CORRECTIONS TO MY PAPER "CLIFFORD ALGEB-RAS AND FAMILIES OF ABELIAN VARIETIES", NAGOYA MATH. J. 27 (1966), 435-446

I. SATAKE

1. P. 436, line 5ff: For " $tr(e_{+}^{-1}x e + y)$ " read " $tr(e_{+}^{-1}x e_{+}y)$ ".

P. 440, line 13: After "... of hermitian type" insert "(of type I, II, III)".

P. 441, line 15: After "... given in 2." insert the following sentence. "For simplicity, we assume that q = 2 and b_2 is invertible."

P. 443, lines 2, 3: For " $\Phi_{n,v}$ " read " $\Phi_{u,v}$ ".

Line 8: For "(or:" read "(r:".

Line 14: For " $\in \mathscr{L}$ " read " $\subset \mathscr{L}$ ".

Line 15: For "b'" read " b'_{2} ".

Lines 16-18: The sentence "If $0 < r \le n$, ... the above equality." should read as follows: "If 0 < r < n, one can always find $u \in C_r$ such that u, ue_r , e_u are linearly independent, contradicting the above equality. (E.g., if $r \le p$, put $u = e_1 \ldots e_r + e_1 \ldots e_{r-1}e_{p+1}$.)"

Line 5 ff: For " $\mathscr{P}(L, a, 1, 0)$ " read " $\mathscr{P}(L, a, 0, 1)$ ".

2. On p. 442, in the statement of Proposition 4, one possibility was erroneously dropped. Namely, in case n is even, the following modifications should be made:

Line 8: For " g_2 in G" read " $g_2 \in C^{\pm}$ such that $g'_2 g_2 = 1$, $g_2 V g_2^{-1} = V$ ".

Line 9: For "v in C^+ " read "v in C^{\pm} ".

(For the case where n is odd, both the actual and modified statements are true.) One may get a correct proof by changing the actual one at the following points:

P. 442, line 15: For "first" read "in case n is odd,".

Lines 18-20: Delete "Hence,... that $\psi = id$." and put the following

Received May 23, 1967.

sentence: "In case *n* is even, one has also another possibility where ϕ is given by $gK \to g_2 g e_1 K$ with $g_2 \in C^-$, $g_2' g_2 = 1$, $g_2 V g_2^{-1} = V$."

P. 443, line 15 ff: Before "Therefore" insert "Now $\Phi(x) = g_2^{-1} \Psi(x)$ satisfies clearly the condition (*)."

Line 14 ff: For " $\Psi(x) = xv$ " read " $\Psi(x) = g_2 xv$ ".

Line 10 ff: For " $\Psi(x) = xv$ with $v \in C^+$ " read " $\Psi(x) = g_2 xv$ with $v \in C^{\pm}$ according as $g_2 \in C^{\pm}$ ".

Line 9 ff: Delete "with $g_2 = 1$ ".

For the case $g_2 \in C^-$, one should replace \mathscr{L} by the set \mathscr{L}' of all linear mappings Φ of C^+ into C^- satisfying (*). Note also that, for *n* even, the C_{τ} 's are again irreducible except for $r = \frac{n}{2}$ and $C_{n/2}$ splits into the direct sum of two mutually inequivalent irreducible components of the same dimension.

296