

Here v, and v, are the like-particle and inter-species collision frequencies which can be
defined as (Degond 2007; Spatschek 2012)

i 2 e A/ Hte
Kon—i, Vie = Kon— “ ;
(kgT1)3/% /m; (kg T3)3 m;

e 2 q 1
ORI OB B
(kB Te)3/2 nie (kB Te)3/2 me

(2.4a)

Vii =

(2.4D)

Vee =
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where
2

2
K, =C (4q ) In(A), (2.4¢)

€

C denoting a constant with a magnitude equal to one, In(A) the Coulomb logarithm and
the ions being assumed mono-charged.

The Maxwellians M, . 7, and M are defined as

na,l,_lf;,i"ﬁ

M ( l) my Do ma'“a(xv t) - U|2 (2 5 )
T U, = Ny X, €X - , Da
ot T Yrtks T, (x. 1) P 2T, (x. 1)

- Y
_ma|uﬂ(x,t) v ), (2.5)

D,/2
- m,
M, o 7 =nex, 1) | ———— ex =
wtip-Tp 1) <2J'thT,3(x, z)) p( U Ty (x, 1)

D, denoting the dimension of the velocity space and kg is the Boltzmann constant. The
Maxwellian parameters n,, u, and T, are the density, mean velocity and temperature
associated with the distribution function f, and defined as

1 o
ng = / fodv,  nuu, = / vf, dvu, nekgT, = m_/ v — u|2fa dv,
2 2 y—1 2 Jo,
(2.6a—c)

with y the specific heat ratio whose value depends on the dimensionality of the velocity
space D, through

1= > (2.7)
y =D .

The collision operators verify the following conservation properties:

1

/ Quemy | v |dv=0, (2.80a)
v|?
1 1
/Qaﬂma v dv+/ Qpampg | v | dv=0. (2.8b)
v|? |v]?

The temperature and the mean velocity (ug, T,g) in the inter-species collision operator
expression (2.5b) should be chosen with care in order to guarantee the total momentum
and energy conservation. Indeed the identities

/ Qv dv = Vogmgng (g — Uy), (2.9a)

v|? D, - 1 - 2 2
QaﬂmaTdv = Vug ?nakB(Tﬁ -T,) + Emana(|uﬂ| — |ua|”) (2.9b)

hold true for the operators defined by (2.5). The trivial choice (ug, 7_};) = (ug, Tp)
does ensure the plasma total momentum conservation, provided that vgmen. = viem;n;.
However, in this case, the plasma total energy is not conserved. We refer to Greene (1973)
for a seminal work, as well as to Klingenberg et al. (2016) and references therein for recent
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advances, on the choice of these parameters compliant with the desired properties (2.8b)
of the inter-species collision operators, therefore providing the conservation of the plasma
momentum and energy.

The electromagnetic field (E, B) evolution is driven by the Maxwell system:

1
—0E— V. xB=—pl, (2.10)
(&
B+ V, xE=0, @.11)
v,.E="2, (2.12)
€0
V,.B=0, (2.13)

where c is the speed of light, 1, the vacuum permeability and €, the vacuum permittivity
verifying po€oc®> = 1. The Maxwell sources are the particle currents and densities

p = q(n — ne), (2.14a)
J = q(nju; — neu). (2.14b)

The definition of the collision frequencies as stated by (2.4) relates to different time
scales. Indeed, because of their different masses, ions and electrons are not equally affected
by collisions. These properties are more clearly emphasized working with dimensionless
variables as proposed in the next section.

2.3. Scaling of the Vlasov—Maxwell system

The equations are written with dimensionless quantities in order to easily identify different
regimes. The scaling is introduced under a priori assumptions that the electronic and ionic
temperatures, densities and mean velocities are comparable with a magnitude denoted 7Ty,
ny and uy. These scales define the typical Debye length as well as the electron plasma

period:
[eoks T, :
A = 6‘;2‘; O =] ’;’2;‘). (2.15a,)
0 0

We denote by x, and 7, the characteristic space and time scales of the phenomena observed,
which yields the velocity of interest ¥y = x(/#,. The magnitude of the thermal velocity for
the species « is denoted v , with vy, = kgTy/m,. Due to the different masses, the thermal
velocity of the electrons is not that of the ions. The reference thermal velocity vy will be
defined by the ion one vg = kgTy/m;, hence vy . = vy/¢ and vy; = vy, where &% = me/m;.
Finally, the scale of the electromagnetic field is denoted (Ey, By), the particle current scale
being defined as Jy = gnouy. The dimensionless variables are defined according to

* X * t * v * f * n * J
X = —, r = R v = ) f = —D’ n =—, J = )
Xo fo Vo.a 1o/ (Vo,a)" Ny gnottg
(2.16a—f)
E B
Ef=—, B'=—, 2.17a,b)
E, B,

the collision frequencies verifying

me
Vee,0 = Vei,0 = —Vii0»  Vie.o = EViigs &= [—. (2.18a—c)
& ny
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On the fastest time scales, the electron distribution function relaxes towards a Maxwellian.
On the same time scale, the electron mean velocity and temperature relax towards those of
the ions. The relaxation of the ionic distribution function towards the local equilibrium is
slower, by a factor ! = \/m;/m.. Finally, the ions are almost unaffected by the collisions
with the electrons. The relaxation of the ionic distribution function towards that of the
electrons defines the largest time scale, by a factor ¢ ~! compared to the relaxation towards
the thermodynamical equilibrium.

The dimensionless ionic and electronic Vlasov equations can be rewritten as (keeping
the same notations for dimensionless variables)

gatﬁ +v- fo; + n (E + gv X B) ’ Vvﬁ == %(Vii(Mni,u;,T; _ﬁ) + 8Uie(Mn;,uc,Tc _ﬁ)),

(2.19)

gsatf‘e+v . foe —n (E + gv XB) . vae = %(Vee(-/\/lnc,uc,Tc _fe)"i_vei(-/\;lnc,ui,ﬂ _fe))a

(2.20)
together with the dimensionless Maxwell system written
) ,0E M
ANl — — BV, xB| =—-a"—J, 2.21a)
ot &
BB+ V,x E=0, (2.21b)
A*nV, - E =n; — n,, (2.21¢)
V,.-B=0, (2.21d)
J = nu; — naie. (2.21e)
This system is written using the following dimensionless parameters:
2 me . . ..
&” = — the ratio of the electronic and ionic masses,
m;
Ap
A = — the scaled Debye length,
X0
Uo o . kgTo .
M = — the ionic Mach number, with vy = | —— the ionic speed of sound,
Vo m;
Uo . . . .
& = — the ratio of the typical velocity to the ionic speed of sound,
Vo (2.22)

0
o = — the ratio of the typical velocity to the speed of light,
c

gxoEo . . . .
=T the ratio of the electric and plasma internal energies,
Blo
19030 . . . .
B = the induced electric field relative to the total electric field,
0
k~! = v; oty the number of ion—ion collisions during the typical time.
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The dimensionless Maxwellians are defined by

Mnev“l:tha = Mne.ua.Ta

1 Duf2 IMeu, (x, 1) — v|?
=n.(x, )| — exp| — , (2.23a)
27T, (x, 1) 2T, (x, 1)
Mn,-.ua,Tu = Mn,‘,uu,Ta
1 Du/2 Mu, (x, 1) — v|?
e ) exp (= Miat D Z VY (2.23b)
2nT,(x, 1) 2T, (x, 1)
Some comments can be stated regarding the meaning of these parameters and the scaling

relations.

The typical mean velocity and temperature are assumed to be the same for electrons and
ions. Accordingly, the relaxation of the electron mean velocity and temperature towards
those of the ions may be assumed to marginally contribute to the evolution of the system.
This assumption is therefore consistent with the investigation of resistive-less plasma
modellings and the neglect of the inter-species collisions.

The parameter £ is intended to provide a measure of how the electronic and ionic
dynamics are resolved. The choice £ = 1 means that the system is assumed to evolve at a
speed comparable to the ionic thermal velocity vy, while £¢ = 1 performs a rescaling of
this typical velocity to the electron microscopic velocity. Setting & = M relates the typical
speed of the system to the ionic mean velocity uy. Actually, the Mach number measures
the gap between the microscopic (thermal) and macroscopic velocity scales.

The scaling relation n = 1 is generally assumed in single-fluid plasma representation.
The plasma internal energy is then on a par with the electric energy. This equilibrium
is fundamental in the derivation of the Boltzmann relation. The identity SM = & is also
common in single-fluid plasma models. This amounts to assuming that the induced electric
field scales as the product of the plasma mean velocity and the typical magnetic field: E, =
upBy. In other words, the magnetic field is essentially transported with the plasma flow.
This latter assumption is in line with the Alfvén frozen theorem (Moreau 1990; Davidson
2001; Schnack 2009; Freidberg 2014) characteristic of ideal MHD models: the magnetic
field is frozen into the plasma and transported by its flow.

The derivation of reduced models consists of identifying small dimensionless
parameters and letting them go to zero. The smallness of the scaled Debye length refers to a
typical space scale much larger than the physical Debye length. This means that the charge
separations, occurring on space scales comparable to the Debye length, are assumed
unimportant in explaining the evolution of the system. Sending the scaled Debye length
to zero performs a low-frequency filtering into the equation deriving thus a quasi-neutral
model. In the context of the derivation of numerical methods, the typical length relates to
the mesh size. This outlines the advantage of reduced models: the low-frequency filtering
operated by vanishingly small parameters permits the derivation of numerical methods
with discretization parameters (mesh size and time step) unconstrained by the small scales
filtered out from the original equations.

3. A hierarchy of quasi-neutral models bridging the Vlasov-Maxwell
system and the Hall MHD regime

3.1. Handling the fluid and quasi-neutral limits

3.1.1. A hierarchy of fluid and kinetic quasi-neutral models
The aim here is to reduce the number of free dimensionless parameters, deriving by
this means different reduced models well suited for the description of low-frequency
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Kinetic Hierarchy [\"Iam\'—BGl\'—.\InX\\'c-II ‘ Fluid Hierarchy

o, A j/ x{]

Kinetic Electron-MHD ‘

Euler-Maxwell

(r2), (Me) = 0 ¢ ‘ A =0

| Hybrid Hall-MHD ‘ Electron-MHD
K ->0\\ )/(,Uf) — 0

M =0

[ Massless Hall-MHD |

FIGURE 1. Fluid and kinetic (quasi-neutral) model hierarchies derived from the
Vlasov—-BGK—-Maxwell system.

phenomena. As depicted in figure 1, the starting point of this hierarchy of models
implements the minimal upgrades of the Vlasov—Maxwell system to recover a MHD
regime. Precisely, only the inter-species collisions are taken into account in the initial
model in order for the distribution function to relax towards the local equilibrium. This
yields

Satﬁ +v- Vxﬁ + n <E + gv X B) * Vvﬁ - %Vii(Mni,u;,Ti _ﬁ)7 (31(1)

Eedfe+v-Vife — 1 (E—I— gv X B) -V.fe = %vee(./\/lne,ueje —fo), (3.1b)

for the evolution of the ions and electrons coupled to the dimensionless Maxwell system
defined by (2.21).

From the scaling relations stated by (2.18a—c), discarding the inter-species collisions
makes sense for the ions. Due to their large mass, the ions are almost unaffected by
encounters with electrons. For the electrons, this assumption is not in line with the
scaling of the intra- and inter-species collision frequencies. However, the purpose here
is to propose a physically meaningful framework to clarify the foundation of a numerical
method bridging the gap between a kinetic description of a weakly (or non-) collisional
magnetized plasma with a MHD regime. The interspecies collisions give rise to the
resistivity in the macroscopic system which is not the targeted class of modelling for this
work.

3.1.2. Handling the fluid limit
To identify easily a fluid regime, the distribution function is decomposed into a
Maxwellian M, ,, 7, and a deviation from this Maxwellian « g, according to

fot = -/\/tno,,uo,,Tu + K&y, (3261)
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the deviation verifying

1 1
< v ga> = / v | godv=0. (3.2b)
2,

lv]? lv|?

With this decomposition, the Vlasov—Boltzmann equations (3.1) can be recast into a
hydrodynamic set of equations with kinetic corrections, depending on the moment of the
deviation g,, yielding

f—/lazni + V.- (nw) =0, (3.3a)

2 (5 5 i @ o (£ PM,
M Ma[(nlul) + Vx ° (nlul 02 ul) + prl nn; E+ %_ up X B

= —kV,-(v®uvgi), (3.3b)
S Wi+ V.- (Wt pous) — i Ko (F (3.3¢)
=, 0t Wi x* i iJUi) — ML - Ui = —— Vo \ V8, .
v pu niE - u i > g c
with
51 2 Pi
Wi = M) =nilui|" + ——, pi =nT,, (3.3d)
2 y —1
for the ions, and an equivalent system for the electrons,
Eatne + Vx ° (neue) = 0, (34&)
M
2 & BM
(MS) Mat(neue) + Vx * (neue ® ue) + pre + nne E + ?ue X B
=—kV,-(VQ®uvg), (3.4b)
S W £ V- (W + poite) + i E <y, (F (3.4c)
- e x* e e)Ue Nell ~ Ue = ——— Vo \ —/— Vg ), 4ac
Vi f P n Me ) 8
with
2 1 2 Pe
We = (Me)” =nel|u|” + ,  Pe =ncTe.. (3.4d)
2 y —1

These two systems are coupled to a set of equations (the Maxwell system (2.21)) driving
the changes in the electromagnetic field, as well as an equation for the evolution of the
deviations g. and g;. The construction of these equations will be omitted in the present
work; we refer for instance to Crouseilles & Lemou (2011), Crestetto ef al. (2012) and De
Cecco et al. (2017) for examples of their derivation.

3.1.3. On the quasi-neutral limit

Omitting the collisions, the fastest velocity in this system is the propagation of waves
at the speed of light described by the Maxwell system. The Debye length as well as
the plasma period also define small space and time scales for large plasma densities.

https://doi.org/10.1017/50022377820000884 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377820000884

10 A. Crestetto, F. Deluzet and D. Doyen

The quasi-neutral limit is defined by the following scaling relations:
(0, ) =0, a~aAa. (3.5)

This amounts to assuming that the scaled Debye length is small compared to the typical
length and that the system evolves at a speed lower than the speed of light. By this
means, the small scales related to these parameters are filtered out of the equations.
The last hypothesis o ~ A is essential to recover the low-frequency Ampere law, derived
by neglecting the displacement current. This equation being common to MHD models,
the quasi-neutral limit encompasses these two assumptions. With the vanishing of this
generalized dimensionless Debye length (1, «) — 0, the Maxwell system degenerates into

M
BV, x B = EJ, (3.6a)
BB+ V,x E=0, (3.6b)
n; = N, (3.6¢)
V,-B=0. (3.6d)

From Gauss’s law, the property of the electronic density to match that of the ions is
recovered, which genuinely enforces quasi-neutrality of the plasma. The electric field has
no contribution in either of these degenerate Gauss and Ampere equations. The remaining
occurrence of the electric field is limited to the Faraday equation (3.6b). Therefore, this
set of equations is not well suited for the computation of the electric field. Indeed, the
electrostatic component of the electric field can be arbitrarily chosen in (3.6): the electric
field satisfying this system may be augmented by any gradient of a scalar potential (see
also Degond & Deluzet (2017) for further details).

In the quasi-neutral limit, the electric field is provided by the particle current J rather
than the displacement current (0E /9t originally present in Ampere’s law). To close the
system, the dependence of J with respect to E shall be explained to restore uniqueness of
the electric field. This is related to the model describing the plasma.

3.2. A hierarchy of kinetic models for quasi-neutral plasmas

3.2.1. A kinetic formulation of the electron MHD

The aim here is to follow the microscopic dynamics of the electrons. The velocity
of interest is the kinetic velocity of the electrons. This amounts to setting % = vy/e or
equivalently £¢ = 1, yielding

1
Ofi+e-Vfi+n(E+eBv xB) -V, f) = ;Vii(Mni,ul,Ti — s (3.7a)
1
azﬁ; +v- V,\fe - U(E+ ,BU X B) . Vuﬁ: = ;Uee(-/\/lne.uejE _fe)- (37b)
The collisions are assumed to be ineffective on the characteristic time scale k& > 1, which
amounts to neglecting the collision operator in (3.7), in particular for the ions, owing to
e K 1.

Performing the quasi-neutral limit (1 = o) — 0, the system at hand here is recast into
(see Degond et al. 2015)

ofi+ew -Vfi+nE+¢eBvxB)-V,f,) =0, (3.8)

https://doi.org/10.1017/50022377820000884 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377820000884

Bridging kinetic plasma descriptions and single-fluid models 11

ofe+v-Vfo—n(E+BvxB)-V,f. =0, (3.9)
BV, x B= (Me)J, (3.10)

BB+ V,.x E=0, (3.11)

ne = n; = n, (3.12)

V.-B=0. (3.13)

First, note that the formal time derivative of the Faraday equation (3.11) together with the
curl of Ampere’s law yields

V,xV,x E=—(Meg)o,J, (3.14)

which outlines that the electric field is known up to the gradient of a potential in this
system. In Degond, Deluzet & Savelief (2012a) and Degond et al. (2015) the ill-posed
nature of this equation is corrected by explaining the relation between the current density
and the electric field. The conservation of the ionic and electronic momentum, as stated
by (3.3b) and (3.4b), yields

(MS)aa—{ = —(Me)’V, - (Si =S.) = V.- (6’P, = P.)

+ n(e’n; + n)E + np(Me)(e*niu; + neue) x B, (3.150)
with, for any species o (o« = e for the electrons and i for the ions),
Se = gty @ gy, Py = pld—+k (v®vg,). (3.15b)
Inserting the identity (3.15a), together with n = n; = n., into (3.14) gives
n(l+e)E+V,x V,x E=—(Me)n(e*u; + u.) x B
+ (Me)’V,+ (Si—Se) + V- (2P — Po).  (3.16)

This equation is well posed in the quasi-neutral limit (» > 0) and can be used for the
computation of the electric field. It is written under the assumption § = 1 aswellasn = 1
which amounts to considering the thermal energy on a par with the electric one. This yields
the following definition of the quasi-neutral model:

df+e-Vifi+ (E+evxB)-V,f) =0, (3.17a)
dfi+v-Vifi—(E+vxB)-V,f. =0, (3.17b)

n(l+e)E+V,x V, x E=— (Me)n(e®u; + u,) x B
+ Me)*V, - (S; —Se) + V. - (2P, — P.),  (3.17¢)

B+ V,x E=0, (3.17d)
V,..-B=0. (3.17¢e)

Note that the electric field provided by (3.17¢) enforces a divergence-free particle
current, or more precisely 9,(V - J) = 0. This yields, because of the continuity equation,

9%p

o’

This proves the consistency of this model with the quasi-neutrality assumption (matching

of the electronic and ionic densities) as soon as the initial data are compliant with this

=0. (3.18)
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regime. Note that, working a time semi-discretization, the vanishing of the charge density,
rather than its time double derivative, may be recovered (see Degond et al. 2015). Note
also that the evolution of the ions only brings a marginal correction, proportional to &2, to
the electron dynamics. On this time scale, the ions may be considered at rest.

The characteristics of this model are similar to the so-called electron MHD: the time
scale of interest is that of the electrons, the ions merely creating a motionless background
for the fast electron flows (Kingsep, Chukbar & Yank’kov 1990). In particular, this
modelling accounts for the inertia of electrons. A noticeable difference from the electron
MHD (see § 3.3.1) lies in the kinetic description of the plasma. An asymptotic-preserving
method is proposed in Degond et al. (2015) to bridge this quasi-neutral model and
the Vlasov—Maxwell system. The properties of this quasi-neutral plasma description are
investigated in Tronci & Camporeale (2015) by means of a linear stability analysis.

3.2.2. A hybrid formulation of the Hall MHD

Hybrid modelling (Yin et al. 2002; Winske et al. 2003; Tronci et al. 2014) refers to
a class of plasma models where the ions are described by a kinetic equation while the
fluid limit is assumed for the electrons. This is in line with the scaling relations of the
collision frequencies stated by (2.18a—c). The relaxation of the electronic distribution
function towards the local equilibrium is indeed faster than for the ions. The aim of this
modelling is to filter out of the equations the fast scales carried by the electron dynamics.
Therefore, a zero-inertia regime is also assumed for the electrons together with the fluid
limit and the quasi-neutrality of the plasma.

The typical velocity selected here is the microscopic (thermal) velocity of the ions. This
translates into the identity & = 1 resulting in the following system for the plasma:

ofi+v-V.fi+n <E+ gv X B) V. fi = %Vii(./\/lni’ui’]‘i —f), (3.19a)

o f. + l (v -V.fi—n (E + ﬁv X B) . vae> = ivee(./\/lne,ue,re —fo).  (3.19b)
& 3 &K

The fluid limit for the electrons is selected assuming (ex) < 1 meaning that the number
of electron collisions during the typical time is large. The quasi-neutrality of the plasma
amounts to setting 4 = o <« 1. To overcome the degeneracy of the Maxwell system in
the quasi-neutral limit, the electronic momentum is harnessed to provide the so-called
generalized Ohm’s law. The electronic system can be recast into

1
(Me)? <Mat(neue) + V.- (neu. ® ue)) + Vipe + n(nE + (BM)u. < B)
= —(k(M¢g))V, - o, (3.20)

1
W+ Vo (We+ poue) + e -, = —Mivx C(M)20% - tte + 11V, T2), (3.21)
£

where the viscous stress tensor o, as well as the thermal conductivity u. are defined in § 3
and, owing to the quasi-neutrality assumption, n, = n; = n.

The dynamics described by these equations is stiff. This is due to the smallness of (§¢)
in this regime: the thermal velocity of the ions (defined as the typical velocity) is small
compared to that of the electrons. Therefore, the electrons are in a low-Mach regime.
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Assuming (Me) < 1 gives rise to the following equilibria:

V.(nT.) + nn(E + (BM)u. x B) = 0, (3.22a)
V.T. = 0. (3.22b)

The classical massless approximation for the electrons is recovered with the generalized
Ohm’s law and a homogeneous electronic temperature. The definition of the mean velocity
u. is derived from the particle current density J = n(u; — u.) together with Ampere’s law
(3.10), yielding

B V.xB

e = Ui . 3.23
u u U n ( )

The hybrid plasma modelling is written (assuming n = 8 = 1)

ofi+v-Vifi+(E+vxB)-V,fi=0, (3.24a)
V.xB V.n
E=—-MuxB+M X B—T. , (3.24b)
n n
oB
E—}—VXXE:O, V,-B=0, (3.24¢)
with
n:/fidv, nu:/vfidv. (3.244d)

The derivation of a similar model is proposed in Acheritogaray et al. (2011) with numerical
investigations in Degond et al. (2011a).

3.3. A fluid hierarchy of quasi-neutral models

3.3.1. The electron MHD system
This model is obtained by letting k — 0 in (3.1). This yields the following set of
equations for the electrons:

%&ne + V.- (n.us) =0, (3.25a)
58( )+ Vi (neue ® ue) + : V.pe + E+ﬁM B 0
— 0 (Nl x ¢ Melle Ue YR xPe ne —Ue X =Y,
270 aaey \Vape p
(3.25b)
f_latwe + V- (W, +pe)ue) + nneE “u. = 0. (3250)

A similar system is derived for the ions, however with ¢ = 1 and 7 replaced by —n. These
two sets of conservation laws are coupled to the Maxwell system (2.21). Performing the
quasi-neutral limit in this system (1 = &) — 0 and focusing on the electronic dynamics
with £€¢ =1 yields the quasi-neutral bi-fluid Euler—Maxwell system. This model is
similar to that of § 3.2.1 but with a fluid description for the plasma. Following the same
terminology, this model is referred to as Electron-MHD system (also used in Kingsep et al.
(1990) though different terminology may be used by other authors). It is implemented and
investigated numerically in the framework of Asymptotic-Preserving methods in Degond
et al. (2012a).
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3.3.2. The Hall MHD regime

The Hall MHD regime (see Lighthill 1960; Witalis 1986; Schnack 2009) is recovered
from the assumptions of the previous section but with a typical velocity equal to the plasma
mean flow yielding & = M. The fast electronic dynamics is filtered out from the equations
to provide a low-frequency modelling for the plasma driven by the evolution of the massive
ions. The plasma velocity, denoted u, is defined as that of the heavy species u = u;. The
other parameters obey the classical scaling relations of MHD models: n = 1 and 8 = 1.

In the drift regime (Me — 0), the electronic energy reduces to the internal energy

Ee=pe/(y — 1), (3.26a)

with the electronic momentum and energy verifying

Vp.=-n(E+u. xB), (3.26b)
0:E + V, - ((E + pe)ue) = —nE - ue. (3.26¢)

The generalized Ohm’s law (3.26b) is harnessed to compute the electric field. The
electronic velocity u, is substituted by u, = u — J/n.
The electric field is computed via the generalized Ohm’s law, giving rise to

V. xB V.pe
X B — . (3.27)
n n

EF=—-uxB+

The first term on the right-hand side of equation (3.27) is the classical frozen field term,
explaining the convection of the magnetic field together with the plasma. The second and
third contributions are the so-called Hall and diamagnetic terms. Inserting this definition
in the Faraday law (3.6b), the magnetic induction equation can be constructed, with

V. xB V.pe
0B+V,-W®B—-—BQu) =—-V, x X B|)+V, x . (3.28)
n n

Finally the plasma mass density, momentum and total pressure p and energy W defined

by
p=pitp.=n(li+T.), (3.29q)
1
W=W+& =M =nu + —L— (3.29b)
2 y —1
verify
an+ V., (mu) =0, (3.29¢)
1 1
0;(nu) + V, - (nu @ u) + Wpr = ]\?J X B, (3.29d)
AW+ V.o (WHpu)+ Vi (E+pvy) =E - J. (3.29¢)

The Hall velocity vy, which can be interpreted as the electron velocity in the ion frame, is
defined by

(3.30)

Vg = —
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The ideal MHD equations are classically written under a conservative form using the
system total pressure and energy:

B? B?
Pror =p + bR Wror = W + PR (3.31a)
writing the system as
om—+ V- (mu) =0, (3.31b)
1 1
0;(nu) +V, - <nu Ru— ]\?B ® B) + WVxPTOT =0, (3.31¢)
0 Wror + V. « (Wror + pron)u — (B-uw)B) = =V« (& + pe)Vu), (3.314)
V.pe
atB—Vx-(B®(M+VH)—(M+VH)®B):VXX( p>‘ (3.31e)
n

This set of equations is supplemented with the electronic energy conservation (3.26¢).

The ideal MHD equations are recovered from this system assuming an ideal Ohm’s
law where the current density is assumed small compared to the ion mean velocity and
therefore neglected. However, in this simplified framework (omitting the unlike particle
collisions), there are no mechanisms preventing the electron mean velocity from departing
from that of the ions. Consequently, the generalized Ohm’s law incorporates the Hall
velocity in complement to the so-called ideal Ohm’s law. The effect of the resistivity
should be considered to derive the ideal MHD regime.

The drift approximation operated for the electrons amounts to vanishing of the
electronic Mach numbers (Me¢). The scale separation introduced by the small electron to
ion mass ratio ¢ is not always sufficient to consider this limit independently of vanishing
ionic Mach numbers M — 0. For low ionic Mach number, a low-frequency filtering may
be operated performing the limit of vanishing electronic Mach numbers jointly with ionic
Mach numbers. This asymptotic defines the massless MHD regime (Besse et al. 2004).

4. The electrostatic regime and the Boltzmann relation
4.1. Electrostatic limit of the Maxwell system

The electrostatic regime is recovered from the dimensionless Maxwell system (2.21) by
letting « go to zero, independently of A. This assumption shall be interpreted as a typical
velocity negligible compared to the speed of light. From Ampere’s law

IE M B
Pn—+4 —J =
"o T E o

V. xB, 4.1)

the limit @ — O provides V x B = 0. Nonetheless, the right-hand side of (4.1) remains
an undetermined form. Therefore, Ampere’s law is not well suited for the computation
of the electric field in the electrostatic limit. However, subjected to convenient boundary
conditions, the property V, x B = 0 together with V, - B = 0 yields 9,B = 0. Inserting
this property into the Faraday equation (2.21b) provides an electrostatic electric field:
V x E = 0. Furthermore, the undetermined form in (4.1) is divergence-free. Therefore,
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computing the divergence of Ampere’s law provides

, WV, E M
A n = ——VX°.I, (42)
ot &

which is a well-posed problem for the electric field under the condition V, x E = 0. Note
that, owing to the continuity equation

p M
— + —=V,-J =0, 4.3
Py + : 4.3)

originating from the conservation of the particle densities (3.3a) and (3.4a), the divergence
of Ampere’s law is equivalent to the time derivative of Gauss’s law, with

B
8—t(42nvx .E—p)=0. 4.4)

Therefore, in the electrostatic regime, the Gauss equation is used to compute the electric
field.

4.2. Quasi-neutral models at the electronic scale

This analysis is carried out under the assumption of a vanishing magnetic field (B = 0).
The plasma description considered in the following is therefore

§
§0fi+v-Vifi+nE-V,fi= ;(vii(Mni,ui,Ti — ), (4.5a)
§
§edfetv-Vife—nE-V,fo = ;(vee(Mnc,uc,Tc —f) (4.5b)
coupled to the Gauss equation
— *nA¢p = n; — ne, (4.5¢)

¢ being the electrostatic potential, with E = —V¢ and n, = [ f, dv.

The quasi-neutrality of the plasma is recovered for vanishing scaled Debye length
A — 0. In this regime, similarly to the electromagnetic case, an equation needs to be
manufactured from the motion of the particles, to compute the electric field. This is
classically obtained using the equation of the electronic momentum conservation. The
electric field is computed in order for this conservation to be satisfied. In Degond et al.
(2010) an equivalent approach is proposed. It consists of using the time derivatives of
Gauss’s law to produce

5 82 82

Tnaaht=5p

In the quasi-neutral limit (1 — 0), the electrostatic field is the Lagrangian multiplier of
the quasi-neutrality constraint

(n; — ne) . (4.6)

82
o

From the system (3.4) (with B = 0), formally computing the time derivative of the density
conservation together with the divergence of the momentum equation, the following

(n; —n.) = 0. 4.7
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identity is recovered:

AN (V. - (Mette @ 1)) — —— V. + (VoPe+ neE): (4.8)
M atz - X X neue ue (M8)2 X X € nne L) .
Pe = pelld +k (v®uvg.), with (v® vg.) = /(v ® v)g. dv. 4.9)

Resuming the scaling relations of § 3.2.1, £ = 1/¢ and k& > 1, assuming that the ions are
at rest, the evolution of the charge density n; — n. is governed by (4.8) with

9%n,

ar?

= _(Mg)zvx ° (Vx ° (neue ® ue)) - Vx ° (VxPe + WleE)- (410)

The evolution of the density is barely independent of the mean flow velocity but relies
on the balance between the pressure and the electric forces. The equation providing the
electric potential ¢ is obtained by inserting this relation into (4.6) and passing to the limit
A— 0.

This yields the following quasi-neutral kinetic plasma description:

1
dfe+v-Vife + Vi -V, fe = ;(vee(Mne,ue.Te —fe)s (4.11a)
—nVy+ (0Vi) = =V, o (Vi o Pe — (Me)’V .+ (nelte ® ue)). (4.11b)
According to the values of «, the collision term in (4.11a) may be disregarded, defining

therefore a non-collisional kinetic description. Contrariwise, letting « — 0, a fluid
description for the electrons may be derived, with

ﬁa, ne + V- (neue) = 0, (4.12a)

1 1
ma (neue) + V (neue ® ue) +—= (M )2 (pre - nnevx¢) =0, (412b)
9 We + Vi« (We + pe)ute) — nne Vi« ue = 0. (4.12¢)

(Me)

Note that a similar equation to (4.10), but with P, = p.Id, may be worked out of the
conservation of the electronic density (4.12a) and momentum (4.12b). This outlines that
the electronic dynamics, in particular the electronic speed of sound, is resolved in this
model. Comparable models are implemented and numerically explored in the context
of asymptotic-preserving methods in Crispel, Degond & Vignal (2007) for fluid plasma
description and Manfredi, Hirstoaga & Devaux (2011) for kinetic equations.

4.3. Quasi-neutral models at the ionic scale

The typical velocity is chosen to be that of the ions with & = 1 for the kinetic descriptions
of the ions and £ = M for macroscopic models.
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The hybrid modelling investigated in § 3.2.2 is defined by the scaling relations & = 1,
(exk) < 1 and n = 1. The equilibria stated by (3.22) yield

T.V,ne = n V.9, (4.13)

with a homogeneous electronic temperature. This equation is integrated to provide the
so-called Boltzmann relation

ne = nyexp (_ﬂ) , 4.14)
T.

ny being a constant (independent of the space variable x) that should be determined from

adequate conditions (Hagelaar 2007). Due to the Boltzmann relation, the quasi-neutral

limit is no longer singular. Indeed plugging the Boltzmann relation (4.14) into the Gauss

equation yields

—ﬁA¢:m—nwm(—%). (4.15)

This equation is not degenerate for the computation of the electric potential for vanishing

A. Indeed, the nonlinear part of the equation provides a means of computing ¢ in the

quasi-neutral limit. This property is thoroughly investigated in Degond et al. (2012b).
The hybrid electrostatic model may be recast into

1
atﬁ +v- fol - de) ° vai = ;(Vii(Mni,ui,T; _fi)), (416(1)

n;
¢=—nm(—>. (4.16b)

no
Letting k — 0 together with «/(M¢e) < 1 and & = M yields the quasi-neutral fluid

model:
i + Vi« (mu;) =0, (4.17a)
1

0 (miw;) + Vo« (miu; @ u;) + Y (V.upi +miV,9) =0, (4.17b)
Wi+ Vo« (Wi + ppui) +niV,i¢ - u; = 0, 4.17¢)
¢=—nm<ﬁ). (4.17d)

no

In the models (4.16) and (4.17) following the evolution of the plasma at the ionic scale, the
fast electronic dynamics introduced by the electron inertia is filtered out of the equations
by performing the low-frequency limit (Me) — O.

5. Conclusions

In this paper, we propose an asymptotic analysis bridging kinetic plasma descriptions
coupled to the Maxwell system and single-plasma modelling. Two frameworks are
investigated. The first one is devoted to electromagnetic fields. The plasma is represented
by a hierarchy of models starting with the bi-kinetic Vlasov—Maxwell system while ending
with the single-fluid Hall MHD model. The second framework is dedicated to electrostatic
fields. In this context, the asymptotic analysis permits the derivation of a hierarchy of
models bridging the bi-kinetic Vlasov—Poisson system to a single-fluid representation
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consisting of a fluid system for the ions coupled to the Boltzmann relation for the
electrons. The investigations proposed within this paper unravel different asymptotic
parameters explaining the transition from one model to the other. The effort conducted
in the present work consists of relating these asymptotic parameters to characteristics of
the system. This means that the transition from one model to the other may be explained
by a change in the plasma characteristics or the typical scales at which the plasma is
observed.

This last notion is important in the perspective of designing a numerical method. Indeed,
the discretization of these equations requires the use of a mesh interval as well as a time
step. These two numerical parameters define the typical space and time scales, therefore a
velocity scale as well, that the numerical method is aimed at capturing. This is related to
the parameter & used for the asymptotic analysis. Regarding the quasi-neutral modellings
investigated, different choices are operated for this parameter. The fastest scales are related
to the electron thermal velocity when the fast electron dynamics is intended to be captured
by the model. This is for instance the value selected for electron MHD regimes, in either
the fluid or kinetic frameworks. For hybrid or single-fluid plasma representations, the
velocity scale is reduced to that of the mean flow of the plasma defined by the massive
ions. The organization of § 4 is aimed at emphasizing this feature.

The second parameter, already established in prior works (see Degond et al. 2010,
2012a, 2015), is the generalized scaled Debye length A. It actually encompasses the
scaled Debye length and the ratio of the typical velocity to the speed of light. Vanishing
the generalized Debye length amounts to filtering out from the equations the small
scales attached to the charge separation as well as those related to the propagation
of electromagnetic waves at the speed of light. The quasi-neutral limit is therefore a
low-frequency limit. Quasi-neutrality breakdowns may be explained by a refinement of
the typical length scale or, for instance, a decrease of the plasma density. These changes
are well accounted for by the asymptotic parameters set up to perform the analysis.

The vanishing of the electron inertia is related to a low-Mach regime (Me) < 1.
In single-fluid plasma representation, the fast electron dynamics is dropped out of the
equations to perform a low-frequency filtering, the system being assumed to evolve at
a lower speed attached to the massive ions. Nonetheless, the nature of the flow may be
subjected to significant changes explaining that the particle inertia becomes significant
again to account for the system evolution. This is illustrated in studies of plasma flows
in sheaths, with supersonic particles, while the mean plasma velocity is small compared
to the speed of sound in the plasma bulk (Chodura 1986; Stangeby 2000; Grismayer
et al. 2008; Manfredi et al. 2008; Drouin et al. 2010). Accounting for this phenomenon
is possible by selecting the appropriate typical velocity to resolve or filter the fast electron
dynamics.

Finally the fluid assumption is classically related to a vanishing of the Knudsen
number ¥k < 1 accounting for the relaxation of the distribution function towards the local
thermodynamic equilibrium. The interplay of these four dimensionless parameters (£, A,
Me, k) defines a hierarchy of reduced models bridging kinetic plasma descriptions coupled
to the Maxwell system to quasi-neutral plasma representations including kinetic, hybrid
and single-fluid modellings. Other reduced models may also be investigated considering
different closures, to give access to a class of models with non-scalar pressure, or fluid
models evolving higher-order moments. These low-frequency models are widely used to
design efficient numerical methods. The benefit of the asymptotic analysis conducted
within the study presented here draws the guidelines for the derivation of numerical
methods implementing local up-scalings, therefore widening the use of numerical methods
discretizing these reduced models.
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Appendix A. Micro-macro decomposition, computation of the viscous terms

A.l. Introduction, definitions, elementary properties

The analyses carried out in this appendix are developed in the electrostatic framework
and specified for electrons. The extensions for either electromagnetic fields or ions are
straightforward and are therefore omitted for conciseness.

We first introduce the projector onto the Maxwellian. For any smooth function ¢, the
projector onto the Maxwellian denoted M_ is

M. =n.(x, 1) (A la)

o <|v — (Me)ue(x, t)|2>
(2nT.(x, )" P 2T.(x, 1) '

For any smooth function ¢, the projector onto M., denoted ITn,, is defined as (see
Bennoune, Lemou & Mieussens 2008; Crestetto et al. 2012)

(v — (Me)ue)
T.

2 (lv—Meu|* D, lv — (Me)ul* D, M.
+E( 2T, _7)<( 2T, _7)")”? A1)

where (p) = f ¢dv.Fork =1,...,D,, we have the following properties:

My, (9) = [(w) + (v — (Me)ue)p)

(Id = M) (0:Me) = (Id — M p)(E - V, M) =0, (A 2a)

1
(Id — T, (—Me vkaxkne> =0; (A 2b)
ne

(]Id - n./\/le)((v - (MS)I,{S) : axkuekae)
- ey
= _D—v

lv— (Me)ue|> D,
(]Id — H./\/le) ((T — 2Te) Me vkakae)

_ |v—(Me)ue|2 D,+2
=M. ( 272 2T

axkue,k + (vk - (Mg)ue,k)(v - (ME)Mk) : axkue) Me; (A 20)

) (Ve — (Me)ue 1)y, T (A 2d)
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Furthermore, if g. satisfies the micro—macro decomposition (3.2), the following identity
holds true:

I pi (8e) = ITr, (8:8e) = 0. (A 2e)

A.2. Computation of the deviation to the Maxwellian

The aim here is to characterize g. or more specifically an approximation to the first order in
k. Inserting the micro—macro decomposition into the Vlasov—Boltzmann equation (4.5b)

yields
SgatMe +uv- VxMe - UE ° VvMe + K (Sgatge +uv- nge - ﬂE ° vae) = ﬁMegea
(A3)
where
£Mege = _gl)eege- (A 4)

This provides, using properties (A 2),

EMege = (]Id - HMe)(v ° VxMe) + K(gsatge + (Hd - HMe)(v * nge - 77E ° vae))-

(AS5)
It follows that
ge = (La) ' ((Id — Mpg) (v - V. M,) + O(k)), (A 6a)
with
_ (Oyn.  Me (v — (Me)u.)> D,
Vg0 M, —( o + T. (v — (Mé)ue) - Ay, ue + (Z—Tg — 2Te> 8~ka¢> VM.
(A 6b)

From properties (A 2), we can state the expression of the deviation to the Maxwellian:

| 2

D, — (Me)u,
o=y (? (—WD—f)uaxkue,k + (0 — (Moo ) (v — (Mo)u,) - axkue>

évee k:l
lv— Me)u|” D, +2 .
+ ( o ar ) O (Meue)dn T ) +0 (g) . (A7)

A.3. Computation of the viscous terms

The viscous terms are defined by

W@ vg) = — g 40 (5) , (A8)
: £
<@vge> = L Meyon ue g0+ 0 (5) . (A9)
> : :
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Following the characterization (A 7) of g., we can write

2 D,
11 v — (Me)u| -
7T T T _TMe(v o) ; e
D, Dy
+ Z <(v Q V)M, (v, — (Me)ue,) Z(Uk - (Mg)ue,k)ax1ue,k> ; (A 10)
=1 k=1
2
1 [P lv— Me)u.|” D, +2
U Ul ) _ — (Mée)ue) - V, T, ). All
L=\ 2T oz, ) T o ww

Inserting in these definitions the following identities:

2 v— Mo D, +2
%(v@v)/\/le | o | + o | 0= M) - VLT ) =0, (A 12)

11 (] — el <
_iv_ee D—v(v®v)/\/le Zax,ue,l

=1

S

v

D,
Y (@@ V)Mc(vy— Me)ue)) Y (v — (Me)uer)dyites ) | = (Me)or - ue,

k=1

—~
Il

(A 13)
we obtain
1 T 2
Oe = —— (nTe) | Vitte + Viou, — D_ (Vyeu)ld), (A 14a)
Vee v
D,+?2
e = — (neTe) VxTe- (A 14b)
21)ee
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