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Abstract
Mechanistic hypotheses suggest that vitamin D and the closely related parathyroid hormone (PTH) may be involved in prostate
carcinogenesis. However, epidemiological evidence is lacking for PTH and inconsistent for vitamin D. Our objectives were to prospectively
investigate the association between vitamin D status, vitamin D-related gene polymorphisms, PTH and prostate cancer risk. A total of 129
cases diagnosed within the Supplémentation en Vitamines et Minéraux Antioxydants cohort were included in a nested case–control study and
matched to 167 controls (13 years of follow-up). 25-Hydroxyvitamin D (25(OH)D) and PTH concentrations were assessed from baseline
plasma samples. Conditional logistic regression models were computed. Higher 25(OH)D concentration was associated with decreased risk of
prostate cancer (ORQ4 v. Q1 0·30; 95 % CI 0·12, 0·77; Ptrend= 0·007). PTH concentration was not associated with prostate cancer risk
(Ptrend= 0·4) neither did the studied vitamin D-related gene polymorphisms. In this prospective study, prostate cancer risk was inversely
associated with 25(OH)D concentration but not with PTH concentration. These results bring a new contribution to the understanding of the
relationship between vitamin D and prostate cancer, which deserves further investigation.
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Vitamin D is a prohormone synthesised in the skin from UVB
exposure and absorbed from scarce dietary sources. It is first
converted to 25-hydroxyvitamin D (25(OH)D) – its main
circulating form – and then to 1,25-dihydroxyvitamin D
(1,25(OH)2D) – its biologically active form. As 25(OH)D-to-
1,25(OH)2D conversion and 1,25(OH)2D signalling can take place
directly in prostate tissues(1), vitamin D is thought to play a role
in the prevention of prostate cancer through pro-differentiation,
pro-apoptosis, anti-proliferative and growth control activities, as
suggested by experimental studies(2–4). However, so far,
epidemiological evidence regarding the relationship between
25(OH)D concentration and prostate cancer risk has been
inconsistent. On the basis of a dose–response meta-analysis that
involved fifteen prospective studies, the World Cancer Research

Fund/American Institute for Cancer Research (WCRF/AICR)(5), as
part of the Continuous Update Project 2014 on prostate cancer,
stated that the level of proof for the association between 25(OH)D
concentration and prostate cancer risk was still ‘limited-no
conclusion’. Most of the studies included in this meta-analysis
observed null results.

Besides, vitamin D is primarily involved in Ca homoeostasis:
1,25(OH)2D increases Ca concentration through enhanced
intestinal Ca absorption, reabsorption of Ca from kidneys and
bone resorption. Renal 25(OH)D-to-1,25(OH)2D conversion is
induced by parathyroid hormone (PTH) secretion in response
to low Ca concentration. 1,25(OH)2D exerts in turn a negative
feedback on PTH secretion(6–8). Vitamin D and PTH are thus
closely related. To our knowledge, only one prospective study
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has investigated the association between PTH concentration
and prostate cancer risk, with null result(9).
Several genes involved in vitamin D metabolism, in particular

signalling (vitamin D receptor (VDR) and retinoid X receptor
(RXR)), transportation (vitamin D-binding protein, also known as
gc-globulin or group-specific component (GC)) and degradation
(1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1)), or in Ca
homoeostasis (Ca-sensing receptor (CaSR)) could also play a role
in prostate cancer aetiology(2). Recent meta-analyses found null
associations between VDR BsmI, FokI and Cdx2 polymorphisms
and prostate cancer risk(10–12). The epidemiological literature
dealing with polymorphisms of other genes (GC, CYP24A1, RXR
and CaSR) in relation to prostate cancer risk is scarce(13–16).
Thus, our objective was to prospectively investigate the

associations between prostate cancer risk and vitamin D status
(25(OH)D concentration), plasma PTH concentration and
polymorphisms of genes involved in vitamin D metabolism.

Methods

Subjects

The Supplémentation en Vitamines et Minéraux Antioxydants
(SU.VI.MAX) study was initially designed as a double-blind
placebo-controlled trial (Trial Registration clinicaltrials.gov Identi-
fier: NCT00272428) with purpose to assess the influence of a daily
supplementation with nutritional doses of antioxidants (single
capsule of a combination of ascorbic acid (120mg), vitamin E
(30mg), β-carotene (6mg), Se (100 μg) and Zn (20mg) or placebo)
on the incidence of CVD and cancers(17). A total of 13 017
participants were enrolled in 1994–1995 for an 8-year-intervention
trial and followed up for health events until September 2007.
Participants were advised against taking any self-prescribed
supplements (vitamin D and others) during the trial.

Ethical approvals

This study was conducted according to the guidelines laid
down in the Declaration of Helsinki, and all procedures invol-
ving human subjects were approved by the Ethics Committee
for Studies with Human Subjects of Paris-Cochin Hospital
(CCPPRB no. 706/no. 2364) and the ‘Commission Nationale de
l’Informatique et des Libertés’ (CNIL no. 334641/no. 907094).
Written informed consent was obtained from all participants.

Case ascertainment

Health events were self-reported by the participants. Then, all
relevant medical information and pathological reports were
gathered through participants, physicians and/or hospitals and
reviewed by an independent physician expert committee.
Histologically validated cases were classified according to the
International Chronic Diseases Classification, 10th Revision,
Clinical Modification(18). All first-incident primary prostate cancers
were considered as cases in this study.

Nested case–control study

All prostate cancer cases diagnosed during follow-up (1994–2007
i.e. 13-year of follow-up) were included in a nested case–control

study: one or two controls per case were randomly selected
among subjects without prostate cancer by the end of follow-up
and matched according to the following baseline criteria: age
(<40/40–44/45–49/50–54/55–65 years), intervention group of the
initial SU.VI.MAX trial (placebo/antioxidants), season of blood
draw (a priori defined periods: June–October/November–May)
and BMI (<25/≥ 25 kg/m2).

Baseline data collection

Information on socio-demographics, smoking habits, alcohol
consumption, physical activity, medication use and health
status was collected at baseline through self-administered
questionnaires. Participants underwent a clinical examination
by the study nurses and physicians with anthropometric
measurements (in particular height and weight) and a blood
draw occurring in the early morning after an overnight fasting
period of 12 h. A volume of 35ml venous blood samples
was collected in vacutainer tubes (Becton Dickinson) and
immediately centrifuged to get plasma aliquots (preserved in Na
heparin), and buffy-coat fractions, allowing future DNA extraction.
Both were stored frozen in liquid N2. Participants were asked to
provide repeated 24 h-dietary records every 2 months, completed
through a French telephone-based terminal equivalent to
an internet prototype (Minitel). Portion sizes were assessed by
referring to a validated picture booklet(19). The amounts consumed
from composite dishes were estimated using French recipes
validated by food and nutrition professionals. Mean daily energy
and nutrient intakes were estimated from all available 24 h-dietary
records completed during the first 2 years of follow-up, using a
published French Food Composition Table(20).

Laboratory assay of plasma 25-hydroxyvitamin D
and parathyroid hormone concentrations

25(OH)D and PTH plasma concentrations were determined on
baseline samples, as previously described in detail(21,22). Plasma
25(OH)D concentration was measured using the Roche
Cobas® electrochemiluminescence total 25(OH)D assay (Roche
Diagnostics), based on the principle of competitive binding(23).
Inter-assay CV was <10% (eight samples of various 25(OH)D
concentrations tested in forty-two separate runs), whereas intra-
assay CV was <6·6% (the same eight samples tested twenty-one
times in the same run). Plasma PTH concentration was assessed
with the Roche Cobas® electrochemiluminescence immunometric
assay (Roche Diagnostics), a second-generation PTH assay that
uses two anti-PTH antibodies – one directed towards the 26–32
portion of the PTH molecule and another directed towards
the 53–84 portion(24). Inter-assay CV was <2·9% (three samples
of various PTH concentrations tested in forty-two separate runs),
and intra-assay CV was <1·4% (the same three samples tested
twenty-one times in the same run).

Genotyping

One to three SNP were selected for each gene of interest
(VDR, CYP24A1, GC, RXR and CaSR) on the basis of
their relatively high frequency in Caucasian populations
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(http://www.ncbi.nlm.nih.gov/guide/howto/viewgen-freq/): VDR
rs1544410 (BsmI, minor allele frequency (MAF): T= 0·2959),
rs2228570/10735810 (FokI, MAF: A= 0·3285) and rs11568820
(Cdx2, MAF: T= 0·4569); CYP24A1 rs4809958 (MAF:
G= 0·1907); GC rs4588 (MAF: T= 0·2079) and rs7041 (MAF:
C= 0·3816); RXR rs7861779 (MAF: T= 0·2804) and rs12004589
(T= 0·1304); CaSR rs1801725 (MAF: T= 0·0942) and rs4678174
(MAF: C= 0·4619), and of their predicted functional effect
(Pupasuite database, http://snpeffect.vib.be and http://pupasuite.
bioinfo.cipf.es/). Genomic DNA was extracted from each patient’s
mononuclear cells in peripheral blood using a MagNA Pure
Compact Instrument with a magnetic-bead technology for the
isolation process (Roche Diagnostics). Genetic polymorphisms
were assessed by allelic discrimination using fluorogenic probes
and the 5' nuclease (TaqMan) assay (Applied Biosystems).
Quality control of genotyping was carried out for each SNP by
investigating any departure from Hardy–Weinberg’s equilibrium
and comparing observed distributions with those of European
reference populations: CSHL-HapMap-CEU and 1000GENOMES-
phase_1_EUR (http://www.ensembl.org/) by χ2 tests.

Statistical analyses

Baseline characteristics were compared between prostate cancer
cases and controls using χ2 tests for categorical variables and
Fisher’s tests (from ANOVA models) for continuous variables.
Associations between prostate cancer risk and 25(OH)D plasma
concentration, PTH plasma concentration, dietary Ca intake
and SNP were characterised by OR and 95% CI derived from
multivariate conditional logistic regression models. Models were
adjusted for several potential confounders that were as follows:
(1) factors constitutive to the study design (intervention group of the
initial SU.VI.MAX trial (placebo/antioxidants) and month of blood
draw (2-month periods in order to take into account the seasonal
variation of 25(OH)D concentration)) and (2) cancer risk factors:
major socio-demographic variables (age at baseline (continuous)
and educational level (primary/secondary/superior)), lifestyle fac-
tors (physical activity (irregular/<1 h/d walking equivalent/≥1 h/d
walking equivalent), alcohol intake (g/d, continuous) and smoking
status (never/former/current smoker)), anthropometric variables
(height (cm, continuous) and BMI (kg/m2, continuous)), factors
indicating higher susceptibility to prostate cancer (family history of
prostate cancer (yes/no) and baseline serum prostate-specific anti-
gen concentration (<3/>3 μg/l)). SNP models were also adjusted for
25(OH)D concentration (ng/ml, continuous) in order to investigate
the effect of SNP, at equal levels of 25(OH)D. Further adjustments
were tested: energy intake (without alcohol, kJ/d (kcal/d), con-
tinuous), dietary variables for which a possible association with
prostate cancer has been reported(5), such as dietary intakes of Ca
(mg/d, continuous) and dairy products (g/d, continuous), plasma
Se (μmol/l, continuous) and α-tocopherol (μmol/l, continuous)
concentrations and a mutual adjustment for 25(OH)D and PTH
concentrations. Although dietary vitamin D intake was not asso-
ciated with vitamin D status in SU.VI.MAX, as published pre-
viously(21), associations between prostate cancer risk and dietary
intakes of vitamin D and Ca were also investigated using conditional
logistic regression models (energy-adjusted variables and residual
method(25)).

For all models involving dietary intake data, only subjects
who provided at least three valid 24 h-dietary records during the
first 2 years of follow-up (ninety-six cases and 123 matched
controls) were included.

Plasma 25(OH)D concentration was coded as a continuous
variable, as quartiles and as insufficiency (<20 ng/ml) according to
the US Institute of Medicine’s(26) recommendations for the general
population. Plasma PTH concentration was coded as a continuous
variable and as quartiles. As there is no established hypothesis on
the dominant, codominant or recessive character of the studied
SNP, the three following codings were tested: codominant
(heterozygous type (HT) v. wild type (WT) and homozygous
mutant type (MT) v. WT), dominant (HT+MT v. WT) and
recessive (MT v. WT+HT). Besides, considering the relationships
existing between 25(OH)D concentration, polymorphisms of
vitamin D-related genes, PTH concentration and Ca(6–8), two-way
interactions between 25(OH)D concentration, PTH concentration
and dietary Ca intake, and between the ten SNP and 25(OH)D
concentration were tested by introducing the product of the two
variables into the main model. For all covariates, missing data
represented <5% and were replaced by the mode.

All statistical tests were two-sided and P< 0·05 was
considered significant. Analyses were performed using SAS
software version 9.3 (SAS Institute).

Results

A total of 129 prostate cancer cases diagnosed within the SU.VI.
MAX cohort were included in this study. Mean age at diagnosis was
63·0 years and mean baseline-to-diagnosis time was 8·3 years. Of
the cases, 49·2% had a Gleason’s score ≥7. A total of 167 controls
were randomly selected and matched to the cases. Table 1 sum-
marises the characteristics of prostate cancer cases and controls.
Compared with controls, prostate cancer cases were more likely to
have a lower vitamin D status at baseline and to be better
educated. Severe vitamin D deficiency (<10 ng/ml) was observed
for 14·0% of cases and 13·8% of controls, and vitamin D
insufficiency (<20 ng/ml) was observed for 62·8% of cases and
54·5% of controls, with no statistically significant difference
between cases and controls. A seasonal fluctuation of vitamin D
status was observed in controls with decreasing vitamin D status
from October to March (shortening days) and increasing vitamin D
status in April–May (extending days). All studied SNP respected the
Hardy–Weinberg’s equilibrium (P>0·05). The repartition of
subjects across the different genotypes was in accordance with that
observed in European reference populations (CSHL-HapMap-CEU
and 1000GENOMES-phase_1_EUR) for all SNP (P>0·05).

25(OH)D concentration was inversely associated with prostate
cancer risk (ORper 1 ng/ml 0·96; 95% CI 0·93, 1·00; Ptrend=0·04;
ORQ4 v. Q1 0·30; 95% CI 0·12, 0·77; Ptrend= 0·007; OR<20 v. ≥20 ng/ml

0·44; 95% CI 0·23, 0·85; P=0·01, Table 2; ORper 30 nmol/l 0·64; 95%
CI 0·42, 0·97; Ptrend=0·04, data not tabulated). Using the quartile
coding this inverse association was observed in particular for cases
with a Gleason’s score <7 (sixty-nine cases/ninety controls,
ORQ4 v. Q1 0·03; 95% CI 0·003, 0·40; Ptrend=0·02; data not
tabulated), whereas it was not significant for cases with a Glea-
son’s score ≥7 (sixty cases/seventy-seven controls, ORQ4 v. Q1 0·96;
95 % CI 0·23, 4·05; Ptrend=0·5; data not tabulated). However, using
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the continuous 25(OH)D variable or the 20 ng/ml cut-off,
these associations were not significant in both Gleason’s
subgroups. Exclusion of cases diagnosed during the first 5 years of
follow-up provided similar results (109 cases/140 controls,
ORper 1 ng/ml 0·96; 95 % CI 0·93, 1·00; Ptrend= 0·04; ORQ4 v. Q1 0·33;
95 % CI 0·12, 0·86; Ptrend=0·01; OR<20 v. ≥20 ng/ml 0·45; 95 % CI
0·23, 0·89; P=0·02; data not tabulated). No interaction was
observed between 25(OH)D concentration and the intervention
group of the SU.VI.MAX trial (Pinteraction>0·1 for all codings).
Plasma PTH concentration was not associated with

prostate cancer risk (ORQ4 v. Q1 0·66; 95 % CI 0·28, 1·55;
Ptrend= 0·4) (Table 2). This result was similar (124 cases/157
controls) after removing participants with possibly
abnormal PTH values that may suggest potential
hyperparathyroidism (i.e. PTH≥ 50·8 pg/ml if 25(OH)D
<20 ng/ml, PTH≥ 45·5 pg/ml if 20 ng/ml≤ 25(OH)D< 30 ng/ml
and PTH≥ 45·3 pg/ml if 25(OH)D≥ 30 ng/ml, as previously
recommended(22)).

Dietary Ca intake was not associated with prostate cancer risk
(ninety-six cases/123 controls, ORQ4 v. Q1 0·83; 95 % CI 0·20,
3·43; Ptrend= 0·5, data not tabulated), nor did dietary intake of
vitamin D (ninety-six cases/123 controls, ORQ4 v. Q1 1·05; 95 %
CI 0·40, 2·81; Ptrend= 0·7, data not tabulated).

All results were similar when models were further adjusted
for dietary variables (although some of the results were only
borderline significant due to loss of statistical power: ninety-six
cases/123 controls), dietary Ca and mutual adjustments for
25(OH)D and PTH. Two-way interactions between 25(OH)D,
PTH and dietary Ca intake were not statistically significant
(all P> 0·1, data not shown).

No association was observed between the ten studied
vitamin D-related SNP and prostate cancer risk in the codominant
(Table 3), dominant and recessive models (data not tabulated). No
interaction was observed between the SNP and 25(OH)D
concentration (all P>0·1, data not shown). As no association was
detected between the ten SNP and prostate cancer with a P value

Table 3. Associations between SNP of genes involved in vitamin D metabolism and prostate cancer risk, from conditional logistic regression,
Supplémentation en Vitamines et Minéraux Antioxydants (SU.VI.MAX) cohort, France (1994–2007)
(Odds ratios and 95% confidence intervals)

WT HT MT

OR OR 95% CI OR 95% CI Ptrend

VDR BsmI rs1544410
Cases/controls* 42/52 60/73 16/27
Model† 1·00 1·13 0·57, 2·22 0·81 0·34, 1·92 0·8

VDR FokI rs2228570
Cases/controls* 43/74 64/61 18/26
Model† 1·00 1·86 0·98, 3·52 1·06 0·46, 2·48 0·5

VDR Cdx2 rs11568820
Cases/controls* 72/83 38/62 8/7
Model† 1·00 0·52 0·27, 1·01 0·61 0·17, 2·20 0·1

CYP24A1 rs4809958
Cases/controls* 82/106 39/46 1/3
Model† 1·00 0·79 0·40, 1·57 0·25 0·02, 3·56 0·3

GC rs4588
Cases/controls* 70/79 42/59 10/20
Model† 1·00 0·90 0·47, 1·70 0·69 0·24, 1·96 0·5

GC rs7041
Cases/controls* 19/38 61/75 45/49
Model† 1·00 1·34 0·54, 3·33 1·39 0·60, 3·26 0·5

RXR rs7861779
Cases/controls* 87/114 30/38 2/1
Model† 1·00 1·19 0·59, 2·41 4·49 0·21, 95·0 0·5

RXR rs12004589
Cases/controls* 102/128 21/32 2/1
Model† 1·00 0·71 0·34, 1·52 2·76 0·14, 52·9 0·6

CaSR rs1801725
Cases/controls* 86/111 29/43 5/3
Model† 1·00 0·72 0·35, 1·46 2·47 0·36, 16·8 0·9

CaSR rs4678174
Cases/controls* 60/72 49/67 7/12
Model† 1·00 0·74 0·40, 1·39 0·37 0·09, 1·43 0·1

WT, wild type; HT, heterozygous type; MT, homozygous mutant type; VDR, vitamin D receptor; CYP24A1, 1,25-dihydroxyvitamin D3 24-hydroxylase; GC, vitamin D-binding protein,
also known as gc-globulin or group-specific component; RXR, retinoid X receptor; CaSR, Ca-sensing receptor.

* Missing data were as follows: 15 (rs1544410), 5 (rs2228570), 13 (rs11568820), 10 (rs4809958), 7 (rs4588), 4 (rs7041), 13 (rs7861779), 5 (rs12004589), 9 (rs1801725),
13 (rs4678174). Because of the conditional logistic regression model (matched analyses), cases with no control and controls with no case were deleted from
the analysis.

† Adjusted for 25-hydroxyvitamin D concentration (continuous, ng/ml), age at baseline (continuous, matching factor), intervention group of the initial SU.VI.MAX trial (antioxidants/
placebo, matching factor), educational level (primary/secondary/superior), physical activity (irregular/<1 h/d walking equivalent/≥1 h/d walking equivalent), alcohol intake
(g/d, continuous), smoking status (never/former/current), height (cm, continuous), BMI (kg/m², continuous, matching factor), family history of prostate cancer (yes/no) and baseline
serum prostate-specific antigen concentration (<3/≥3 ng/l).
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threshold of 0·05, no association was detected after adjustment for
multiple testing (Bonferroni correction) (data not shown).

Discussion

In this prospective study, plasma 25(OH)D concentration was
inversely associated with prostate cancer risk. No association
was detected for plasma PTH concentration or the studied SNP.
We observed an inverse association between 25(OH)D

concentration and prostate cancer risk. Recently, a high v. low
meta-analysis by Xu et al.(27) (summary ORhigh v. low 1·17; 95% CI
1·05, 1·30) and a dose–response meta-analysis by the WCRF(5)

(summary RRper 30 nmol/l 1·04; 95 % CI 1·00, 1·07) suggested an
increased risk. However, in a previous study by Tuohimaa
et al.(28), both high and low 25(OH)D concentrations were
associated with increased prostate cancer risk: increased risk was
observed for 25(OH)D concentration ≥32 or <15·6 ng/ml
compared with 16–23·6 ng/ml. This U-shaped association is
supported by the evidence of non-linearity observed in the
WCRF dose–response meta-analysis(5). In our study, the range of
25(OH)D concentrations observed (95th percentile=36·3 ng/ml)
may be positioned in the left part of this U-shaped curve, which
may explain why a decreased prostate cancer risk was
observed for 25(OH)D≥20 ng/ml (insufficiency) or ≥18·2 ng/ml
(median) compared with 25(OH)D< 20 or <12·9 ng/ml (quartile 1
(Q1)), respectively. Consistently, a recent study by Kristal et al.(29)

observed a decreased prostate cancer risk associated with
25(OH)D concentrations between 23·3 and 29·2 ng/ml
(3rd quintile) compared with 25(OH)D<17·7 ng/ml (1st quintile).
In contrast, some studies observing an increased risk may involve
25(OH)D concentrations situated in the right part of the U-shaped
curve. For example, Brandstedt et al.(9) observed an increased risk
for 25(OH)D concentrations≥34 ng/ml compared with 25(OH)D
concentrations≤27·2 ng/ml, and Meyer et al.(30) observed an
increased risk for 25(OH)D concentrations≥28 ng/ml compared
with 25(OH)D concentrations between 20 and 28 ng/ml. Studies
observing non-significant results may involve middle-range
concentrations (such as the study by Skaaby et al.(31)). However,
this point remains unclear as some studies that involved high
25(OH)D concentrations observed non-significant results(32,33),
and some other studies observed a significant direct association
between prostate cancer risk and 25(OH)D concentrations, even
at relatively low levels(34). Thus, further studies are needed that
take into account the distribution of 25(OH)D concentrations in
the studied population and its position in the potential U-shaped
curve. In addition, it has been suggested that large seasonal
fluctuations of vitamin D status may also contribute to explain the
positive association between 25(OH)D concentration and prostate
cancer risk in some studies(35), adding to the complexity of this
relationship. In the SU.VI.MAX cohort (Touvier et al.(21) and
Table 1), seasonal fluctuation of vitamin D status was moderate
with the lowest 25(OH)D concentrations observed in late winter/
early spring (shorter days), consistently with the existing literature
in France(36) and in other countries such as the USA(37–39).
The potentially protective role of vitamin D in prostate

carcinogenesis observed in our study is supported by
mechanistic hypotheses. Indeed, prostate cells can express the

25(OH)D-to-1,25(OH)2D conversion enzyme and the vitamin D
receptor(1) and vitamin D is thought to be involved in several
cell regulation pathways: pro-differentiation, pro-apoptosis,
anti-proliferation and cell growth(2–4).

In our study, when 25(OH)D was coded into quartiles, a
decreased prostate cancer risk was observed for Gleason’s
score <7 but not for Gleason’s score ≥7. However, when using
the other codings (continuous and 20 ng/ml cut-off), the
association was non-significant in both cancer subgroups. As
statistical power was limited in stratified analyses, these results
should be considered with caution and further explored in large
prospective studies. Thus far, the results regarding potential dif-
ferences according to prostate cancer stage/grade are unclear, as
shown in the WCRF meta-analysis(5), where no difference was
observed between advanced/high-grade or non-advanced/low-
grade prostate cancers (non-significant results in both groups), or
in a recent study by Kristal et al.(29), where a decreased prostate
cancer risk was observed whatever the Gleason’s score.

The lack of association between the ten studied SNP and
prostate cancer risk in our study does not seem to support the
protective role of vitamin D in prostate carcinogenesis suggested
by our results on plasma 25(OH)D concentration. However, in
this study, statistical power was limited in the analyses of SNP,
especially for the homozygote mutant genotypes. This could
explain the null associations observed. Consistent with our
findings, several meta-analyses(10–12) and one recent prospective
study(13) found null associations between VDR BsmI, FokI and
Cdx2 polymorphisms and prostate cancer risk. Another study
(not included in these meta-analyses) observed an increased
prostate cancer associated with VDR BsmI GG genotype among
men in the first tertile of plasma 25(OH)D concentration. The
epidemiological literature dealing with the other studied poly-
morphisms is scarce. One study(13) observed an increased
prostate cancer risk associated with GC rs4588 T allele or GC
rs7041 A allele. In SU.VI.MAX(21), these alleles were associated
with a lower vitamin D status. Another study(15) observed a
decreased lethal prostate cancer risk associated with CaSR
rs1801725 among men with low plasma 25(OH)D concentration.
To our knowledge, no study has investigated the other selected
SNP (CYP24A1 rs4809958, RXR rs7861779 and rs12004589 and
CaSR rs4678174) in relation to prostate cancer risk. Besides, other
vitamin D-related SNP than the ones included in the present
study may also be associated with prostate cancer risk, as
observed by Mondul et al.(14), and deserve further investigation.

Plasma PTH concentration was not associated with the risk of
prostate cancer. To our knowledge, our study was only the second
to investigate this relationship, the first one having observed null
results(9). In a previous study performed in the SU.VI.MAX
cohort(22), we observed an inverse correlation between 25(OH)D
and PTH concentrations, with a threshold value for PTH when
25(OH)D was approximately 30 ng/ml. Thus, it could be expected
that PTH concentration would decrease as 25(OH)D concentra-
tion increases. Mechanistic data are unclear regarding a potential
involvement of PTH in prostate carcinogenesis. Although some
data have suggested a potential pro-carcinogenic role of PTH(40–42)

(potential mitogenic activity in preneoplastic lesions), others
support a potential protective role. Indeed, high PTH concentra-
tion may decrease growth hormone secretion, thereby decreasing
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circulating insulin-like growth factor-1 (IGF-1) concentration(43,44);
IGF-1 being considered as a potential risk factor for prostate
cancer(45,46). Thus, further investigation is needed on the associa-
tion between PTH concentration and prostate cancer risk.
Strengths of our study pertained to its prospective design, long

follow-up, simultaneous assessment of 25(OH)D and PTH plasma
concentrations, vitamin D-related gene polymorphisms and
dietary intakes, and the consideration of numerous confounding
factors. However, limitations should be acknowledged. First,
blood Ca concentration was not available in our study. Ca
concentration would have provided more information regarding
the association between 25(OH)D, PTH, Ca and prostate cancer
risk. Dietary Ca intake was available, but intakes within normal
range are poorly correlated with blood Ca concentration(47), which
is under homoeostatic control. Second, only one plasma 25(OH)D
and PTH measurement was available at baseline. Repeated
measures could have been of interest to study their evolution
across time. Third, although the number of cases was appropriate
for the analyses described here, it has limited our ability to perform
separate analyses in specific subgroups, in particular regarding
genetic polymorphisms or prostate cancer grade. Finally, the
observed inverse association between vitamin D status and
prostate cancer could be partly explained by reverse causality,
considering the long lasting development of this cancer. However,
results were similar when excluding cases diagnosed within the
first 5 years of follow-up, thus arguing against reverse causality.
In this prospective study, the association between vitamin D

and prostate cancer risk was addressed through 25(OH)D
concentration, polymorphisms of vitamin D-related genes and PTH
concentration. Prostate cancer risk was inversely associated with
25(OH)D concentration but not with PTH concentration. These
results, supported by mechanistic data, bring a new contribution to
the understanding of the relationship between vitamin D and
prostate cancer risk and deserve further exploration.
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