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We first prove that the realization Amin of A := div(Q∇) − V in L2(Rd) with
unbounded coefficients generates a symmetric sub-Markovian and ultracontractive
semigroup on L2(Rd) which coincides on L2(Rd) ∩ Cb(R

d) with the minimal
semigroup generated by a realization of A on Cb(R

d). Moreover, using
time-dependent Lyapunov functions, we prove pointwise upper bounds for the heat
kernel of A and deduce some spectral properties of Amin in the case of polynomially
and exponentially growing diffusion and potential coefficients.
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1. Introduction

In this article, we are concerned with Schrödinger-type operators of the form

Aϕ = div(Q∇ϕ) − V ϕ, ϕ ∈ C2(Rd), (1.1)

where the diffusion coefficients Q and the potential V are typically unbounded
functions. Throughout, we make the following assumptions on Q and V .

Hypothesis 1.1. We have Q = (qij)i,j=1,...,d ∈ C1+ζ(Rd; Rd×d) and 0 � V ∈
Cζ(Rd) for some ζ ∈ (0, 1). Moreover,
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2 L. Caso et al.

(a) the matrix Q is symmetric and uniformly elliptic, i.e. there is η > 0 such that

d∑
i,j=1

qij(x)ξiξj � η|ξ|2 for all x, ξ ∈ R
d;

(b) there are 0 � Z ∈ C2(Rd) and a constant M � 0 such that lim|x|→∞ Z(x) =
∞, AZ(x) � M and ηΔZ(x) − V (x)Z(x) � M for all x ∈ R

d.

In the last few years, second-order elliptic operators with polynomially growing
coefficients and their associated semigroups have received a lot of attention, see for
example [5–9, 13, 17, 18, 23–26] and the references therein.

Concerning the above operator A, it is well known (see [17, theorem 2.2.5] and
[21]) that, assuming hypothesis 1.1, a suitable realization of A generates a semi-
group T = (T (t))t�0 on the space Cb(Rd) that is given through an integral kernel;
more precisely,

T (t)f(x) =
∫

Rd

p(t, x, y)f(y) dy, t > 0, x ∈ R
d, f ∈ Cb(Rd),

where the kernel p is positive, p(t, ·, ·) and p(t, x, ·) are measurable for any t > 0, x ∈
R

d, and for a.e. fixed y ∈ R
d, p(·, ·, y) ∈ C

1+ζ/2,2+ζ
loc ((0,∞) × R

d).
It is proved in § 2 that this semigroup can be extended to a symmetric sub-

Markovian and ultracontractive C0-semigroup on L2(Rd) and classical results show
that this semigroup extrapolates to a positive C0-semigroup of contractions in all
Lp(Rd), p ∈ [1,∞). Moreover, in the examples considered in § 4, these semigroups
are compact and the spectra of their corresponding generators are independent
of p.

Our second focus in this article lies in proving pointwise upper bounds for the
kernel p. The case of (non-divergence type) Schrödinger operators

(1 + |x|m)Δ − |x|s (1.2)

was discussed extensively in the literature and may serve as a model case. In this
case, kernel estimates were obtained in [9] (see also [7] from which kernel estimates
for the corresponding divergence form operators can be deduced) assuming that
m > 2 and s > m− 2. The case m ∈ [0, 2) and s > 2 was treated in [18]. Let us also
mention that for m = 0 and s > 0 both upper and lower estimates were established
in [22]. In the case of V ≡ 0, similar kernel estimates were obtained in [25].

As far as more general operators are concerned, in particular the case of bounded
diffusion coefficients has received a lot of attention, see [1, 4, 16, 20]. These
techniques were extended to include also unbounded diffusion coefficients in [14,
15].

In this article, we adopt the technique of time-dependent Lyapunov functions
used in [1, 14, 15, 29] to our divergence form setting. This allows for a unified
approach to obtain kernel bounds corresponding to [7, 22] in the divergence form
setting. As a matter of fact, we can allow even more general conditions on m and s,
requiring merely thatm > 0 and s > |m− 2|; moreover, we can drop the assumption
d � 3 imposed in [7, 22].
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Kernel estimates of Schrödinger-type operators 3

As our approach does not depend on the specific structure of the coefficients,
we can establish kernel estimates not only in the case where Q(x) = (1 + |x|m)I;
an estimate of the quadratic form associated with Q is enough, cf. equation (3.3).
Moreover, we can even leave the setting of polynomially growing coefficients and
consider coefficients of exponential growth; this includes the case Q(x) = e|x|

m

I and
V (x) = e|x|

s

for d � 1 and 2 � m < s. Here, we would like to mention the paper
[12] where pointwise estimates are obtained in the elliptic case for exponentially
growing coefficients. We stress that these estimates can be improved by choosing a
Lyapunov function as in § 4.2.

This article is organized as follows. In § 2, we adapt the techniques in [3] to
prove that a realization of A in L2(Rd) generates a symmetric sub-Markovian and
ultracontractive semigroup T2(·) on L2(Rd) which coincides with the semigroup
T (·) on L2(Rd) ∩ Cb(Rd). In § 3 we introduce time-dependent Lyapunov functions
and establish sufficient conditions under which certain exponential functions are
time-dependent Lyapunov functions in the case of polynomially and exponentially
growing diffusion coefficients. In the subsequent § 4, we use these results to prove
upper kernel estimates for our divergence form operator A. In the concluding § 4.3,
we present some consequences of our result for the spectrum and the eigenfunctions
of the operator Amin from § 2.

Notation

Br denotes the open ball of R
d of radius r and centre 0. For 0 � a < b, we write

Q(a, b) for (a, b) × R
d.

If u : J × R
d → R, where J ⊂ [0,∞) is an interval, we use the following notation:

∂tu =
∂u

∂t
, Diu =

∂u

∂xi
, Diju = DiDju

∇u = (D1u, . . . ,Ddu), div(F ) =
d∑

i=1

DiFi for F : R
d → R

d,

and

|∇u|2 =
d∑

j=1

|Dju|2, |D2u|2 =
d∑

i,j=1

|Diju|2.

Let us define notations for function spaces. Cb(Rd) is the space of bounded and
continuous functions in R

d. D(Rd) is the space of test functions. Cα(Rd) denotes
the space of all α-Hölder continuous functions on R

d. C1,2(Q(a, b)) is the space of
all functions u such that ∂tu, Diu and Diju are continuous in Q(a, b).

For Ω ⊆ R
d, 1 � k � ∞, j ∈ N, W j

k (Ω) denotes the classical Sobolev space of all
Lk-functions having weak derivatives in Lk(Ω) up to the order j. Its usual norm is
denoted by ‖ · ‖j,k and by ‖ · ‖k when j = 0. When k = 2 we set Hj(Ω) := W j

2 (Ω)
and H1

0 (Ω) denotes the closure of the set of test functions on Ω with respect to the
norm of H1(Ω).

For 0 < α � 1, we denote by C1+α/2,2+α(Q(a, b)) the space of all functions u
such that ∂tu, Diu and Diju are α-Hölder continuous in Q(a, b) with respect to
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4 L. Caso et al.

the parabolic distance d((t, x), (s, y)) := |x− y| + |t− s|1/2. Local Hölder spaces are
defined, as usual, requiring that the Hölder condition holds in every compact subset.

2. Generation of semigroups on L2(Rd)

In this section, we show that a realization of A in L2(Rd) generates a symmetric
sub-Markovian and ultracontractive semigroup T2(·) on L2(Rd) which coincides
with the semigroup T (·) on L2(Rd) ∩ Cb(Rd).

We recall that, given Ω ⊂ R
d, a C0-semigroup S(·) on L2(Ω) is called sub-

Markovian if S(·) is a positive semigroup, i.e. S(t)f � 0 for all t � 0 and f � 0,
and L∞-contractive, i.e.

‖S(t)f‖∞ � ‖f‖∞, ∀t � 0, f ∈ L2(Ω) ∩ L∞(Ω).

It is called ultracontractive, if there is a constant c > 0 such that

‖S(t)‖L(L1,L∞) � ct−(d/2),

for all t > 0.
To establish ultracontractivity we use the following useful result, see [3, propo-

sition 1.5], where we replace the H1-norm with the L2-norm of the gradient. The
proof remains the same and is based on Nash’s inequality:

‖u‖1+2/d
2 � cd‖|∇u|‖2‖u‖2/d

1

for all u ∈ L1(Rd) ∩H1(Rd).

Proposition 2.1. Let S(·) be a C0-semigroup on L2(Rd) such that S(·) and S∗(·)
are sub-Markovian. Assume that, for δ > 0, the generator B of S(·) satisfies:

(a) D(B) ⊂ H1(Rd);

(b) 〈−Bu, u〉 � δ‖|∇u|‖2
2, ∀u ∈ D(B);

(c) 〈−B∗u, u〉 � δ‖|∇u|‖2
2, ∀u ∈ D(B∗).

Then, there is cδ > 0 such that

‖S(t)‖L(L1,L∞) � cδt
−d/2, ∀t > 0,

i.e. S is ultracontractive.

We now take up our main line of study and consider the elliptic operator A,
defined by

A : H1
loc(R

d) → D(Rd)′, Aϕ = div(Q∇ϕ) − V ϕ.

Its maximal realization Amax in L2(Rd) is defined by

D(Amax) = {u ∈ L2(Rd) ∩H1
loc(R

d), Au ∈ L2(Rd)},
Amaxu = Au.

There is also a minimal realization Amin of A. The minimal realization of A in
L2(Rd) is the operator presented in the following theorem.
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Theorem 2.2. There exists a unique operator Amin on L2(Rd) such that

(a) Amin ⊂ Amax;

(b) Amin generates a positive, symmetric C0-semigroup T2(·) on L2(Rd);

(c) if B ⊂ Amax generates a positive C0-semigroup S(·), then T2(t) � S(t) for all
t � 0.

The operator Amin and the semigroup T2(·) have the following additional proper-
ties:

(d) D(Amin) ⊂ H1(Rd) and −〈Aminu, u〉 � η‖|∇u|‖2
2 for all u ∈ D(Amin);

(e) T2(·) is sub-Markovian and ultracontractive;

(f) the semigroup T2(·) is consistent with T (·), i.e.

T2(t)f = T (t)f, t � 0, f ∈ L2(Rd) ∩ Cb(Rd).

Proof. We adapt the proof of theorem 1.1, proposition 1.2 and proposition 1.3 in
[3] to our situation. For the reader’s convenience we provide the details.

Step 1. We define approximate semigroups T (ρ)(·) on L2(Bρ). To that end, consider
the bilinear form aρ : H1

0 (Bρ) ×H1
0 (Bρ) → C, defined by

aρ[u, v] =
∫

Bρ

d∑
i,j=1

qijDiuDj v̄ dx+
∫

Bρ

V uv̄ dx.

This form is obviously symmetric. Using that Q and V are bounded on Bρ, an
easy application of Hölder’s inequality shows that aρ is continuous. Moreover, the
positivity of V , the uniform ellipticity ofQ and Poincaré’s inequality yield coercivity
of aρ. Now standard theory, see [27, proposition 1.51] implies that the associated
operator Aρ generates a strongly continuous semigroup T (ρ)(·) on L2(Bρ). Making
use of the Beurling–Deny criteria (see, e.g. corollary 4.3 and theorem 4.7 in [27])
we see that the semigroup T (ρ)(·) is sub-Markovian.

Step 2. We prove that the semigroups T (ρ)(·) are increasing to a semigroup T2(·).
We now consider functions on Bρ to be defined on all of R

d, by extending
them with 0 outside of Bρ. Then, for any 0 < ρ1 < ρ2, the space H1

0 (Bρ1) is an
ideal in H1

0 (Bρ2). Thus, by [30, corollary B.3] (see also [27, § 2.3]), we have
T (ρ1)(t) � T (ρ2)(t) for all t � 0. As every semigroup T (ρ)(·) is sub-Markovian and
thus contractive, we may define

T2(t)f := sup
n∈N

T (n)(t)f

for 0 � f ∈ L2(Rd) and then T2(t)f := T2(t)f+ − T2(t)f− for general f ∈ L2(Rd).
An easy computation shows that T2(·) is a positive contraction semigroup. We prove
that T2(·) is strongly continuous. To that end, fix 0 � f ∈ D(Rd), and ρ > 0 such
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6 L. Caso et al.

that suppf ⊂ Bρ. Let tn ↓ 0. Then,

lim sup
n→∞

‖T (ρ)(tn)f − T2(tn)f‖2
2

= lim sup
n→∞

[
‖T (ρ)(tn)f‖2

2 + ‖T2(tn)f‖2
2 − 2〈T (ρ)(tn)f, T2(tn)f〉2

]
� lim sup

n→∞

[
2 ‖f‖2

2 − 2〈T (ρ)(tn)f, T (ρ)(tn)f〉2
]

= 2‖f‖2
2 − 2‖f‖2

2 = 0.

Here, in the third line we have used the contractivity of T (ρ)(·) and T2(·), that
0 � T (ρ)(tn)f � T2(tn)f and the strong continuity of T (ρ)(·). Thus, T2(tn)f → f
as n→ ∞. Splitting f ∈ D(Rd) into positive and negative parts, we see that this
is true for general f . In view of the contractivity of T2(·), a standard 3ε argument
yields strong continuity of T2(·).

As the form aρ is symmetric, the semigroup T (ρ)(·) consists of symmetric oper-
ators and thus, so does the limit semigroup T2(·). Likewise, sub-Markovianity of
T2(·) is inherited by that of T (ρ)(·).
Step 3. We identify the generator Amin of T2(·).

Let us first note that R(λ,Aρ)f → R(λ,Amin)f as ρ→ ∞ for every λ > 0;
this follows from the construction of T2(·) by taking Laplace transforms and
using dominated convergence. Now fix a sequence ρn ↑ ∞ and f ∈ L2(Rd). We
put u = R(1, Amin)f and un = R(1, Aρn

)f . Then un → u and Aρn
un = un − f →

u− f = Aminu in L2(Rd) as n→ ∞. By coercivity of the form aρn
, we have

η lim sup
n→∞

∫
|∇un|2 dx � lim sup

n→∞
aρn

[un, un] = lim sup
n→∞

−〈Aρn
un, un〉 = −〈Aminu, u〉.

(2.1)
It follows that (un)n∈N is a bounded sequence in H1(Rd) and thus, by reflexivity

of H1(Rd), un → u weakly in H1(Rd). Thus, D(Amin) ⊂ H1(Rd). Moreover, using
the weak lower semicontinuity of norms, we see that (2.1) implies −〈Aminu, u〉 �
η‖|∇u|‖2

2.
Now fix v ∈ D(Rd). As un converges to u weakly in H1(Rd), we see that

〈Au, v〉 = lim
n→∞〈Aun, v〉 = lim

n→∞〈Aρn
un, v〉 = 〈Aminu, v〉,

proving Amin ⊂ Amax. At this point, properties (a), (d) and (by definition of Amin)
(b) are proved.

Step 4. We establish the minimality property.
To this end, let B ⊂ Amax be such that B generates a positive C0-semigroup

S(·) on L2(Rd). To prove T2(t) � S(t) for all t � 0 it suffices to prove R(λ,Amin) �
R(λ,B) for all λ > 0; this is an easy consequence of Euler’s formula.

To see this, let us fix again a sequence ρn ↑ ∞, λ > 0 and 0 � f ∈ L2(Rd). We
put u = R(λ,Amin)f , v = R(λ,B)f and un = R(λ,Aρn

)f . As B ⊂ Amax, we have
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Kernel estimates of Schrödinger-type operators 7

v ∈ H1
loc(R

d) and

λ

∫
Bρn

(un − v)w dx+
∫

Bρn

d∑
i,j=1

qijDj(un − v)Diw dx+
∫

Bρn

V (un − v)w dx = 0

(2.2)
for all w ∈ H1

0 (Bρn
). As the semigroup S(·) is positive, v � 0 and thus (un − v)+ �

un. As H1
0 (Bρn

) is an ideal in H1
loc(R

d), (un − v)+ ∈ H1
0 (Bρn

). We may thus insert
w = (un − v)+ into (2.2). Taking the uniform ellipticity of Q into account, this
yields

λ

∫
Bρn

(
(un − v)+

)2 dx+ η

∫
Bρn

|∇(un − v)+|2 dx+
∫

Bρn

V
(
(un − v)+

)2 dx � 0.

As V � 0, it follows that (un − v)+ = 0 and thus un � v. Upon n→ ∞ we obtain
u � v and thus R(λ,Amin)f � R(λ,B)f for 0 � f ∈ L2(Rd).

Step 5. We establish properties (e) and (f).
As we have already mentioned above, the semigroup T2(·) is sub-Markovian and

consists of symmetric operators. The latter implies that the generator Amin of T2(·)
is self-adjoint. In view of property (d), the ultracontractivity of the semigroup
follows immediately from proposition 2.1.

As for consistency we note that the semigroup T (·) on Cb(Rd) is obtained by a
similar approximation procedure as for T2(·), see [17, theorem 2.2.1]. Indeed, for
all ρ > 0 the operator A, endowed with the domain

{u ∈W 2
p (Bρ) for all 1 � p <∞ : Au ∈ Cb(Bρ), u|∂Bρ

= 0}

generates a semigroup S(ρ)(·) on Cb(Bρ), that gives the unique solution of the
following Cauchy–Dirichlet problem associated with A on Cb(Bρ):⎧⎪⎨⎪⎩

∂tu(t, x) = Auρ(t, x), t > 0, x ∈ Bρ,

u(t, x) = 0, t > 0, x ∈ ∂Bρ,

u(0, x) = f(x), x ∈ Bρ.

Given f ∈ Cb(Rd), we may consider S(ρ)(t)f := S(ρ)(t)f |Bρ
as a function on all of

R
d, extending with 0 outside of Bρ. It follows from the maximum principle that for

0 � f ∈ Cb(Rd), the function S(ρ)(t)f is increasing in ρ. We may thus define

T (t)f = lim
ρ→∞S(ρ)(t)f,

for all 0 � f ∈ Cb(Rd) and then T (t)f = T (t)f+ − T (t)f− for general f ∈ Cb(Rd).
As the semigroup S(ρ)(·) is consistent with the semigroup T (ρ)(·) on L2(Bρ)
considered above, consistency of T2(·) and T (·) follows. �

Remark 2.3. (a) As the minimal realization Amin of the elliptic operator A gen-
erates a symmetric sub-Markovian C0-semigroup T2(·) on L2(Rd), it follows
from [10, theorem 1.4.1], that T2(·) extends to a positive C0-semigroup of
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contractions Tp(·) on Lp(Rd) for all p ∈ [1,∞). Moreover, these semigroups
are consistent, i.e.

Tp(t)f = Tq(t)f, for all f ∈ Lp(Rd) ∩ Lq(Rd), t � 0.

(b) Since, by theorem 2.2, T2(·) is ultracontractive, and T2(·) coincides with T (·)
on L2(Rd) ∩ Cb(Rd), it follows that T2(·) is given through an integral kernel
which coincides with the kernel p of the semigroup T (·).

3. Time-dependent Lyapunov functions for parabolic operators with
polynomially and exponentially diffusion coefficients

As in [1, 15, 29], we use time-dependent Lyapunov functions to prove pointwise
bounds of the kernel p. In this section, we give conditions under which certain
exponentials are time-dependent Lyapunov functions for L := ∂t +A also in the
case of polynomially and exponentially growing diffusion coefficients.

We now introduce, as in [15, 29], time-dependent Lyapunov functions for L.

Definition 3.1. Let the function Z be as in hypothesis 1.1(b). We say that a
function W : [0, T ] × R

d → [0,∞) is a time-dependent Lyapunov function for L if
W ∈ C1,2((0, T ) × R

d) ∩ C([0, T ] × R
d) such that lim|x|→∞W (t, x) = ∞ uniformly

for t in compact subsets of (0, T ], W � Z and there is 0 � h ∈ L1(0, T ) such that

LW (t, x) � h(t)W (t, x) (3.1)

and

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) � h(t)W (t, x) (3.2)

for all (t, x) ∈ (0, T ) × R
d. To emphasize the dependence on Z and h, we also say

that W is a time-dependent Lyapunov function for L with respect to Z and h.

The following result shows that time-dependent Lyapunov functions are inte-
grable with respect to the measure p(t, x, y) dy for any (t, x) ∈ (0, T ) × R

d.

Proposition 3.2. If W is a time-dependent Lyapunov function for L with respect
to h, then for ξW (t, x) :=

∫
Rd p(t, x, y)W (t, y) dy, we have

ξW (t, x) � e
∫ t
0 h(s) dsW (0, x), ∀(t, x) ∈ [0, T ] × R

d.

Proof. The proof is similar to the one given in [29, proposition 2.3]. One has to
approximate the coefficients Q, F and V by bounded functions, as in [16, lemma
2.3] and [19, theorem 6.2.10]. For more details, we refer to [28, propositions 1.5.2,
1.6.3]. We note that, as in [29], condition (3.2) is not needed for this proposition. �

In what follows, we will often set T = 1 for ease of notation. The following results
give conditions under which certain exponentials are time-dependent Lyapunov
functions. Here, x �→ |x|β∗ denotes any C2-function which coincides with x �→ |x|β
for |x| � 1.
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Kernel estimates of Schrödinger-type operators 9

Proposition 3.3. Assume that there is a constant cq > 0 such that

d∑
i,j=1

qij(x)ξiξj � cq(1 + |x|m)|ξ|2 (3.3)

holds for all ξ, x ∈ R
d and some m > 0. Consider the function W (t, x) = eεtα|x|β∗

for (t, x) ∈ [0, 1] × R
d with β > (2 −m) ∨ 0, ε > 0 and α > β/(β +m− 2). If

lim sup
|x|→∞

|x|1−β−m

(
G · x|x| −

V

εβ|x|β−1

)
< −Λ (3.4)

is satisfied for Λ > cqεβ and

lim
|x|→∞

V (x) |x|2−2β−m
> c (3.5)

holds true for some c > 0, then W is a time-dependent Lyapunov function for L with
respect to Z(x) = eε|x|β∗ and h(t) = C1t

α−γ(2β+m−2) for some γ > 1/(β +m− 2)
and some constant C1 > 0. Here, Gj :=

∑d
i=1Diqij. Moreover,

ξW (t, x) � e
∫ 1
0 h(s) ds =: C2

for all (t, x) ∈ [0, 1] × R
d.

Proof. It is easy to see that W ∈ C1,2((0, 1) × R
d) ∩ C([0, 1] × R

d), lim|x|→∞
W (t, x) = ∞ uniformly for t in compact subsets of (0, 1] and W � Z. It remains to
show that there is 0 � h ∈ L1(0, 1) such that (3.1) and (3.2) hold true.

In the following computations, we assume that |x| � 1 so that |x|s∗ = |x|s for
s � 0. Otherwise, if |x| � 1, since x �→ |x|β∗ is a C2-function, one deduces eas-
ily that W (t, x)−1LW (t, x) � Ctα−1 + C̃ and W (t, x)−1[∂tW (t, x) + ηΔW (t, x) −
V (x)W (t, x)] � Ctα−1 + C̃ for any (t, x) ∈ (0, 1] ×B1 and some constants C, C̃ >
0. Thus, by possibly choosing a larger constant C1 we obtain that LW (t, x)| � h(t)
and ∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) � h(t) for all (t, x) ∈ (0, 1] ×B1, with
γ > 1/(β +m− 2), where h(t) = C1t

α−γ(2β+m−2).
Let t ∈ (0, 1) and |x| � 1. By straightforward computations we have

DjW (t, x) = εβtα |x|β−2
xjW (t, x),

Di(qijDjW )(t, x) = εβtα |x|β−2
Diqij(x)xjW (t, x)

+ εβ(β − 2)tα |x|β−4
qij(x)xixjW (t, x)

+ εβtα |x|β−2
qij(x)δijW (t, x)

+ ε2β2t2α |x|2β−4
qij(x)xixjW (t, x).
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10 L. Caso et al.

Then, we obtain

LW (t, x) = ∂tW (t, x) +AW (t, x)

= εαtα−1 |x|β W (t, x) + εβtα |x|β−2
W (t, x)

d∑
i,j=1

Diqij(x)xj

+ εβ(β − 2)tα |x|β−4
W (t, x)

d∑
i,j=1

qij(x)xixj

+ εβtα |x|β−2
W (t, x)

d∑
i,j=1

qij(x)δij

+ ε2β2t2α |x|2β−4
W (t, x)

d∑
i,j=1

qij(x)xixj − V (x)W (t, x). (3.6)

We recall that Gj :=
∑d

i=1Diqij and we use the polynomially growth of diffusion
coefficients (3.3). We have

LW (t, x) � εαtα−1 |x|β W (t, x) + εβtα |x|β−2
W (t, x)G(x) · x

+ cqεβ(β − 2)+tα |x|β−4 (1 + |x|m) |x|2W (t, x)

+ dcqεβt
α |x|β−2 (1 + |x|m)W (t, x)

+ cqε
2β2t2α |x|2β−4 (1 + |x|m) |x|2W (t, x) − V (x)W (t, x).

Since (1 + |x|m) � 2 |x|m and tα � 1, we arrange the terms as follows:

LW (t, x) � εβtα |x|2β+m−2
W (t, x)

[
α

βt
|x|2−β−m + 2cq((β − 2)++d) |x|−β

+cqεβtα + cqεβt
α |x|−m + |x|1−β−m

(
G · x|x| −

V

εβ |x|β−1

)]
. (3.7)

Let γ > 1/(β +m− 2). We distinguish two cases.

Case 1: |x| > 1/tγ .
Since tα � 1 and using (3.7), we get

LW (t, x) � εβtα |x|2β+m−2
W (t, x)

[
α

β
|x|1/γ+2−β−m + 2cq((β − 2)++d) |x|−β

+cqεβ + cqεβ |x|−m + |x|1−β−m

(
G · x|x| −

V

εβ |x|β−1

)]
. (3.8)

We claim that, if we assume further that |x| is large enough, then

LW (t, x) � 0,
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Kernel estimates of Schrödinger-type operators 11

for all t ∈ (0, 1). To see this, let |x| > K for some K > 1. Combining (3.4) with
(3.8) yields

LW (t, x) � εβtα |x|2β+m−2
W (t, x)

[
α

β
|x|1/γ+2−β−m + 2cq((β − 2)++d) |x|−β

+cqεβ + cqεβ |x|−m − Λ
]
. (3.9)

Considering that γ > 1/(β +m− 2), β > 0 and m > 0, we infer that

α

β
|x|1/γ+2−β−m + 2cq((β − 2)++d) |x|−β + cqεβ + cqεβ |x|−m − Λ

�
(
α

β
+ 2cq((β − 2)++d) + cqεβ

)
K−l + cqεβ − Λ,

where l := min(−1/γ − 2 + β +m,β,m) > 0. Since Λ > cqεβ, choosing

K �
(
α/β + 2cq((β − 2)++d) + cqεβ

Λ − cqεβ

)1/l

,

it follows that the quantity within square brackets on the right-hand side of (3.9)
is negative. Thus LW (t, x) � 0 for |x| > 1/tγ , |x| > K and for all t ∈ (0, 1).

For the remaining values of x, |x| � K, sinceW ∈ C([0, 1] × R
d), by (3.8), we have

that LW (t, x) � C for a certain constant C > 0 and all x ∈ {y ∈ R
d : 1 � |y| � K}.

Hence, LW (t, x) � C for all t ∈ (0, 1] and 1/tγ < |x| � K. Anyway, we conclude
that

LW (t, x) � CW (t, x),

for all t ∈ (0, 1] and |x| > 1/tγ .

Case 2: |x| � 1/tγ .
We assume that |x| is large enough. Otherwise, by (3.7), we obtain

W (t, x)−1LW (t, x) � Ctα−1 + C̃ and hence LW (t, x) � h(t) for all (t, x) ∈ (0, 1] ×
{y ∈ R

d : 1 � |y| � K} and any large constant K.
We combine (3.4) and (3.7) to deduce that

LW (t, x) �
[
εαtα−1−γβ + 2cqεβ((β − 2)++d)tα−γ(β+m−2) + cqε

2β2t2α−γ(2β+m−2)

+cqε2β2t2α−γ(2β−2) − εβtα |x|2β+m−2 Λ
]
W (t, x).

We drop the term involving Λ because it is negative. Moreover, since γ > 1/(β +
m− 2), we note that the leading term is tα−γ(2β+m−2). Hence,

LW (t, x) � h(t)W (t, x).

For the function h(t) to be in the space L1((0, 1)), we set α > β/(β +m− 2). In
this way, choosing γ < (α+ 1)/(2β +m− 2) so that α− γ(2β +m− 2) > −1, h(t)
is integrable in the interval (0, 1).
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12 L. Caso et al.

Summing up, considering a possibly larger constant C1, we proved (3.1) for all
t ∈ (0, 1) and x ∈ R

d.
We now verify (3.2). An easy computation shows that

ΔW (t, x) = εβ(β + d− 2)tα |x|β−2
W (t, x) + ε2β2t2α |x|2β−2

W (t, x).

Thus, we get

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) = εαtα−1 |x|β W (t, x)

+ ηεβ(β + d− 2)tα |x|β−2
W (t, x)

+ ηε2β2t2α |x|2β−2
W (t, x)−V (x)W (t, x).

(3.10)

As in the first part of the proof, we let γ > 1/(β +m− 2) and we distinguish two
cases.

Case 1: |x| > 1/tγ .
Since tα � 1, by (3.10) we obtain

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x)

� εβtα |x|2β+m−2
W (t, x)

[
α

β
|x|1/γ+2−β−m + η(β + d− 2) |x|−β−m

+ηεβ |x|−m − 1
εβ
V (x) |x|2−2β−m

]
.

If |x| large enough, by (3.5) we have

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x)

� εβtα |x|2β+m−2
W (t, x)

[
α

β
|x|1/γ+2−β−m

+η(β + d− 2) |x|−β−m + ηεβ |x|−m − c

εβ

]
.

Arguing as in (3.9), we find that ∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) is negative
for |x| large, whereas it is bounded for the remaining values of x. Therefore, we
deduce that

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) � CW (t, x),

for all t ∈ (0, 1) and |x| > 1/tγ .

Case 2: |x| � 1/tγ .
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Since V � 0, (3.10) leads to

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) �
[
εαtα−1−γβ + ηεβ((β − 2)++d)tα−γ(β−2)

+ηε2β2t2α−γ(2β−2)
]
W (t, x).

We can control the right-hand side of the previous inequality with the function
h(t)W (t, x), obtaining that

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) � h(t)W (t, x),

where the constant C1 in the function h has to be suitably adjusted. In both cases
(3.2) holds true. We conclude that W is a time-dependent Lyapunov function for
L.

Moreover, by proposition 3.2, we have

ξW (t, x) � e
∫ t
0 h(s) dsW (0, x) � e

∫ 1
0 h(s) ds =: C2

for all (t, x) ∈ [0, 1] × R
d. �

Remark 3.4. One can easily see that the same conclusion as in proposition 3.3
remains valid if we replace the operator A with the more general operator AF :=
A+ F · ∇ with F ∈ Cζ(Rd,Rd) for some ζ ∈ (0, 1), and condition (3.4) with

lim sup
|x|→∞

|x|1−β−m

(
(G+ F ) · x|x| −

V

εβ|x|β−1

)
< −Λ.

This generalizes proposition 2.3 in [1].

Proposition 3.5. Assume that there is a constant ce > 0 such that

d∑
i,j=1

qij(x)ξiξj � ce e|x|
m |ξ|2 (3.11)

holds for all ξ, x ∈ R
d and some m � 2. Consider the function

W (t, x) = exp

(
εtα
∫ |x|∗

0

eτβ/2 dτ

)

for (t, x) ∈ [0, 1] × R
d with m/2 + 1 � β � m, ε > 0 and α > (2β +m− 2)/2m. If

lim sup
|x|→∞

|x|1−β−me−(|x|β/2)−|x|m
(
G · x|x| −

V

ε e|x|β/2

)
< −Λ (3.12)

is satisfied for Λ > 0 and

lim
|x|→∞

V (x) |x|1−β−m e−|x|β−|x|m > c (3.13)

holds true for some c > 0, then W is a time-dependent Lyapunov function for L with
respect to Z(x) = exp(ε

∫ |x|∗
0

eτβ/2 dτ) and h(t) = C3t
α−γ(β+(3/2)m−1) for some γ >
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1/m and some constant C3 > 0. Here, Gj :=
∑d

i=1Diqij. Moreover,

ξW (t, x) � e
∫ 1
0 h(s) ds =: C4

for all (t, x) ∈ [0, 1] × R
d.

Proof. As in the proof of proposition 3.3, one can assume from now on that |x| � 1
so that |x|s∗ = |x|s for s � 0. The estimates can be extended to R

d by possibly
choosing larger constants.

Let t ∈ (0, 1) and |x| � 1. By direct computations we have

DjW (t, x) = εtα
xj

|x| e|x|
β/2W (t, x),

Di(qijDjW )(t, x) = εtα
1
|x| e|x|

β/2Diqij(x)xjW (t, x)

+
1
2
εβtα |x|β−3 e|x|

β/2qij(x)xixjW (t, x)

+ εtα
1
|x| e|x|

β/2qij(x)δijW (t, x)

− εtα
1

|x|3 e|x|
β/2qij(x)xixjW (t, x)

+ ε2t2α 1
|x|2 e|x|

β

qij(x)xixjW (t, x).

Hence, we deduce that

LW (t, x) = ∂tW (t, x) +AW (t, x)

= εαtα−1W (t, x)
∫ |x|

0

eτβ/2 dτ + εtα
1
|x| e|x|

β/2W (t, x)
d∑

i,j=1

Diqij(x)xj

+
1
2
εβtα |x|β−3 e|x|

β/2W (t, x)
d∑

i,j=1

qij(x)xixj

+ εtα
1
|x| e|x|

β/2W (t, x)
d∑

i,j=1

qij(x)δij

− εtα
1

|x|3 e|x|
β/2W (t, x)

d∑
i,j=1

qij(x)xixj

+ ε2t2α 1
|x|2 e|x|

β

W (t, x)
d∑

i,j=1

qij(x)xixj

− V (x)W (t, x).

First of all, we drop the negative term involving ε on the right-hand side of the pre-
vious equality. Second, we use the exponentially growth of the diffusion coefficients
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(3.11) to obtain that

LW (t, x) � εαtα−1W (t, x)
∫ |x|

0

eτβ/2 dτ + εtα
1
|x| e|x|

β/2W (t, x)G(x) · x

+
1
2
ceεβt

α |x|β−1 e|x|
β/2+|x|mW (t, x) + dceεt

α 1
|x| e|x|

β/2+|x|mW (t, x)

+ ceε
2t2α e|x|

β+|x|mW (t, x) − V (x)W (t, x). (3.14)

Since tα � 1, we can write the previous inequality as follows:

LW (t, x) � εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

×
[
α

t
|x|1−β−m e−|x|β−|x|m

∫ |x|

0

eτβ/2 dτ +
1
2
ceβ |x|−m e−|x|β/2

+ dce |x|−β−m e−|x|β/2 + ceεt
α |x|1−β−m

+ |x|1−β−m e−|x|β/2−|x|m
(
G · x|x| −

V

ε e|x|β/2

)]
. (3.15)

Let γ > 1/m. We now distinguish two cases.

Case 1: e|x|
m � 1/tγm.

First, we observe that

∫ |x|

0

eτβ/2 dτ � |x| e|x|
β/2.

Then, since tα � 1 and e−|x|β/2 � 1, by (3.15) we get

LW (t, x) � εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m e(1/γm−1)|x|m

+
1
2
ceβ |x|−m + dce |x|−β−m + ceε |x|1−β−m

+ |x|1−β−m e−|x|β/2−|x|m
(
G · x|x| −

V

ε e|x|β/2

)]
.

Moreover, e(1/γm−1)|x|m � 1 because γ > 1/m. Thus, we derive that

LW (t, x) � εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m +

1
2
ceβ |x|−m

+ dce |x|−β−m + ceε |x|1−β−m

+ |x|1−β−m e−|x|β/2−|x|m
(
G · x|x| −

V

ε e|x|β/2

)]
.
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If |x| is large enough, say |x| > K for some K > 1, we apply (3.12) to deduce that

LW (t, x) � εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m +

1
2
ceβ |x|−m

+dce |x|−β−m + ceε |x|1−β−m − Λ
]
.

We now show that, for a suitable choice of K, the quantity within square brackets
is negative. Since β � m/2 + 1 and m � 2, we have β � 2 and hence

α |x|2−β−m +
1
2
ceβ |x|−m + dce |x|−β−m + ceε |x|1−β−m − Λ

�
(
α+

1
2
ceβ + dce + ceε

)
K−m − Λ.

As a result, by taking

K �
(
α+ (1/2)ceβ + dce + ceε

Λ

)1/m

,

we finally get LW (t, x) � 0. For the remaining values of x, we argue as in the proof
of proposition 3.3 to obtain that LW is bounded by a constant. In both cases we
have

LW (t, x) � CW (t, x),

for all t ∈ (0, 1), e|x|
m � 1/tγm and for some constant C > 0.

Case 2: e|x|
m

< 1/tγm.
Notice that |x| < t−γ and, since β � m, we have

e|x|
β

<
1
tγm

for |x| � 1.

Then, if |x| is large enough, using β > 1, and combining (3.12) and (3.15), we obtain
that

LW (t, x) �
[
εαtα−1−γ(m/2+1) +

1
2
ceεβt

α−γ(β+(3/2)m−1) + dceεt
α−(3/2)γm

+ceε2t2α−2γm − Λεtα |x|β+m−1 e|x|
β+|x|m

]
W (t, x).

Dropping the last negative term, we find

LW (t, x) �
[
εαtα−1−γ(m/2+1) +

1
2
ceεβt

α−γ(β+(3/2)m−1)

+dceεtα−(3/2)γm + ceε
2t2α−2γm

]
W (t, x).
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Since γ > 1/m and β � m/2 + 1, the leading term is tα−γ(β+(3/2)m−1). Therefore,
we get

LW (t, x) � Ctα−γ(β+(3/2)m−1)W (t, x),

for all t ∈ (0, 1), e|x|
m

< 1/tγm and for some constant C > 0.
To sum up, there exists a constant C3 > 0 such that

LW (t, x) � h(t)W (t, x),

for all t ∈ (0, 1) and x ∈ R
d, where h(t) = C3t

α−γ(β+(3/2)m−1).
Moreover, we choose γ < (α+ 1)/(β + (3/2)m− 1), which is possible since α >

(2β +m− 2)/2m, so that α− γ (β + (3/2)m− 1) > −1 and h ∈ L1((0, 1)). We
conclude that condition (3.1) is satisfied.

To show (3.2) we compute

ΔW (t, x) =
1
2
εβtα |x|β−1 e|x|

β/2W (t, x) + dεtα
1
|x| e|x|

β/2W (t, x)

− εtα
1
|x| e|x|

β/2W (t, x) + ε2t2α e|x|
β

W (t, x).

Hence,

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x)

= εαtα−1W (t, x)
∫ |x|

0

eτβ/2 dτ +
1
2
ηεβtα |x|β−1 e|x|

β/2W (t, x)

+ dηεtα
1
|x| e|x|

β/2W (t, x) − ηεtα
1
|x| e|x|

β/2W (t, x)

+ ηε2t2α e|x|
β

W (t, x) − V (x)W (t, x)

� εαtα−1W (t, x)
∫ |x|

0

eτβ/2 dτ +
1
2
ηεβtα |x|β−1 e|x|

β/2W (t, x)

+ dηεtα
1
|x| e|x|

β/2W (t, x) + ηε2t2α e|x|
β

W (t, x)

− V (x)W (t, x). (3.16)

We use the same strategy as above. We let γ > 1/m and we consider two cases.

Case 1: e|x|
m � 1/tγm.

By (3.16) we obtain

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x)

� εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m e(1/γm−1)|x|m

+
1
2
ηβ |x|−m + dη |x|−β−m + ηε |x|1−β−m

−1
ε
V (x) |x|1−β−m e−|x|β−|x|m

]
.
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Using (3.13) and the fact that γ > 1/m, we get

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x)

� εtα |x|β+m−1 e|x|
β+|x|mW (t, x)

[
α |x|2−β−m

+
1
2
ηβ |x|−m + dη |x|−β−m + ηε |x|1−β−m − c

ε

]
.

If |x| is large enough, the quantity within square brackets is negative. Otherwise,
we can control it with a constant. In both cases, we deduce that

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) � C,

for all t ∈ (0, 1), e|x|
m � 1/tγm and for some constant C > 0.

Case 2: e|x|
m

< 1/tγm.
Since β � m and V � 0, (3.16) yields

∂tW (t, x) + ηΔW (t, x) − V (x)W (t, x) �
[
εαtα−1−γ(m/2+1) +

1
2
ηεβtα−γ(β+m/2−1)

+dηεtα−γ(m/2) + ηε2t2α−γm
]
W (t, x)

� Ctα−γ(β+(3/2)m−1)W (t, x),

for some constant C. Therefore, by possibly choosing a larger C3, we get (3.2).
Then, W is a time-dependent Lyapunov function for L. The last assertion follows
from proposition 3.2. �

4. Kernel estimates and spectral properties for general
Schrödinger-type operators

In this section, we establish pointwise upper bounds for the kernel p and study
some spectral properties of Amin with either polynomial or exponential coefficients.

To obtain pointwise kernel estimates one needs the following assumptions.

Hypothesis 4.1. Fix T > 0, x ∈ R
d and 0 < a0 < a < b < b0 < T . Let us consider

two time-dependent Lyapunov functions W1, W2 with W1 � W2 and a weight
function 1 � w ∈ C1,2((0, T ) × R

d) such that

(a) the functions w−2∂tw and w−2∇w are bounded on Q(a0, b0);

(b) there exist k > d+ 2 and constants c1, . . . , c5, possibly depending on the
interval (a0, b0), with

w � c1w
(k−2)/kW

2/k
1 , |Q∇w| � c2w

(k−1)/kW
1/k
1 , |div(Q∇w)|

� c3w
(k−2)/kW

2/k
1 , |∂tw| � c4w

(k−2)/kW
2/k
1 , V 1/2 � c5w

−(1/k)W
1/k
2

on [a0, b0] × R
d.
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The following result can be deduced as in [14, theorem 12.4] and [15, theorem
4.2].

Theorem 4.2. Assume hypotheses 1.1, 4.1, k > d+ 2 and qij , Dkqij are bounded
on R

d. Then there is a constant C > 0 depending only on d, k and η such that

w(t, y)p(t, x, y) � C

[
c
k/2
1 sup

s∈(a0,b0)

ξW1(s, x) +

(
ck2 +

c
k/2
1

(b0 − b)k/2
+ c

k/2
3 + c

k/2
4

)
∫ b0

a0

ξW1(s, x) ds+ ck5

∫ b0

a0

ξW2(s, x) ds

]
, (4.1)

for all (t, y) ∈ (a, b) × R
d and any fixed x ∈ R

d.

Notice that the assumption of bounded diffusion coefficients was crucial to apply
[15, theorem 3.7]. The fact that the constant C does not depend on ‖Q‖∞ will
allow us to extend this result to the general case.

By an approximation argument one can extend the above result to the case of
unbounded diffusion coefficients. The proof of the following result is similar to the
one in [14, theorem 12.6]. The only difference is that here we are concerned with
autonomous problems. This is the reason why we assume (4.3) for a fixed t0 ∈ (0, T ),
similar as in [14, hypothesis 12.5].

Theorem 4.3. In addition to hypotheses 1.1, 4.1 and k > d+ 2, we assume
that |∇W1|, |∇W2| are bounded on [0, T ] ×BR for all R > 0 and that ∇Z(x) =
f(x)W1(t0, x) for some nonnegative function f , some t0 ∈ (0, T ) and all x ∈ R

d.
Moreover, we suppose that

(a) on [a0, b0] × R
d we have

|Δw| � c6w
(k−2)/kW

2/k
1 ; (4.2)

(b) there is t0 ∈ (0, T ) such that

|Q∇W1(t0, ·)| � c7W1(t0, ·)w−(1/k)W
1/k
2 ; (4.3)

(c) there are c0 > 0 and σ ∈ (0, 1) such that

W2 � c0Z
1−σ (4.4)

on (0, T ) × R
d.
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Then there is a constant C > 0 depending only on d, k and η such that

w(t, y)p(t, x, y) � C

[
c
k/2
1 sup

s∈(a0,b0)

ξW1(s, x)

+

(
ck2 +

c
k/2
1

(b0 − b)k/2
+ c

k/2
3 + c

k/2
4 + c

k/2
6

)∫ b0

a0

ξW1(s, x) ds

+
(
ck5 + c

k/2
2 c

k/2
7

)∫ b0

a0

ξW2(s, x) ds

]
, (4.5)

for all (t, y) ∈ (a, b) × R
d and fixed x ∈ R

d.

In the following subsections, we apply theorem 4.3 to obtain explicit kernel esti-
mates in the case of polynomially or exponentially coefficients. Moreover, we prove
in these cases the compactness of the semigroups and deduce estimates of the
eigenfunctions.

4.1. Polynomially growing coefficients

Here, we apply the results of the previous sections to the case of operators with
polynomial diffusion coefficients and potential terms.

Consider Q(x) = (1 + |x|m∗ )I and V (x) = |x|s with s > |m− 2| and m > 0. To
apply theorem 4.3 we set

w(t, x) = eεtα|x|β∗ and Wj(t, x) = eεjtα|x|β∗ ,

where j = 1, 2, β = (s−m+ 2)/2, 0 < ε < ε1 < ε2 < 1/β and α > β/(β +m− 2).

Theorem 4.4. Let p be the integral kernel associated with the operator A with
Q(x) = (1 + |x|m∗ )I and V (x) = |x|s, where s > |m− 2| and m > 0. Then

p(t, x, y) � Ct1−((α(2m∨s))/(s−m+2)k e−(ε/2)tα|x|(s−m+2)/2
∗ e−(ε/2)tα|y|(s−m+2)/2

∗

for k > d+ 2 and any t ∈ (0, 1), x, y ∈ R
d.

Proof. Step 1. We apply proposition 3.3 to verify that the operator A satisfies
hypothesis 1.1 with

Z(x) = eε2|x|β∗

and that W1 and W2 are time-dependent Lyapunov functions for L = ∂t +A.
Clearly, (3.3) holds true with cq = 1. Since s > |m− 2|, we have β > (2 −m) ∨ 0. It
remains to check (3.4) and (3.5). Let |x| � 1 and setGj =

∑d
i=1Diqij = m|x|m−2xj .
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Then

|x|1−β−m

(
G · x|x| −

V

εjβ|x|β−1

)
= |x|1−β−m

(
m|x|m−1 − |x|s

εjβ|x|β−1

)
= m|x|−β − 1

εjβ
.

If |x| is large enough, for example |x| � K with

K >

(
m

1/εjβ − 1

)1/β

,

we get

|x|1−β−m

(
G · x|x| −

V

εjβ|x|β−1

)
= m|x|−β − 1

εjβ
� mK−β − 1

εjβ
< −1,

where we have used that εj < 1/β. Hence, (3.4) is satisfied if we choose Λ := 1.
Moreover, we have

lim
|x|→∞

V (x) |x|2−2β−m = lim
|x|→∞

|x|2−2β−m+s = 1.

Consequently, (3.5) holds true for any c < 1.

Step 2. We now show that A satisfies hypothesis 4.1. Fix T = 1, x ∈ R
d, 0 < a0 <

a < b < b0 < T and k > d+ 2. Let (t, y) ∈ [a0, b0] × R
d. We assume that |y| � 1;

otherwise, in a neighbourhood of the origin, all the quantities we are going to
estimate are obviously bounded. First, since ε < ε1, we have that

w � c1w
(k−2)/kW

2/k
1

with c1 = 1. Second, an easy computation shows that

|Q(y)∇w(t, y)|
w(t, y)(k−1)/kW1(t, y)1/k

= εβtα|y|β−1(1 + |y|m) e−(1/k)(ε1−ε)tα|y|β

� 2εβtα|y|β+m−1 e−(1/k)(ε1−ε)tα|y|β . (4.6)

We make use of the following remark: since the function t �→ tp e−t on (0,∞) attains
its maximum at the point t = p, then for τ, γ, z > 0 we have

zγ e−τzβ

= τ−(γ/β)(τzβ)γ/β e−τzβ � τ−(γ/β)

(
γ

β

)γ/β

e−(γ/β) =: C(γ, β)τ−(γ/β).

(4.7)
Applying (4.7) to inequality (4.6) with z = |y|, τ = (1/k)(ε1 − ε)tα, β = β and γ =
β +m− 1 > 0 yields

|Q(y)∇w(t, y)|
w(t, y)(k−1)/kW1(t, y)1/k

� 2C(β +m− 1, β)εβtα
[

1
k

(ε1 − ε)tα
]−(β+m−1)/β

� ct−((α(m−1))/β) � ct−(αm/β) � ca
−αm

β

0 .
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Thus, we choose c2 = ca
−(αm/β)
0 , where c is a universal constant. Similarly,

|div(Q(y)∇w(t, y))|
w(t, y)(k−2)/kW1(t, y)2/k

�m|y|m−1|∇w(t, y)|+(1+|y|m)|Δw|
w(t, y)(k−2)/kW1(t, y)2/k

�εβtα
[
m|y|β+m−2

+2((β − 2)++d)|y|β+m−2 + 2εβtα|y|2β+m−2
]
e−(2/k)(ε1−ε)tα|y|β .

As a result, applying (4.7) to each term, we find that

|div(Q(y)∇w(t, y))|
w(t, y)(k−2)/kW1(t, y)2/k

� C(β,m)εβtα
{

[m+ 2((β − 2)++d)]
[

2
k

(ε1 − ε)tα
]−((β+m−2)/β)

+2εβtα
[

2
k

(ε1 − ε)tα
]−((2β+m−2)/β)

}
� ct−((α(m−2))/β)

� ct−(αm/β) � ca
−(αm/β)
0 .

Therefore, we pick c3 = ca
−(αm/β)
0 . In the same way, we have

|∂tw(t, y)|
w(t, y)(k−2)/kW1(t, y)2/k

= εαtα−1|y|β e−(2/k)(ε1−ε)tα|y|β

� C(β)εαtα−1

[
2
k

(ε1 − ε)tα
]−1

� ct−1 � ca−1
0 .

Then, we take c4 = ca−1
0 . Finally,

V (y)1/2

w(t, y)−(1/k)W2(t, y)1/k
= |y|s/2 e−(1/k)(ε2−ε)tα|y|β

� C(s, β)
[

1
k

(ε2 − ε)tα
]−s/2β

� ct−(αs/2β) � ca
−(αs/2β)
0 ,

so we set c5 = ca
−(αs/2β)
0 .

Step 3. We check the remaining hypotheses of theorem 4.3 assuming as above that
|y| � 1. First, we have

|Δw(t, y)|
w(t, y)(k−2)/kW1(t, y)2/k

= εβtα
[
(β−2+d)|y|β−2+εβtα|y|2β−2

]
e−(2/k)(ε1−ε)tα|y|β .
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Recalling that |y| � 1 and applying (4.7), yields

|Δw(t, y)|
w(t, y)(k−2)/kW1(t, y)2/k

� εβtα
[
((β − 2)++d)|y|β + εβtα|y|2β

]
e−(2/k)(ε1−ε)tα|y|β

� C(β)εβtα
{

((β − 2)++d)
[

2
k

(ε1 − ε)tα
]−1

+εβtα
[

2
k

(ε1 − ε)tα
]−2

}
� c.

Thus, (4.2) is verified by taking c6 = c. To choose the constant c7 in (4.3), we let
t0 ∈ (0, t). Then, we get

|Q(y)∇W1(t0, y)|
w(t, y)−1/kW1(t0, y)W2(t, y)1/k

=
ε1βt

α
0 |y|β−1(1 + |y|m)W1(t0, y)

w(t, y)−1/kW1(t0, y)W2(t, y)1/k

� 2ε1βtα|y|β+m−1 e−(1/k)(ε2−ε)tα|y|β

� 2C(β,m)ε1βtα
[

1
k

(ε2 − ε)tα
]−((β+m−1)/β)

� ct−((α(m−1))/β) � ct−(αm/β) � ca
−(αm/β)
0 .

Consequently, we set c7 = ca
−(αm/β)
0 . Finally, we observe that (4.4) is clearly

satisfied.
To sum up, the constants c1, . . . , c7 are the following:

c1 = 1, c2 = c3 = c7 = ca
−(αm/β)
0 , c4 = ca−1

0 ,

c5 = ca
−(αs/2β)
0 , c6 = c.

Step 4. We are now ready to apply theorem 4.3. Thus, there is a positive constant
C > 0 depending only on d and k such that

w(t, y)p(t, x, y) � C

[
c
k/2
1 sup

s∈(a0,b0)

ξW1(s, x)

+

(
ck2 +

c
k/2
1

(b0 − b)k/2
+ c

k/2
3 + c

k/2
4 + c

k/2
6

)∫ b0

a0

ξW1(s, x) ds

+(ck5 + c
k/2
2 c

k/2
7 )

∫ b0

a0

ξW2(s, x) ds

]
(4.8)

for all (t, y) ∈ (a, b) × R
d and fixed x ∈ R

d. We set a0 = t/4, a = t/2, b = (t+ 1)/2
and b0 = (t+ 3)/4. Moreover, by proposition 3.3, there are two constants H1 and
H2 not depending on a0 and b0 such that ξWj

(s, x) � Hj for all (s, x) ∈ [0, 1] × R
d,
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so ∫ b0

a0

ξWj
(s, x) ds � Hj(b0 − a0) =

3
4
tHj .

If we now replace in (4.8) the values of the constants c1, . . . , c7 determined in step
3, we use the previous inequality and we consider C as a positive constant that can
vary from line to line, we obtain

w(t, y)p(t, x, y) � C
[
t1−(αm/β)k + t1−k/2 + t1−(αs/2β)k

]
. (4.9)

We note that, since α > β/(β +m− 2), s > |m− 2| and β = (s−m+ 2)/2, it
follows that

α(m ∨ s/2)
β

>
m ∨ s/2
β +m− 2

>
s

2(β +m− 2)
=

s

s+m− 2
>

1
2
.

Hence,

t1−k/2 < t1−(α(m∨s/2)β)k.

Consequently, by (4.9), we find that

w(t, y)p(t, x, y) � Ct1−(α(m∨s/2)k/β) = Ct1−((α(2m∨s)k)/(s−m+2).

Writing the expression of the weight function w we get the following inequality:

p(t, x, y) � Ct1−((α(2m∨s))/(s−m+2))k e−εtα|y|(s−m+2)/2
∗ (4.10)

for k > d+ 2 and for any t ∈ (0, 1), x, y ∈ R
d.

Step 5. Since A∗ = A, applying (4.10) to p∗(t, y, x), we derive that

p(t, x, y) = p∗(t, y, x) � Ct1−((α(2m∨s))/(s−m+2))k e−εtα|x|(s−m+2)/2
∗

for all t ∈ (0, 1) and x, y ∈ R
d. Combining this with (4.10) and considering that

p∗(t, x, y) = p(t, y, x) yields

p(t, x, y) = p(t, x, y)1/2p(t, x, y)1/2

� Ct1−((α(2m∨s))/(s−m+2))k e−(ε/2)tα|x|(s−m+2)/2
∗ e−(ε/2)tα|y|(s−m+2)/2

∗

for k > d+ 2 and for any t ∈ (0, 1), x, y ∈ R
d. �

4.2. Exponentially growing coefficients

In this subsection, we apply theorem 4.3 to the case of operators with exponen-
tially diffusion and potential terms.

Let Q(x) = e|x|
m

I and V (x) = e|x|
s

with 2 � m < s. Set

w(t, x) = exp

(
εtα
∫ |x|∗

0

eτβ/2 dτ

)
and Wj(t, x) = exp

(
εjt

α

∫ |x|∗

0

eτβ/2 dτ

)
,

where j = 1, 2, m/2 + 1 � β � m, 0 < ε < ε1 < ε2 and α > (2β +m− 2)/2m.
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Theorem 4.5. Let p be the integral kernel associated with the operator A with
Q(x) = e|x|

m

I and V (x) = e|x|
s

, where 2 � m < s. Then

p(t, x, y) � Ct1−k/2 exp(Ckt−α) exp

(
−ε

2
tα
∫ |x|∗

0

eτβ/2 dτ

)

exp

(
−ε

2
tα
∫ |y|∗

0

eτβ/2 dτ

)
,

for k > d+ 2 and any t ∈ (0, 1), x, y ∈ R
d.

Proof. Step 1. We check conditions (3.11)–(3.13) to apply proposition 3.5 and show
that W1 and W2 are time-dependent Lyapunov functions for L = ∂t +A. It is clear
that (3.11) holds true with ce = 1. Moreover, since s > m, it follows that

lim
|x|→∞

V (x) |x|1−β−m e−|x|β−|x|m = lim
|x|→∞

|x|1−β−m e|x|
s−|x|β−|x|m = +∞

and

lim sup
|x|→∞

|x|1−β−m e−|x|β/2−|x|m
(
G · x|x| −

V

ε e|x|β/2

)

= lim sup
|x|→∞

(
m |x|−β e−|x|β/2 − 1

ε
|x|1−β−m e|x|

s−|x|β−|x|m
)

= −∞.

Consequently, there exist constants c,Λ > 0 such that (3.12) and (3.13) hold true.
By proposition 3.5 we conclude that W1 and W2 are time-dependent Lyapunov
functions. In addition, we also note that hypothesis 1.1 is verified with

Z(x) = exp

(
ε2

∫ |x|∗

0

eτβ/2 dτ

)
.

Step 2. We prove that A satisfies all the assumptions of theorem 4.3. Fix T = 1,
x ∈ R

d, 0 < a0 < a < b < b0 < T and k > d+ 2. Let (t, y) ∈ [a0, b0] × R
d. If |y| � 1,

by continuity all the functions we are estimating are bounded by a constant. Thus,
let |y| � 1. Since ε < ε1, we have that w � W1. Hence, the inequality

w � c1w
(k−2)/kW

2/k
1

holds true with c1 = 1. Observing that

∫ |y|

0

eτβ/2 dτ �
∫ |y|

|y|−1

eτβ/2 dτ � e((|y|−1)β)/2 (4.11)
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we find

|Q(y)∇w(t, y)|
w(t, y)(k−1)/kW1(t, y)1/k

= εtα exp

(
|y|β
2

+ |y|m − (ε1 − ε)
k

tα
∫ |y|

0

eτβ/2 dτ

)

� εtα exp

(
|y|β
2

+ |y|m − (ε1 − ε)
k

tα e((|y|−1)β)/2

)
.

(4.12)

We now consider the function

f(r) :=
rβ

2
+ rm − ε̃tα e((r−1)β)/2,

where r � 1 and ε̃ := (ε1 − ε)/k. Considering that there exists a universal constant
c > 0 (that can vary from line to line) depending on β and m such that

rβ

2
+ rm � c e((r−1)β)/4, ∀r � 1, (4.13)

we get

f(r) � c e((r−1)β)/4 − ε̃tα e((r−1)β)/2.

If we set z = e((r−1)β)/2 and we compute the maximum of the function h(z) =
c
√
z − ε̃tαz, we obtain that

f(r) � c2

4ε̃
t−α.

As a result, by (4.12) we derive

|Q(y)∇w(t, y)|
w(t, y)(k−1)/kW1(t, y)1/k

� εtα exp
(
c2

4ε̃
t−α

)
� ε exp

(
c2

4ε̃
a−α
0

)
.

Then, we set c2 := c exp(ca−α
0 ). In a similar way, we have that

|div(Q(y)∇w(t, y))|
w(t, y)(k−2)/kW1(t, y)2/k

�
[
(d− 1)εtα

1
|y| e|y|

β/2+|y|m

+mεtα |y|m−1 e|y|
β/2+|y|m +

β

2
εtα |y|β−1 e|y|

β/2+|y|m

+ε2t2α e|y|
β+|y|m

]
exp

(
−2(ε1−ε)

k
tα
∫ |y|

0

eτβ/2 dτ

)
.
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Using again (4.11), we deduce

|div(Q(y)∇w(t, y))|
w(t, y)(k−2)/kW1(t, y)2/k

� (d− 1)εtα exp

(
|y|β
2

+ |y|m − 2(ε1 − ε)
k

tα e((|y|−1)β)/2

)

+mεtα exp

(
log |y|m−1 +

|y|β
2

+ |y|m − 2(ε1 − ε)
k

tα e((|y|−1)β)/2

)

+
β

2
εtα exp

(
log |y|β−1 +

|y|β
2

+ |y|m − 2(ε1 − ε)
k

tα e((|y|−1)β)/2

)

+ ε2t2α exp
(
|y|β + |y|m − 2(ε1 − ε)

k
tα e((|y|−1)β)/2

)
.

The first term on the right-hand side of this inequality can be estimated exactly
as above. As for the other three terms, we have to slightly modify the function f
considered above to match the argument of the exponential function. However, a
short computation shows that also for these modified functions f inequality (4.13)
is valid so that we obtain the following estimate:

|div(Q(y)∇w(t, y))|
w(t, y)(k−2)/kW1(t, y)2/k

�
(

(d− 1) +m+
β

2

)
εtα exp

(
c2

8ε̃
t−α

)
+ ε2t2α exp

(
c2

8ε̃
t−α

)
� cεtα exp

(
c2

8ε̃
t−α

)
� cε exp

(
c2

8ε̃
a−α
0

)
.

Thus, we choose c3 = c exp(ca−α
0 ). Concerning c4, we have

|∂tw(t, y)|
w(t, y)(k−2)/kW1(t, y)2/k

= εαtα−1

(∫ |y|

0

eτβ/2 dτ

)

exp

(
−2(ε1 − ε)

k
tα
∫ |y|

0

eτβ/2 dτ

)

� εα
k

2(ε1 − ε)
t−1 � εα

k

2(ε1 − ε)
a−1
0 .

We take c4 = ca−1
0 . Repeating the same procedure for the remaining estimates, we

get c5 = c6 = c7 = c2.

Step 3. As in the proof of theorem 4.4, we choose a0 = t/4, a = t/2, b = (t+ 1)/2
and b0 = (t+ 3)/4 and we notice that, by proposition 3.5, there are two constants
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H1 and H2 not depending on a0 and b0 such that

∫ b0

a0

ξWj
(s, x) ds � Hj(b0 − a0) =

3
4
tHj .

Applying theorem 4.3, we infer that there exists a positive constant C > 0
depending only on d and k such that

w(t, y)p(t, x, y) � C

[
c
k/2
1 sup

s∈(a0,b0)

ξW1(s, x)

+

(
ck2 +

c
k/2
1

(b0 − b)k/2
+ c

k/2
3 + c

k/2
4 + c

k/2
6

)∫ b0

a0

ξW1(s, x) ds

+(ck5 + c
k/2
2 c

k/2
7 )

∫ b0

a0

ξW2(s, x) ds

]

for all (t, y) ∈ (a, b) × R
d and fixed x ∈ R

d. We rewrite the previous inequality tak-
ing into account the values of the constants c1, . . . , c7 found in step 2, keeping track
only of powers of t and absorbing all other constants into the constant C:

w(t, y)p(t, x, y) � C

[
t1+kα exp(ckt−α) + t1+αk/2 exp

(
ck

2
t−α

)
+t1−k/2 + t exp(ckt−α)

]
� Ct1−k/2 exp(Ckt−α).

Hence,

p(t, x, y) � Ct1−k/2 exp(Ckt−α) exp

(
−εtα

∫ |y|∗

0

eτβ/2 dτ

)
(4.14)

for k > d+ 2 and for any t ∈ (0, 1), x, y ∈ R
d, where C depends only on d, η, β and

m.

Step 4. We conclude the proof by applying inequality (4.14) to p∗(t, y, x). This is
possible because A∗ = A, so we obtain

p∗(t, y, x) � Ct1−k/2 exp(Ckt−α) exp

(
−εtα

∫ |x|∗

0

eτβ/2 dτ

)
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for all t ∈ (0, 1) and x, y ∈ R
d. As a consequence, since p∗(t, y, x) = p(t, x, y), we

get the desired inequality as follows:

p(t, x, y) = p(t, x, y)1/2p∗(t, y, x)1/2

� Ct1−k/2 exp(Ckt−α) exp

(
−ε

2
tα
∫ |x|∗

0

eτβ/2 dτ

)

exp

(
−ε

2
tα
∫ |y|∗

0

eτβ/2 dτ

)
,

for all t ∈ (0, 1) and x, y ∈ R
d. �

4.3. Spectral properties and eigenfunctions estimates

In this subsection, we study some spectral properties of Amin with either
polynomial or exponential coefficients. In particular, we prove the following result.

Theorem 4.6. If Q(x) = (1 + |x|m∗ )I and V (x) = |x|s with s > |m− 2| and m > 0
or Q(x) = e|x|

m

I and V (x) = e|x|
s

, where 2 � m < s, then Tp(t) is compact for all
t > 0 and p ∈ (1,∞). Moreover, the spectrum of the generator of Tp(·) is indepen-
dent of p for p ∈ (1,∞) and consists of a sequence of negative real eigenvalues which
accumulates at −∞.

Proof. By [10, theorem 1.6.3], it suffices to prove that T2(t) is compact for all
t > 0. For this purpose, let us assume that Q(x) = (1 + |x|m∗ )I and V (x) = |x|s
with s > m− 2 and m > 2 or Q(x) = e|x|

m

I and V (x) = e|x|
s

, where 2 � m < s.
Applying [10, corollary 1.6.7], one deduces that the L2-realization A0 of A0 :=
div(Q∇) has compact resolvent and thus the semigroup S(t) generated by A0 in
L2(Rd) is compact for all t > 0, cf. [11, theorem 4.29]. Since V � 0 we have 0 �
T2(t) � S(t) for all t � 0. Applying the Aliprantis–Burkinshaw theorem [2, theorem
5.15] we obtain the compactness of T2(t) for all t > 0.

Let us now show the compactness of T2(t) in the case where Q(x) = (1 + |x|m∗ )I
and V (x) = |x|s with s > |m− 2| and 0 < m � 2. The operator Amin can be con-
sidered as the sum of the operator Ã2u := (1 + |x|m∗ )Δu− |x|su and the operator
Bu := ∇(1 + |x|m∗ ) · ∇u. From [18, proposition 2.3] we know that B is a small per-
turbation of Ã2. Hence, R(λ,Amin) = R(λ, Ã2)(I −BR(λ, Ã2))−1 for all λ ∈ ρ(Ã2).
Moreover, by [18, proposition 2.10], we know that Ã2 has compact resolvent and
hence Amin has compact resolvent too. Since T2(·) is an analytic semigroup, we
deduce that T2(t) is compact for all t > 0. �

Let us now estimate the eigenfunctions of Amin. For this purpose, let us note first
that, by the semigroup law and the symmetry of p(t, ·, ·) for any t > 0, we have

p(t+ s, x, y) =
∫

Rd

p(t, x, z)p(s, y, z) dz, t, s > 0, x, y ∈ R
d.
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Thus,

p(t, x, x) =
∫

Rd

p

(
t

2
, x, y

)2

dy, t > 0, x ∈ R
d.

So, if we denote by ψ an eigenfunction of Amin associated with the eigenvalue λ,
then Hölder’s inequality implies

eλ(t/2)|ψ(x)| = |T2(t/2)ψ(x)|

�
∫

Rd

p

(
t

2
, x, y

)
|ψ(y)|dy

�
(∫

Rd

p

(
t

2
, x, y

)2

dy

)1/2

‖ψ‖2

= p(t, x, x)1/2‖ψ‖2

for any t > 0 and any x ∈ R
d. Therefore, if we normalize ψ, i.e. ‖ψ‖2 = 1, then

|ψ(x)| � e−λ(t/2)p(t, x, x)1/2, t > 0, x ∈ R
d.

So, by theorems 4.4 and 4.5 we have

Corollary 4.7. Let ψ be any normalized eigenfunction of Amin. Then,

(a) in the case of polynomially growing coefficients, i.e. Q(x) = (1 + |x|m∗ )I and
V (x) = |x|s, where s > |m− 2| and m > 0, we have

|ψ(x)| � c1 e−c2|x|(s−m+2)/2
∗ , x ∈ R

d,

for some constants c1, c2 > 0;

(b) in the case of exponentially growing coefficients, i.e. Q(x) = e|x|
m

I and
V (x) = e|x|

s

, where 2 � m < s, we have

|ψ(x)| � c1 exp

(
−c2

∫ ‖x|∗

0

eτβ/2 dτ

)
, x ∈ R

d,

for some constants c1, c2 > 0.
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