CHARACTERIZATIONS OF SPHERICAL
NEIGHBOURHOODS

C. M. PETTY AND J. M. CROTTY

Introduction. If Z is a specified class of metric spaces and M € Z, then the
characterization problem is to find necessary and sufficient conditions which
distinguish the spherical neighbourhoods (open spheres) of M among a
specified class of subsets of M.

In a metric space M the notation pgr means p = q 5% r and pqg + qr = pr.
M is said to be uniformly locally externally convex if there exists § > 0 such
that if p,q¢ € M, p £ q, and pg < 4§, then there exists » € M such that the
relation pgr subsists. We will prove the following result.

TuroreEM 1. Let M be a metric space which is complete, melrically convex, and
uniformly locally externally convex. A non-empty, bounded, open subset S of M
with diameter D < § is a spherical neighbourhood if and only if for each two
distinct points P, g € .S there exists a spherical neighbourhood U, U C S, such
that p and q are boundary points of U.

A similar condition was used by Hsiang [6] to characterize circles among
Jordan curves in E,.

Equichordal points of convex sets in normed linear spaces are studied and
a question of Blaschke, Rothe, and Weitzenbock [1] concerning the possible
existence of a convex set in E,; with more than one equichordal point is shown
(Theorem 3) to have an affirmative answer in this more general setting.
Finally, the property of possessing an equichordal point is adjoined to the
property of constant width to obtain characterizing conditions for spherical
neighbourhoods where = is the class of real finite-dimensional Banach spaces.

2. Proof of Theorem 1. The following lemma is a corollary to the proof of a
result of Blumenthal [2, p. 55].

LEMMA. Let M be a metric space which is complete and uniformly locally
externally convex. If p,q € M and 0 < pg < 8, then for € > 0 there exists
r € M such that pgr subsists and pr > 6 — e.

Suppose that S is a spherical neighbourhood U(p;p) of $ with radius p.
Let a,b € S, o # b, where pa = pb. Since M is complete and metrically
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convex, there exists a metric segment .S, , joining p to a (see [2, p. 41]). For
x € Sp, a the function f(x) = xa — xb is continuous on S, , and f(p) = 0,
f(a) < 0. Therefore, there exists a point z € S, 4, 2 # a, for which f(z) = 0.
Let g € U(z;2a). Then pg = pz+ 29 < pz+ 2a = pa < p. Therefore
U(z; za) C Ula; p) = S and @ and b are boundary points of U(z; 2e¢) since
metric segments .S, , and .S, exist.

For the sufficiency part of the proof, we may assume that M has at least
two points and since D < §, it follows from the lemma that S is a proper
subset of M. Consequently, R = lub p, U(p; p) C S, is finite, and it follows
from the two-point property stated in the theorem and the triangle inequality
that 2R = D.

Let {U(ps; p:)} be a sequence of spherical neighbourhoods, each contained
in S, such that p; > R. For e >0, e <8 — D, let R — p; < ¢/3 for 2 > N..
We will show that {p,} is a Cauchy sequence. For p; # p;, since p.p; < D < §
there exists s; € M such that p;p;s; subsists and p;s; > § — € > D. Therefore
s; € S and p;5; = p;. Since pp;s; holds, there exists, by a known result
[2, p. 44], a metric segment with endpoints p;, s; and which contains p;. On
this segment there is a point ¢; € U(p;; p;) C S such that p,p,t; subsists and
pit; > p; — €/6. Similarly, using ¢;, p; in place of p, p; there exists
t; € U(py; ps) such that ¢,p:t; subsists and p.t; > p; — ¢/6. Consequently,
2R 2D z tit; = tips + pid; = tips + pib; + Pit; > pibs+ oo + p; — €/3.
Therefore ¢ > pp; for 2,7 > N. and by completeness of M there exists
p €M, p =limp,.

Let g € U(p;R). For e >0, 2¢ < R — pq, let pp; < ¢, R — p; < ¢, for
some?. Thenp,q £ pip + pqg < p;and ¢ € U(py; pi), and hence U(p; R) C S.

Now suppose that ¢ € .Sand p¢g — R = € > 0. Since ¢gp = D < §, we may
proceed as before and prolong a segment .S,,, through p and finally obtain a
point ¢ € S such that ¢pt subsists and pt > R — e. Consequently, ¢t =
gp + pt > 2R = D, which yields a contradiction. Also pg % R, q € S, since
there exists in M a segment with endpoint p and having ¢ as an interior
point. Hence S = U(p; R), completing the proof.

The necessity part of the proof did not require external convexity. However,
it may be observed that if M is the unit disk in the Euclidean plane and the
complement of S is a closed proper subset of the perimeter containing at least
two points, then S satisfies the condition in the theorem but .S is not a spherical
neighbourhood. Also, the constraint D < § cannot in general be relaxed. For
if M is the spherical space Sy,, with § = #7 and S consists of all of M except
for a pair of antipodal points, then S satisfies the condition in the theorem,
but S is not a spherical neighbourhood.

3. Equichordal points. In a real normed linear space M, a point p € M is

called an equichordal point of a bounded convex subset S if every algebraic
line through p intersects .S in a chord of constant positive length, the length
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being determined from the metric xy = [|x — y||. If M has dimension 1, then
every point p ¢ M is an equichordal point of a bounded convex subset S
which contains more than one point. Convex sets in E,, E; with equichordal
points have been studied by Siiss [9], Dirac [4], Dulmage [5], and Wirsing [10].
Also, see [7] for a critique and other references.

THEOREM 2. If M is a real normed linear space of dimension greater than 1,
then a bounded convex subset .S of M has at most two equichordal points.

Proof. We assume that S has three equichordal points. Let F be a 2-flat
containing these three points. We translate F to the origin and thereby reduce
the theorem to showing that a bounded convex set S* in a Banach space B,
cannot have three equichordal points.

Let ey, €2, e; denote three equichordal points of S*. Clearly each e; is an
interior point of S* and any two chords of S* which contain an equichordal
point have the same length. Let a,;, a;; be the boundary points of S* on the
chord through e;, e; (¢ 5 j) such that the four points appear in the order
@iy, €4, €4, a;;. Let x be any boundary point of S* distinct from the a@;;. The
line through x and one of the e;, say e;, must intersect the segment with
endpoints ey, e; in an interior point. The chords of S* through e; and e; parallel
to the line L(x, e;) form opposite sides of a parallelogram P, and it follows
that x is an interior point of an adjacent side of P. Thus the only extreme
boundary points of S* are among the points a,;. Therefore, the points e; are
non-collinear and the boundary of S* consists of the six segments ay2a13, G1323,

A23d21, Q21031 A31d32, A32Q12.

Since the chord of S* through ey, e; is equal in length to the parallel chord
through e;, it follows that the boundary segments a3sd12 and ai3az; lie on
parallel lines. Similarly, the segments a13¢s3 and @103 lie on parallel lines.
Consequently, at least four of the points a;; are collinear. But this is im-
possible since the points ¢; are non-collinear interior points of .S*.

THEOREM 3. There exist real normed linear spaces of arbitrary dimension
greater than one in which there are bounded convex sets with exactly two equi-
chordal points.

Proof. Let R be a real linear space with inner product (x, y). An example of
an inner product space with a Hamel (or vector) basis of given cardinality &
is readily constructed from the real-valued functions, over a set of cardinality
k, which are zero except at a finite number of points (compare [8, p. 95]).

Let R have dimension greater than one and let p € R, (p, p) =,
0 <6 =<1/2,and seta = 1 — 4. Define the function ||x|[, by

(x, %)
la(x, x) + ()T’

H¢Hp=0-

lxll> = x # ¢,
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We will show that ||x||, is a norm. The properties ||x[[, > 0, ¥ # ¢, and
l|éx|| = |¢] ||x||, are immediate and we will establish |[x + y[[, < |[x[[, 4+ [[3l],
by showing that the set U of x € R for which ||x||, £ 1 is convex.

Let p = 6—%;0 and let 2 € R be any point such that (z,2) =1, (g, p) = 0.
The condition on the real number pair (A, u) such that A\p + uz € U is either
AN=pu=0o0r (\24+ u2)(\2 + apu?)~} < 1. Let C be the set of points (), u)
in the Cartesian plane satisfying this condition. The boundary curve of C is
given in polar coordinates by r = [1 — & sin%]?, and by calculating its curva-
ture we see that C is convex for § = 1/2.

For any x,y € R it is easily shown that there exist 21, 2, € R such that
(25,2)) =1, (25, 0) =0, and x = Nip + pi21, ¥ = Nop + p22zs, where p; = 0.
If x,y € U, then (\;, p;) € C and we will show thatw = (1 —f)x +ty € U
for 0 £t = 1. If (1 — )iz + twez2 = ¢, then w € U since C is convex and
symmetric with respect to the \-axis. Otherwise, we may write w = ap + B2,
where (z,2) =1, (3,0) =0,a= (1 — )M+ Nand 0 < B = (1 — Hur + tus
by the Schwarz inequality. Therefore, w € U and ||x||, is a norm.

Let S be the set of x € R for which (x, x) =< 1. The set S is convex and if
x and y are endpoints of a chord of S through p, then y — x = t(p — x),
where ¢t = 2(1 — (x,#))(1 + 6 — 2(x, p))~". It follows that ||y — x|, = 2
and p is an equichordal point of S. But (—p) is also an equichordal point of .S
since [|x|, = ||x||(—p», and by Theorem 2 the proof is complete.

THEOREM 4. Let M be a real finite-dimensional Banach space. A bounded,
open, convex subset S of M 1is a spherical neighbourhood if and only if S has
constant width and possesses an equichordal point.

Proof. Let n + 1 be the dimension of M, d the equichordal length, and w
the width of S. We may assume that the origin ¢ is an equichordal point of S
and therefore ¢ € S. We first observe that there is some chord of S through ¢
such that there exist parallel supporting planes to .S at the endpoints of the
chord. To prove this statement we carry out our argument in Euclidean space
E, 1 with unit sphere S,. First suppose that the boundary of S is smooth. A
ray from ¢ in the direction # cuts the boundary of S at a point with outer
unit normal vector f(u). The function f gives a continuous mapping of .S, into
S, such that (u, f(x)) > 0. This mapping is homotopic to the identity mapping
[11, p. 809], and therefore has degree 1. Consequently, some pair of antipodal
points is mapped into a pair of antipodal points [11, p. 810]. The general case
is then obtained by approximating .S by convex sets with smooth boundaries
and applying standard arguments.

Now let x; and %, be endpoints of a chord of S through ¢ with parallel
supporting planes 1, w2 at x1, x2, respectively. Let z; € m;, ¢ = 1, 2, and let
s; and s, be endpoints of a chord of S through ¢ parallel to the line L(z1, 22).
Since w = glb||zs — 21]|, 2; € 75, and ||z2 — 2| = ||s2 — s1]] = ||x2 — x| = d,
it follows that w = d.
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Let y; and v, be the endpoints of any chord of S through ¢. The parallel
chord of U(¢;w/2) through ¢ has parallel supporting planes at its endpoints.
Consequently, the pair of supporting planes to S parallel to these must contain
y1 and y.. This property implies by a known result [3, p. 89] that ¢ is the
midpoint of every chord of S through ¢ and it follows that .S is a spherical

neighbourhood.
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