CORRECTIONS TO MY PAPER "CLIFFORD ALGEBRAS AND FAMILIES OF ABELIAN VARIETIES", NAGOYA MATH. J. 27 (1966), 435-446

I. Satake

1. P. 436, line 5ff: For " $\operatorname{tr}\left(e_{+}^{-1} x e+y\right)$ " read " $\operatorname{tr}\left(e_{+}^{-1} x^{t} e_{+} y\right)$ ".
P. 440, line 13: After ". . of hermitian type" insert "(of type I, II, III)".
P. 441, line 15: After ". . . given in 2." insert the following sentence. "For simplicity, we assume that $q=2$ and b_{2} is invertible."
P. 443, lines 2, 3: For " $\Phi_{n, v}$ " read " $\Phi_{u, v}$ ".

Line 8: For "(or:" read " r : $:$ ".
Line 14: For " $\in \mathscr{L}$ " read " $\subset \mathscr{L}$ ".
Line 15: For " b '" read " b_{2} '".
Lines 16-18: The sentence "If $0<r \leqslant n, \ldots$ the above equality." should read as follows: "If $0<r<n$, one can always find $u \in C_{r}$ such that $u, u e_{-}$, $e_{-} u$ are linearly independent, contradicting the above equality. (E.g., if $r \leqslant p$, put $\left.u=e_{1} \ldots e_{r}+e_{1} \ldots e_{r-1} e_{p+1}.\right) "$

Line 5 ff : For " $\mathscr{P}(L, a, 1,0)$ " read " $\mathscr{P}(L, a, 0,1)$ ".
2. On p. 442, in the statement of Proposition 4, one possibility was erroneously dropped. Namely, in case n is even, the following modifications should be made:

Line 8: For " g_{2} in G " read " $g_{2} \in C^{ \pm}$such that $g_{2}^{\prime} g_{2}=1, g_{2} V g_{2}^{-1}=V$ ".
Line 9: For " v in $C^{+"}$ read " v in $C^{ \pm "}$.
(For the case where n is odd, both the actual and modified statements are true.) One may get a correct proof by changing the actual one at the following points:
P. 442, line 15: For "first" read "in case n is odd,".

Lines 18-20: Delete "Hence,... that $\psi=\mathrm{id}$." and put the following

[^0]sentence: "In case n is even, one has also another possibility where ψ is given by $g K \rightarrow g_{2} g e_{1} K$ with $g_{2} \in C^{-}, g_{2}^{\ell} g_{2}=1, g_{2} V g_{2}^{-1}=V$."
P. 443, line 15 ff : Before "Therefore" insert "Now $\Phi(x)=g_{2}^{-1} \Psi(x)$ satisfies clearly the condition (*)."

Line 14 ff : For ' $\Psi(x)=x v$ " read " $\Psi(x)=g_{2} x v$ ".
Line 10 ff : For " $\Psi(x)=x v$ with $v \in C^{+"}$ read " $\Psi(x)=g_{2} x v$ with $v \in C^{ \pm}$ according as $g_{2} \in C^{ \pm}$".

Line 9 ff : Delete "with $g_{2}=1$ ".
For the case $g_{2} \in C^{-}$, one should replace \mathscr{L} by the set \mathscr{L}^{\prime} of all linear mappings Φ of C^{+}into C^{-}satisfying (*). Note also that, for n even, the C_{r} 's are again irreducible except for $r=\frac{n}{2}$ and $C_{n / 2}$ splits into the direct sum of two mutually inequivalent irreducible components of the same dimension.

[^0]: Received May 23, 1967.

