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COMMUTATIVITY PRESERVING MAPPINGS 
OF VON NEUMANN ALGEBRAS 

MATEJ BRESAR AND C. ROBERT MIERS 

ABSTRACT. A map 9: M —> TV where M and TV are rings is said to preserve com-
mutativity in both directions if the elements a,b G M commute if and only if 9(a) and 
9(b) commute. In this paper we show that if M and N are von Neumann algebras with 
no central summands of type I\ or I2 and 9 is a bijective additive map which preserves 
commutativity in both directions then 9(x) = op(x) +f(x) where c is an invertible ele
ment in Zyy, the center of N, Lp: M —• N is a Jordan isomorphism of M onto N, and/ is 
an additive map of M into ZN. 

Introduction. By a commutativity preserving mapping of an algebra M into an al
gebra N we mean a mapping 6:M —> N which maps commuting pairs of elements into 
commuting pairs. We say that 6 preserves commutativity in both directions if the ele
ments a,b,£ M commute if and only if 0(a) and 9(b) commute. The aim in the study 
of commutativity preserving mappings is to determine their structure. In this paper, we 
consider the case when M and N are von Neumann algebras. We shall prove 

THEOREM 1. Let M and N be von Neumann algebras with no central summands of 
type I\ or I2. Let 6: M —> N be a bijective additive mapping. If 6 preserves commutativity 
in both directions then it is of the form 

9{x) = c<p(x)+f(x) 

where c is an invertible element in Z#, <p: M —> N is a Jordan isomorphism of M onto N, 
andf is an additive mapping of M into Z#. 

It can be easily shown that Jordan isomorphisms of von Neumann algebras preserve 
commutativity in both directions (cf [2, Theorem 3.4]). Thus, Theorem 1 characterizes 
bijective additive mappings preserving commutativity in both directions. 

One usually assumes that a commutativity preserving mapping is linear. Our algebraic 
methods enable us to weaken this assumption and to assume only the additivity of the 
mapping. Also, mappings such as isomorphisms, anti-isomorphisms and Jordan isomor
phisms will be considered in a ring sense—for instance, by a Jordan isomorphism ip of 
M into N we shall mean an additive bijective mapping satisfying ^(x2) = tp(x)2 for all 
x eM. 

A number of authors have characterized commutativity preserving mappings of vari
ous algebras. These characterizations are essentially the same as in Theorem 1, although 
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in some algebras Jordan isomorphisms can be expressed in a more explicit form. It seems 
that the first result of that kind was given by Watkins in [ 16] where the form of bijective 
linear commutativity preserving mappings of Mn(F), the algebra of all n x n matrices, 
n > 4, over a field F, was determined. Also, by a simple counterexample it was shown 
that the situation in case n — 2 is quite different (this justifies the assumption in Theo
rem 1 that von Neumann algebras must not contain central summands of type h)* The 
case when n — 3 was settled in [1] and [14]. In a series of papers [7, 8, 15] mappings 
preserving commutativity of symmetric matrices were discussed. The paper [8] of Choi, 
Jafarian, and Radjavi also contains some extension of these results to the algebra of all 
bounded linear operators on an infinite dimensional Hilbert space. Subsequently, Om-
ladic [13] described the structure of bijective linear mappings of $(X), the algebra of 
all bounded operators on a Banach space X, dimX > 3, which preserve commutativity 
in both directions. An analogous result for bijective *-linear mappings of von Neumann 
factors was obtained by the second named author [12] (note that in Theorem 1 we do 
not assume that 6 preserves adjoints). Finally, in [6] the first named author characterized 
linear bijective commutativity preserving mappings of prime algebras (satisfying some 
additional assumptions). Moreover, the assumption that 0 preserves commutativity was 
replaced by a weaker assumption that 9(x) and 9(x2) commute for any element x. In this 
paper we use a similar approach as in [6], and, in fact, the assumption in Theorem 1 
that 9 preserves commutativity in both directions can be replaced by a quite weaker one 
(see Theorem 3). 

A mapping/ of a ring M into itself is said to be commuting iff(x) commutes with x for 
every x in M. Additive commuting mappings of prime rings and von Neumann algebras 
were characterized in [4] and [5], respectively. A mapping q: M —> M is said to be a trace 
of a biadditive mapping if there exists a biadditive mapping B: M x M —+ M such that 
q(x) — B(x, x) for all x G M. There is a simple connection between commuting traces 
of biadditive mappings and commutativity preserving mappings (see the proof of Step 2 
of Theorem 3). The fundamental result in [6], upon which all the other results in [6] 
depend, determines the structure of commuting traces of biadditive mappings of certain 
prime rings. Following the procedure in [6], we will first obtain an analogous result for 
von Neumann algebras (Theorem 2). 

Recall that a bijective additive mapping 9 of a ring M onto a ring N is called a Lie 
isomorphism if it preserves commutators, i.e., 9([x,y]) = [9(x),9(y)] for all x,y G M 
where [w, v] denotes uv — vu. Obviously, these mappings preserve commutativity in both 
directions. Therefore, as a consequence of Theorem 1 we obtain a result concerning Lie 
isomorphisms of von Neumann algebras (Theorem 4). A similar result was obtained by 
the second named author in [10]. Comparing this result with Theorem 4 we see that in 
Theorem 4 we do not assume any continuity or *-linearity, but on the other hand, we 
have to exclude von Neumann algebras containing central summands of type I\ or h. 
Possibly Theorem 4 holds for arbitrary von Neumann algebras; however, to prove this 
one should have to use quite different methods. 

https://doi.org/10.4153/CJM-1993-039-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-039-x


MAPPINGS OF VON NEUMANN ALGEBRAS 697 

The center of an algebra M will be denoted by Z^. A ring is called semi-prime if 
aMa = 0 implies a = 0 for a G M. Any C*-algebra is semi-prime. We use [9] as a 
general reference for the theory of operator algebras. 

The results. Our first goal is to determine the structure of all commuting traces of 
biadditive mappings on von Neumann algebras with no central summands of type I\ or 
I2. For this purpose we need some preliminary results. 

LEMMA 1. Let M be a type I von Neumann algebra and let p G M be a projection. 
There exist projections e, f\, f2 in M such thatp = e+f\ +f2, e is abelian, f\ ~ f2,f\ -L/2, 
ande Lf\ +f2. 

PROOF. By considering the type / algebra pMp it suffices to assume p — 1, the 
identity of M. Since M is of type I,M = ®neK Mn where K is a set of distinct cardinals 
and Mn is a homogeneous algebra of type ln. Now 1 = T,neKPn where pn is the identity 
of Mn and is the sum of n orthogonal equivalent abelian projections. If n is finite and even 
ihtnpn =f\n+f2n where fa ~f2nmdfin ±f2n. If/z is finite and odd then pn = en+f\n+f2n 

where en ^ 0 is abelian, f\n ~f2n,f\n -Lfin- If w is infinite then by breaking up the set of 
n orthogonal, equivalent abelian projections that sum topn into two subsets of the same 
cardinality we can write p„ = f\n +fin,f\n ~ fin, fin -L/2/1. Set <? = $ > „ , / , = £/1#I, 
f2 = Ytfin- Then e is abelian since it is a sum of abelian projections with mutually disjoint 
central supports. Moreover f ~f2,f\ ±f2, e _L/i +f2 and 1 = EneKPn = e +/i +/2. 

LEMMA 2. Let M be a von Neumann algebra with no type I\ or l2 summands. Then 
the ideal I of M generated algebraically by {[x2, z]y[x, z] — [x, zjylx2, z] : x,y,z G M} is 
equal to M. 

PROOF. Ifl^M then J — 1 ̂  M where 7 is the uniform closure of /. Let TV = M/J. 
Then TV is semi-prime since it is a C*-algebra, and N satisfies [x2, z]y[x, z] = [x, zlylx2, z]. 
Standard polynomial identity theory for semi-prime rings implies that [JC, v]2 G Z#. If p 
is in the continuous part of M then p = f\ +f2 where/1 ~ f2, f\ J_ f2. Hence there 
exists v £ M such that vv* = f\, v*v = f2 so that [v, v*]2 = (f\ —f2)

2 = f\ +f2. Hence 
p = p + J G ZN. Let MD be the type / part of M where D is a projection in ZM- Ifp G M/) 
then, by Lemma 1, p = e +/i +/2 where e is abelian, f ~ f2,f\ A. f2 so that we can 
apply the previous argument to show that/i +f2 = fi+f2+J G Z#. Let D = ©weK Ai 
where D„ is a homogeneous summand of type rc and K is a set of distinct cardinals. Then 
en — Dne is an abelian projection in MDn. Since M has no summand of type I\ or I2 

we can choose fn,gn in M^ such that {en,fn,gn} is a set of three pairwise orthogonal 
equivalent projections. Thus e = YLen,f — £/«, g = Eg« are pairwise orthogonal and 
equivalent. By the above argument, ë+f,f + g, and ê + g are in Z# so that £ G Z#. Hence 
for any projection/? £ M, p £ ZN. We show that for any m G M, m G Z#. It suffices 
to assume m = m*. By [11, Lemma 2], Z# = ZM + / so for each /? G M, /? = z+ j 
for some z G ZM, j G 7. Given e choose projections pt G M and scalars A; such that 
Il m — EA//7/H < e and then choose zi G Z^,7i G 7 such that/?/ = zi +j/ . We have 
\\m-E\iZi\\ = mfJeJ\\m-ZXiZi-j\\ < \\m - EA/Z/ - EAj/| | = | | ra - EAj/| | < e. 
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Hence m G ZN so that [M, M] C 7. By [5, Lemma 2.6] the ideal generated by [M,M] 
is M so M = J which is a contradiction. • 

A connection between Lemma 2 and commuting traces of biadditive mappings is 
indicated in the following lemma, which was proved in [6] (although it is not explicitly 
stated there, it is clear from the proof of [6, Theorem 1]). 

LEMMA 3. Let M be any ring admitting the operator \ {i.e., the mapping x-^ 2x is 
bijective). Ifq.M —> M is a commuting trace of a biadditive mapping, then there exist 
mappings g\:M x M x M —• M and g2, g3: M x M x M x M —> M such that 

(1) l(x,y,z)uq(w) = g\(x,y,z)uw2 + g2(x,y,z, w)uw + g3(x,y,z, w)u 

for all JC, v, z, w, u E M, where 

l(x,y,z) = [j?,z]y[x,z] - fozM*2,*]. 

Moreover, g2 is additive in the last argument. 

We will need the following simple lemma, which is a special case of [2, Lemma 1.2]. 

LEMMA 4. Let G be an additive group and M be a semiprime ring. Suppose that 
additive mappings S and T of G into M satisfy S(x)MT(x) — {0} for all x G G. Then 
S(x)MT(y)= {0} for all JC, y G G. 

We are now in a position to prove 

THEOREM 2. Let M be a von Neumann algebra with no central summands of type I\ 
or I2. Let q:M —> M be a trace of a biadditive mapping. If q is commuting then it is of 
theform 

q(x) — Xx + ji(x)x + i/(x), x G M, 

where À G ZM, \I and v are mappings of M into ZM> and \i is additive. 

PROOF. Replacing u by uv in (1), and then comparing the relation so obtained with 
(1), we obtain 

(2) ~f(x,y,z)u[v,q(w)] = g\(x,y,z)u[v, w2] + g2(x,y,z, w)u[v, w]. 

Let 1 be the identity element of M. By Lemma 2 there exist ^,jc/,y/,z/, U[ G M, i = 
l , . . . ,n , such that 

n 

J^til(xi,yi,Zi)ui = 1. 

Using (2), we then see that for any v, w G M we have 

[v,q(w)] = l[v,q(w)] 

= \Ëta(xhyi,Zi)ui\[v,q(w)] 

n 

= Z)^i{^i.yi.Zi)Mi[v,^(w)]} 
/=1 

n n 

= J2 Ug\(xu yt, Zi)ui[v, w2] + J2 Ugi(xi, y,, zu wMv, w]. 
i=\ i=\ 
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Thus 

(3) [v, q(w)] — A[v, w2] + /x(w)[v, w], v, w G M 

for some A G M and some map fi:M —> M; note that /i is additive since, by Lemma 3, 
g2 is additive in the last argument. Our intention is to show that A G Z M and that /i maps 
M into ZM. 

Substituting vy for v in (3) we obtain 

[v, q(w)]y + v[v, g(w)] = A[v, w ]y + Av[v, w2] + ^x(w)[v, w]v + /i(w)v[y, w]. 

On the other hand, (3) shows that 

[v, q(w)]y + v[y, g(w>)] = A[v, w2]y + /z(w)[v, vv]y + vA[y, w2] + v//(w)[y, w]. 

Comparing the last two relations we get 

(4) [A,v]|j,w2] + [/i(w),v][v,w] = 0 , v,y,w eM. 

Replacing v by xv in (4), it follows that 

*[A,v][y, w2] + [A,x]v[y, w2] + x[ii(w),v][y,w] + [/i(w),x]v[y, w] = 0. 

By (4), the sum of the first and the third summands equals zero. Hence 

(5) [A,JC]V[V, w2] + [/i(w),x]v[v, w] — 0, x,v,y,wGM. 

In particular, 

[A,x](v[y, w]z)ly, w2] + [/x(w),*](v[y, w]z){y, w] = 0. 

But on the other hand, (5) yields 

([li(w)9x]v[y,w])z{y,w] = -[\,x]v\y, w2]x[y,w]. 

Comparing the last two relations we arrive at 

[A,x]v([y,w]z[y,w2] — [y,w2]z[y,w]) = 0. 

Lemma 2 implies that [A,JC]M = 0 for all x G M, and therefore, A G ZM- NOW, (5) 
reduces to 

(6) [/i(w),x]M\y, w] = {0}, x,y, w G M. 

Now fix x,y G M and introduce additive mappings S and T of M by S(w) = [/X(W),JC], 
T(w) = [y,w]. By (6), we have S(w)MT(w) = {0} for all w G M, so it follows from 
Lemma 4 that S(w)MT(z) = {0} for all w,z G M. Thus [/x(w),jc]v[y,z] = 0 holds for 
any w,x, v,y,z G M. In particular, [/X(W),JC]V[/X(W),JC] = 0, W,JC G M, which shows that 
fi(w) G ZA/, W G M. By (3) we now see that i/(w) = g(w) — Aw2 — /j,(w)w lies in ZM as 
well. With this the theorem is proved. • 

Our next aim is to consider commutativity preserving maps of von Neumann algebras. 
We need two preliminary results. 
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LEMMA 5. Let M be a von Neumann algebra with no central summands of type I\. 
I/C^ZM is such that that cM Ç ZM, then c = 0. 

PROOF. We have [cx,y] = 0, and therefore, c[x,y] = 0 for all J J G M. Thus 
cl — {0} where / is the ideal of M generated by all commutators in M. But I — M 
[5, Lemma 2.6], and so c must be zero. • 

Recall that a ring M is said to be torsion-free if nx — 0, where x G M and n is any 
positive integer, implies x = 0. 

LEMMA 6. LeJ M be a semiprime torsion-free ring and G be an additive group. 
Suppose that mappings e:G x G —> M and r:G x G x G —• M are additive in each 
argument. If e(x, X)MT(X, x, x) — {0}for every x G G, then e{y,y)Mr(x,x,x) = {0}for 
allx,y G G. 

PROOF. We have e(x, x)rr(x, x, x) — 0. Note that the substitution x + ny for x, where 
x, y G G and rc is an integer, yields 

n{ (e(x, y) + e(y, x)) rr(x, x, x) + e(x, -x)r(r(.x, x, y) + r(x, y, x) + r(y, x, x)) } 

+ n2Z2 + ^3z3 + n4Z4 = 0 

for some elements Z2, Z3, Z4 G M depending on x, y and r. Since n is an arbitrary integer 
and M is torsion-free, it follows easily that 

(e(x, y) + e(y, x)) rr(x, x, x) + e(x, x)r(r(jc, x, y) + r(x, y, x) + r(y, x, x)) = 0. 

Multiplying from the right by sr(x,x,x), since e(x,x)Mr(x,x,i) = {0}, we arrive at 

(e(x, y) + e(y, x)) rr(x, x, x)sr(x, X, X) = 0. 

Since r and 5 are arbitrary elements in M, the semiprimeness of M implies that 

(7) (e(x, y) + e(y, X))MT(X, X, X) = {0} 

for all x,y E G. In this relation, replace x by x+rcz with x, z G G and ft an integer. Arguing 
similarly as above, one obtains easily that 

(e(z,y) + e(y,z))rr(x,x,x) + (e(x,y) + e(y,x))r(r(z,x,x) + T(X,Z,X) + T(X,X,Z)) = 0. 

Multiplying from the right by ST(X, X, X), and then using (7), we get 

(e(z,y) + e(y,z))rr(x,x,x)sr(x,x,x) = 0. 

Since /? is semiprime, it follows that (e(z,y) + e(y,z)Wr(x,x,x) = {0}. A special case 
of this relation, where z = y, gives the assertion of the lemma. 

We now come to the central theorem of this paper; note that this theorem includes 
Theorem 1. 
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THEOREM 3. Let M and N be von Neumann algebras with no central summands 
of type I\ or 72. Let 9: M —> N be a bijective additive mapping such that 9(ZM) — Z#, 
[6(^l6(x)] = 0 for allx G M, and [9~l (wy\ 9~l (y)] = 0 for all y G Nandw G ZN. 
Then 9 is of the form 

6(x) = ap(x) +f(x) 

where c is an invertible element in Z^, f is an additive mapping of M into Z#, and ip is a 
Jordan isomorphism of M onto N. 

Moreover, there exist central projections p G M and q G N such that the restriction 
of(f to pM is an isomorphism ofpM onto qN, and the restriction of(fto(l— p)M is an 
anti-isomorphism of (1 — p)M onto (1 — q)N. 

PROOF. The proof is broken up into a series of steps. 

STEP 1. There is an isomorphism a: ZM —• Z# such that 

f 9(zx) — a(z)9(x) G ZN for all z G ZM, X G M, and 
\ 9~\wy) - <x-l(w)0~l(y) G ZM for all we ZN, y G N. 

PROOF OF STEP 1. Take x G M and z G ZM. As 9 maps ZM into ZN, a substitution 
x + z for x in [^(x2), #(X)] = 0 gives [9(zx), 9(x)] — 0. Denoting 9(x) by y, we thus 
have \9{z9~x{y)),y\ = 0 for arbitrary z G ZM and y £ N. That is, for any z G Z^, 
y —• 0(z0-1(y)) is a commuting additive mapping of a von Neumann algebra N. By 
[5, Theorem 2.1] it follows that there exists an element w in Z^ (depending on z) such 
t h a t ^ " 1 ^ ) ) — wy G ZN for all y G N; or equivalently, #(£*) — w9(x) G Zyv for all 
x G M. We set w = a(z), and claim that the mapping z —> oc{z) is an isomorphism of ZM 
onto Zyy. Our key relation is 

(8) 9(zx) - a(z)9(x) G ZN for all x G M, z G ZM. 

Let us first prove that a is additive. Take zi, z2 £ ZM- According to (8), for any JC G M 
we have 

9((zi +zi)x) G a(z\ +zi)9(x) + ZN. 

On the other hand, 

9((z\ + z2)x) = 9{z\x) + 6>(z2x) G <*(ZI)0(JC) + a(z2)9(x) + ZN. 

Comparing, we get [oc(z\ + zi) — &(z[) — oc(zi))9{x) G ZN. Since 9 is onto, Lemma 5 
implies that a(z\ + z2) = a(zi) + a(z2). 

Next, let us show that a is multiplicative. On the one hand, for zi,z2 £ ZM, JC G M, 
we have 

0feiZ2*) £ a(ziz2)#0) + Z,v, 

while on the other hand, 

9(zi(z2x)) G a(zi)0(z2*)+Z* Q a(zi)(a(z2)flW + Z^) +Z^ 

= a(zi)a(z2)^(x) + Z^. 
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Hence {oc{z\Zi) — oc{z\)oc{zi))d{x) G ZN, and so a{z\Zi) = a(zi)afe) by Lemma 5. 
Suppose that a{z) = 0 for some z G ZM. By (8), we then have 6(zx) G Z# for every 

x G M. Since we assumed that 6(ZM) — Z# this implies zx E ZM, X G M , and so Lemma 5 
yields z — 0. Thus a is one-to-one. 

Let us show that a is onto. Take w G Z#. By assumption, we have [9~~{(wv), 0_1 (y)] = 
0 for all y EN. Writing y as 0(JC), we get [fl-1

 (W0(JC)), JC] = 0. That is, x —• 0"1
 (W0(JC)) is 

a commuting additive mapping of M. By [5, Theorem 2.1] there is an element (3(w) E ZM 
such that 9~l

 (W0(JC)) — /3(W)JC G ZM for al JC G M; or équivalent y, 

(9) 0~\wy) - t3(w)6~{(y) E ZM for all y EN. 

As 0(ZM) = Z# it follows that wy - 0((3(w)8-l(yj) E ZN, y G TV. In view of (8), 
0(/3(w)0_1Cy)) e a(/3(w))y + ZN, and therefore (w - a(/3(w))v EZN,y E N. But then 
w = a(/3(w)) by Lemma 5. This implies that a is onto. Of course, (5 — a~\ and so, 
according to (9), the assertion of Step 1 is proved. 

STEP 2. There exist an element A E Z#, an additive mapping [i\M —> Z^ and a 
mapping I/:M—>ZH such that 

(10) 0O2) = A0(JC)2 + ii(x)x + v{x)for all xEM. 

PROOF OF STEP 2. The relation [0(JC),00c2)] = 0 , i G M , can be written in the form 
[y,6(6~l(y)2)] = 0 j G i V . Thus, q(y) = 0(0_1(j)2) is a commuting mapping of N. 
Since q is a trace of a biadditive mapping B(y,z) — 0(0~1(j)0~1(z)), Theorem 2 can 
be applied. Hence there are À G Z#, an additive mapping p,\ : TV —> Z# and a mapping 
i/i : TV —•» Zyy such that 

0(0-1(v)2) = A / + /x1O;)y + i/1(^) 

for all y EN. Note that this implies (10) where p — [i\Q and i/ = z/i0. 

STEP 3. Aw invertible. 

PROOF OF STEP 3. We have 

x2 = 0"1
 (A0(JC)2 + ii(x)0(x) + i/W). 

Applying Step 1 and the assumption that 6~l maps Z# into ZM it follows that 

x2 - a-{(\)Q-[(0(x)2) - a-{(n(x))x G ZM. 

Consequently 
[je2,**] = a - ^ A ) ^ - 1 ^ ) 2 ) , ^ - c r 1 (/I(JC))[JC,a] 

holds for all JC, « G M. From this relation we see that 

[JC2,W]V[JC,W] - [JC^MJC2,^] = a~1(A){[0"1(0(x)2),w]v[x,w] - [x,u]v[6~l(0(x)2),u]} 

for all JC, M, v G M. Since the ideal generated by elements of the form [x2, w]v[v, M] — 
[JC, WMJC2, «] is equal to M (Lemma 2), it follows that 1 G a_1(A)M, which means that 
a"1 (A) is invertible. But then A is invertible. 
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STEP 4. A mapping (p:M—+N, defined by 

ip(x) = X0(x) + ~n(x) 

is a Jordan homomorphism. 

PROOF OF STEP 4. We will argue similarly as in the proof of [6, Theorem 2]. We 
have 

^(x2) = \6(x2)+^(x2) 

= X20(x)2 + \IJL(X)0(X) + AI/(JC) + -fiix2), 

and 

<p(x)2 = (\9(x) + ^ti(xj)2 

= X20(x)2 + \n(x)0(x) + ^(x)2. 

Comparing these two relations we get 

(11) ^(x2) - if(xf E ZN for all x E M. 

Define the mapping e : M x M —> TV by 

e(x,y) = (f(xy + yx) - (p(x)tp(y) - <p(y)<p(x). 

Obviously, e is biadditive and it satisfies e(x,y) = e(y,x) for all x,y E M . Replacing 
x by x + y in (11) we that e in fact maps into Z#. In order to show that </? is a Jordan 
homomorphism we must prove that e = 0. 

Note that (f(x2) = (f(x)2 + ^e(jc, JC). Next, we have 

(f(x3) = -(f(x2x-\-xx2) 

= -W(x2Mx)^-if(x)ip(x2) + e(x2,x)} 

= ^ {(^W2 + 2 e ( x ' x ) ) ^W + ^(*)(W) 2 + 2C(*'*)) + t**2»*)} 
3 ! ! 2 

<P(x) + -e(x9x)ip(x) + -e(xr,x). 

Hence 

<?(*4) = -^(xx3+.rV) 

= -W(x)if(x3)^-if(x3)if(x)^e(x\x)} 

-\y(x)yp(xf + -e(*,*M*) + -e(x*,xy) + (Vc*)3 + -e(x,x)(p(x) 

+ -e(x2,x)j^(x) + e(x3,x)J 

(/?(x)4 + -e(*,*Mx)2 + -e(x2,xMx) + -e( r \x) . 
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On the other hand, we have 

<p(x4) = ^((x2)2) = (/Kx2)2 + ^ ( x V ) 

= ^(xf + ^xtf+^eix2^) 

= (f(x)4 + e(x,x)(f(x)2 + -e(x,x)2 + - e ^ x 2 ) . 

Comparing the two relations, so obtained for v?(x4), we get 

e(x,x)(f(x)2 — e(x2,x)(f(x) G Z^ 

where x is an arbitrary element in M. This implies that 

e(x,x)[(/?(x)2,w] = e(x2,x)[(/?(x),w] 

for all x G M, w G N, and therefore, 

e(x,x)([(^(x)2,w])>[(/?(x), w] — [^(x),w]y[(^(x)2,w]) = 0 

for all x G M,y,u G N. Now pick y,u £ N and define T : M X M X M — > N by 

r(xi,x2,x3) = [^*iM*2),w]y[(/?(x3),w] - [^(xi),w]y[(/?(x2Mx3),w] 

and note that 6(X,X)T(X,X,X) = 0 for all x G M. Since e maps in the center of N, we also 
have e(x,x)Mr(x,x,x) = {0}. Thus, the mappings e and r satisfy the requirements of 
Lemma 6, and so 

e(v, v)Afr(x,x,x) = {0} for all x,v £ M. 

Using the definition of <p, we see that 

r(x,x,x) = A3([6>(x)2,w]>;[l9(x),w] - [0(x)9w]y[/9(x)2,u]). 

Thus, since À is invertible and 9 is onto, we have 

e(v,v)N([s2,u]y[s,u] - [s,u]y[s2,u]) = {0} 

for all v G M and s, y, u G N. Applying Lemma 2 we see that e(v, v) must be zero. This 
proves that <p is a Jordan homomorphism. 

We set c — A-1 and/(x) = — ̂ A_1/xW» s o w e n a v e #(•*) = <^(x) + / (X) . 

STEP 5. <̂  is one-to-one and onto. 

PROOF OF STEP 5. Suppose < (̂a) = 0 for some a G M. Then 0(<z) = /(a) G ZN. 
By assumption, this yields a G Z^. Therefore, (/?(<?x) = \tp{ax + xa) — ^((p(a)Lp(x) + 
(p(x)(p(a)) = 0 for every x G M. As above, this implies that ax G ZA/. But then a = 0 by 
Lemma 5. 
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Let us show that the restriction of tp to ZM is equal to a. Take z G M. Then 9(z) G Z#, 
and therefore, (p(z) G Z#. Hence 

y>(zx) = -(p(zx + xz) = -(((f(z)p(x) + (p(x)(f(z)) = ip(z)<p(x) 

holds for any x in M. Consequently 

6(zx) = df(zx) -hf(zx) = cip(z)ip(x) +f(zx). 

Thus 6(zx) = c(f(z)(f(x) G ZN for all * G M. On the other hand, by Step 1 we have 
6(zx) — a(z)6(x) G Z/v, that is, 0(zx) — ca(z)ip(x) G ZN. Comparing, we get (y>(z) — 
a{z))c(f(x) G ZN, and therefore, as cip(x) = 0(x)—f(x)9 we have (p(z) — a(z))0(x) G ZN. 
By Lemma 5 it follows that ip(z) = &(z). 

Since a is onto, there is c\ G ZM such that c = oc(c\) = ip(c\). Similary, for every 
x G M there is/i(x) G ZM such that <^(/i(*)) = f(x). Thus #(x) = <̂ (ci )</?(•*) + <p(f\(x)Y 
As shown above, we have <p(c\)<p(x) = tp(c\x), which gives 0(x) = <^(CIJC+/I(JC)). Thus, 
since 6 is onto, (/? is onto as well. 

It remains to prove 

STEP 6. There exist central projections p G M and q G N such that the restriction 
ofp to pM is an isomorphism ofpM onto qN, and the restriction of(f to (I — p)M is an 
anti-isomorphismof\\ — p)M onto (1 — q)N. 

PROOF OF STEP 6. This assertion follows immediately from [3, Theorem 1]. Namely, 
this theorem tells us that if (f is a Jordan isomorphism of a ring M onto a 2-torsion-free 
semiprime ring TV in which the annihilator of any ideal is a direct summand (i.e., for any 
ideal / in N, we have N = Ann(7) © / for some ideal J of N—von Neumann algebras 
certainly satisfy this condition), then there exist ideals U and V of M and ideals U' and 
V of N such that U © V = M, U' © V = N, the restriction of <p to U is an isomorphism 
of U onto U', and the restriction of if to V is an anti-isomorphism of V to V. By standard 
arguments one shows that in case M and TV are von Neumann algebras, these ideals must 
be of the form U = pM, V = (1 —p)M for some central projection p in M, and U' = qN, 
V' — (1 — q)N for some central projection q in N. 

The proof of the theorem is thereby completed. 
Our last goal is to determine the structure of Lie isomorphisms of von Neumann al

gebras. For this purpose we need a refinement of Lemma 5. 

LEMMA 7. Let M be a von Neumann algebra with no central summands of type I\. 
IfcE ZM is such that c[x,y] G ZM for all x,y G M, then c — 0. 

PROOF. We have c[[x, v], w] = 0 for all x, y, u G M. Replacing y by yx it follows that 

0 = c[[x,j]x, M] = c[x,j][x, u] +c[[x,y],u]x = c[x,y][x, u]. 

Thus c[x, y] [x, u] = 0 for all x, y, u G M. Substituting uv for u and using the relation 
[JC, uv] = [x, u]v + u[x, v], we then get c[x,y]M[x, v] = {0} for all x,y, v G M. Note that 
Lemma 4 implies that c[x,y]M[u, v] = {0} for all x,y, u,v G M. Using the fact that the 
ideal generated by all commutators in M is equal to M [5, Lemma 2.6], it follows easily 
that c = 0. 
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THEOREM 4. Let M and N be von Neumann algebras with no central summands of 
type I\ or h. If 6: M —> N is a Lie isomorphism then it is of the form 9 = ijj + / where 
f is an additive mapping M into Z# sending commutators to zero, and, for some central 
projections p G M and q G N, the restriction of\p to pM is an isomorphism ofpM onto 
qN and the restriction ofijj to (I —p)M is a negative of an anti-isomorphism of (I —p)M 
onto (I — q)N. 

PROOF. Clearly, 9 satisfies the requirements of Theorem 3, and it is, therefore, of the 
form described in the statement of Theorem 3. 

Take x, y G pM. Since the restriction of <p to pM is a homomorphism, we have 

0([x,y]) = cp([x,y]) +/([*,?]) = c[<p(x), p(y)] +f([x,y]). 

On the other hand, 
0([x,y]) = l0(xlO(y)] = c2[p{x\p{y)l 

Comparing, we get (c2 — c)[ip(x), p(y)] = f([x,y]) G Zyy. Since p maps pM onto qN it 
follows that (c2 — c)q = 0, and therefore, since c is invertible, cq = q. Note that this 
implies that/([x, v]) = 0 for all x,y e pM. 

Similarly, by computing 0([x,y])9 x, y G (1 —p)M, in two ways, one shows that (c2 + 
c)Mx),<p(y)] = f([x,y]) G ZN. This yields c(l - q) = - ( 1 - q) and/([*,?]) = 0, 
x,y G (1 -p)M. 

Now it can be easily shown that the mapping I/>(JC) = cip(x) satisfies the desired con
clusions. 

Addendum. The question arises as to whether the assumption of *-linearity for 8 
will imply the *-linearity of <p in Theorem 3 since in general we can only conclude that 
(f is a ring isomorphism if 6 is only assumed additive. 

COROLLARY. If 6 is *-linear then so is ip. 

PROOF. We first prove p is linear if 6 is linear. Let À G C, x G M. Since c G Z/v and 
is invertible the linearity of 6 implies 

(*) p(Xx) - X(p(x) G ZN. 

If x G pM, y G qN and xo G pM is such that <p(xo) = y then (p(\x) — Xp(x)^jy = 
(p(\x) — Xpix^jpixo) — p(Xxxo) — Xp(xxo) G ZqN by (*) and the fact that p is a ring 
isomorphism from/?M onto qN. By Lemma 5 applied to qN we have p){Xx) = \cp(x) for 
x G pM. Similarly, if x G (1 — p)M, j G (l—q)N, and JCO G (1 —p)M is such that </?(JCO) — J 
then ((/?(Ax) - A(/̂ (x))y = (p(Xx) - A(^(x))^(x0) = p(XxQx) - X(p(x0x) G Z^\-q)N by (*) 
and the fact that p is a ring anti-isomorphism from ( 1 — p)M onto ( 1 — q)N. As before 
p(Xx) = Xp(x) forjc G (1 —p)M. 

To prove adjoint preservation we first notice that 9(x*) = 9(x)* implies ap(x*) — 
c*ip(x)* G ZM for all x G M. Assume for a moment that /? = 1. Since p is a linear ring 
isomorphism of M and N, there exist a *-isomorphism p: M —> N and a positive invertible 
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element s £ M such that ip(x) = p(sxs~l) by [17, Theorem I]. Hence c*ip(x)* — cp(x*) — 
c* (p(sxs_1)) — cp(sx*s~l) = c*p(s~lx*s) — cp(sx*s~l) G ZN for all x G M. Let CQ G ZM 

be such that p(co) = c. Then c0 is invertible and c*0s~xx*s — cosx*s~l G ZM for all 
x G M since p is a ^isomorphism. Replacing x by &*;*£ we see that CQXS2 — CQS2X G ZM 

for all x G M. Let w = CQS2 so w* = CQS2. Since Co G Z^ we have CQXS2 — CQS2X = 
XCQS2 — co^2^ = xw* — WX^ZM for all J G M . Taking x = 1 we see that w* — w G ZM. 
Now [x, w] = xw — wx = xw — xw* + z for some z G ZM depending on JC. Hence 
x, [x, w]I = 0 since w — w* G Z^. By the Kleinecke-Sirokov Theorem [18], [x, w] is 

quasi-nilpotent for all x. Since w = cos2 and co is central and invertible we have [x, s2] 
is quasi-nilpotent for all x. Taking x = x* we see that [ix,s2] is self-adjoint and quasi-
nilpotent so that [x,s2] = 0 for all x = x* in M. This implies s2 G ZM. Since s > 0 we 
have s G ZM. Hence (p(x) = p(sxs~l) = p(x) and <p is a *-isomorphism. 

If ^ = 1 and (p:M —> N was a linear anti-isomorphism, we define Mop to be the 
von Neumann algebra obtained from M by defining a new multiplication a*b \—ba and 
keeping the same adjoint and linear structure as that of M. Then cp: Mop —> N is a. linear 
isomorphism and cip(x*) — c*y?(x)* £ Z^Mx £ M. By the first part of the argument <p 
preserves the adjoint on Mop and hence on M. 
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