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OSCILLATION AND GLOBAL ATTRACTIVITY 
IN A PERIODIC DELAY EQUATION 

J. R. GRAEF, C. QIAN AND P. W. SPIKES 

ABSTRACT. Consider the delay differential equation 

x(t) = -a(t)x(t) + (5(t)e~x{t-m^. t > 0. 

where a(t) and (3(t) are positive, periodic, and continuous functions with period u > 0, 
and m is a nonnegative integer. We show that this equation has a positive periodic 
solution x*(t) with period u. We also establish a necessary and sufficient condition for 
every solution of the equation to oscillate about x*(t) and a sufficient condition for JC*(/) 
to be a global attractor of all solutions of the equation. 

1. Introduction. Our aim in this paper is to investigate the asymptotic behavior of 
solutions of the nonlinear delay differential equation 

(1.1) x(t) = -oc{i)x(i) + (5{i)e-x{t~mu)\ t > 0, 

where a(i) and (5(t) are positive, periodic, and continuous functions with period u > 0, 
and m is a nonnegative integer. We will first show that equation (1.1) has a positive 
periodic solution x*(t) with period u. Then we will establish a necessary and sufficient 
condition for every solution of equation (1.1) to oscillate about x*(t) and a sufficient 
condition forx*(/) to be a global attractor of all solutions of equation ( 1.1 ). 

When muj = r, a(t) = a, and (3(t) = (31 with a, (3, and 1 positive constants, 
equation (1.1) reduces to the autonomous equation 

(1.2) y(t) = -ay(t) + ̂ y{t~T\ t > 0 

where y(i) = x(i)/l. Equation (1.2) was used by Wazewska-Czyzewska and Lasota [10] 
as a model for the survival of red blood cells in an animal; see also Arino and Kimmel 
[1]. Hereof) denotes the number of red blood cells at time /, a is the probability of death 
of a red blood cell, (5 and 7 are positive constants related to the production of red blood 
cells per unit time, and r is the time required to produce a red blood cell. The oscillation 
and the global attractivity of equation (1.2) has been studied by Kulenovic and Ladas 
[5], and by Kulenovic, Ladas and Sficas [6], respectively; see also Gyôri and Ladas [3]. 

Recently, the asymptotic behavior of solutions of some periodic population models 
has been studied, for example, in Gopalsamy, Kulenovic and Ladas [2], Zhang and 
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Gopalsamy [11], and Lalli and Zhang [7]. As stated in [7], the effects of a periodically 
varying environment are important for evolutionary theory as the selective forces on 
systems in a fluctuating environment differ from those in a stable environment. Thus, the 
assumptions of periodicity of the parameters are a way of incorporating the periodicity 
of the environment. It has been suggested by Nicholson [8] that any periodic change of 
climate tends to impose its period upon oscillations of internal origin or to cause such 
oscillations to have a harmonic relation to periodic climactic changes. In view of this, it 
is realistic to assume that a and (3 are periodic functions of period UJ and that the delay 
is an integral multiple of the periodicity of the environment. Hence, we are motivated 
to investigate the asymptotic behavior of solutions of the periodic delay differential 
equation (1.1). 

2. Existence of positive periodic solutions. In this section, we study the existence 
of periodic solutions of equation (1.1). The result is the following. 

THEOREM 1. Equation (1.1) has a positive periodic solution x*(t) with period UJ. 

PROOF. First, consider equation (1.1) without delay, that is, 

(2.1) x(t) = -a(t)x(t) + f3(t)e'x{t\ t > 0. 

Observe that there is a unique r(t) > 0 such that 

-oc{t)r{t) + (3(t)e-r(t) = 0 for t > 0. 

Set 

A- min {r(t)\ and B- max{r(0l, 

and let x(t) = x(t, 0, JCO) denote the unique solution of equation (2.1) through (0,xo). We 
claim that 

jc0 G [A, B] implies that x(t) = x{t, 0, JC0) G [A, B]. 

We first show that x(t) < B. Otherwise, 

f = inf{* > 0 : x(t) > B} < oo. 

Then, it is easy to see that there exists a t\ > f such that 

x(t\)>B, and x / ( / 1 )>0 . 

Hence, it follows from (2.1) that 

0 < x V i ) = - a^Ox^O + ^ / i ) ^ ^ 

< -a(ti)B + Pfa)e-B 

< -a{tx)r(t\) + (l{tx)e-rM = ^ 
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which is a contradiction. Hence, x(t) < B. By a similar argument, we can show that 
x(t) > A also. Thus, in particular, 

x^ =x(a;,0,xo) G [A,B]. 

Now define a mapping F: [A,B]—> [A, B] as follows: for each JCO G [A, B] 

F(xo) = *UJ-

Since the solution x(t, 0, xo) depends continuously on the initial value xo, the mapping F 
is continuous and maps the interval [A,B] into itself. Therefore, F has a fixed point XQ 
by Brouwer's fixed point theorem. Thus, the unique positive solution x*(t) = x(t, 0, JCJ) 
is periodic with period CJ. 

Finally, by noting that JC*(/) = x*(t — mu\ we see thatx*(/) is also a periodic solution 
of equation (1.1). This completes the proof. 

REMARK 1. From the proof of the theorem, we see thatx*(/) satisfies 

A < x*(t) < B 

which gives an estimate for the location of the periodic solution. Clearly, when a(t) and 
(3(t) are both constants, then A = B and so x*(t) = A becomes a positive equilibrium of 
equation (1.1). 

3. Oscillation of equation (1.1). In this section, we study the oscillatory behavior 
of solutions of equation (1.1). The following theorem is our main result. 

THEOREM 2. Every solution of equation (1.1) oscillates about x*(t) if and only if 

[ <x(t)dt)]Q (3(t)e-x^dt>-. 

PROOF. Let x(t) be a solution of equation (1.1) and let x(t) — x*(i) = y(t). Then 
equation (1.1) reduces to 

(3.2) y(t) + a(t)y(t) + /3(0^*(0[1 - e~y{t-muj)] = 0. 

Clearly, x(t) oscillates about x*(t) if and only if y(t) oscillates about zero. 
Set g(u) = 1 - e~u. By noting that 

g(u) = e~u > 0 and e~u > 1 - u 

for any u, we see that 
giu) < g'(0)u for u > 0. 

Hence, by the linearized oscillation theorem established in [4], it follows that every 
solution of equation (3.2) oscillates if and only if every solution of the equation 

(3.3) z(i) + a(t)z(t) + f3(t)e-x*(t)z(t -muj) = 0 
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oscillates. Next, observe that the oscillation invariant transformation 

w(t) = z(t) exp ( / a(s) ds J 

reduces equation (3.3) to 

(3.4) w(t) + Q(t)w(t -mu;) = 0 

where 

e (0 = exp( / o
W "a (0^) /3 ( / )^ ( / ) . 

It is well-known, for example, see [3, p. 42], that every solution of equation (3.4) 
oscillates provided 

/•/ 1 
lim / Q{s)ds > - , 

and that equation (3.4) has a positive solution if 

rt 1 

sup / Q(s)ds < - . 
t>muj Jt~m^ e 

Hence, by noting that Q(t) is periodic with period CJ, we see that every solution of 
equation (3.4) oscillates if and only if 

/ Q(s)ds>-, 
Jo e 

that is, (3.1) holds. This completes the proof. 

4. Global attractivity of equation (1.1). In this section, we study the global attrac-
tivity of equation (1.1 ). The following lemma extracted from [9] with a slight modification 
is needed in the proof of our main result. 

LEMMA 1. Consider the difference equation 

(4.1) An+] =h{An) 

where 
heCl[R,R]. 

Assume that h is a nonincreasing function and has a unique fixedpoint A*'. Suppose also 
that 

h(oo) = lim h(u) 
u—>oo 

exists and that 
h\u)h'{h{u)) < 1 foru>A\ 

Then the solution {An} of equation (4.1) with Ao = h(oo) tends to A* as n tends to oo. 

Our main result in this section is the following. 
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THEOREM 3. Assume that 

(4.2) J^0(t)e-x*{t)dt<\. 

Then every solution of equation (1.1) tends to x*(t) as t tends to oo, that is, 

(4.3) l im[j t(0-**(/)] = 0 . 
t—>oo 

PROOF. Since the transformation y(t) = x(t) — x*(t) reduces equation ( 1.1 ) to 

(4.4) y(t) = -a(t)y(t) + (5{t)e^{t\e~^-m^ - 1 ), 

it suffices to show that every solution of equation (4.4) tends to zero as / tends to oo. 

First, we show that every nonoscillatory solution of equation (4.4) tends to zero. We 

assume that y(t) is eventually positive; the proof for the caseXO eventually negative is 

similar and will be omitted. Since y(t) > 0 eventually, from (4.4) we see that there is a 

T > 0 such that 

y(t) < 0 for t > T, 

and so there exists a constant / > 0 such that lim /_00^(^) = / and 

y(t) < -la(t) + (3(t)e-x*{t)(e-1 - 1) for t > T + mu. 

Hence, it follows that 
rOO 

l-y(T + mu) < -I / <x(t) dt, 

which, clearly, implies that / = 0. 

Next, assume that ^(/) oscillates. We claim that for any n > 0, there exists a constant 

T{n) > 0 such that 

(4.5) y2n<y(t)<yin+\ for t>T(n) 

where {yn} is defined by 

y**\={fîui0(t)e-™dt)(e-y°-l) 
yo = -SrP(t)e-x*{t)dt. 

Sincey(t) oscillates, there is an increasing sequence {tn} such that 

(4.6) t„+\ -t„> 2muj + 1 and y(tn) = 0 for n = 0 , 1 , 

Let sn G (tn, t„+\ ) be a point where y(t) obtains its local maximum or local minimum in 

(tn, t„+\ ). Hence,y(sn) = 0 and it follows from equation (4.4) that 

-a(sMsn) + P(sn)e-x^\e-^-m^ - 1) = 0, 

which implies that 

y(sn)y(sn — muj) < 0, n = 0, 1 , . . . . 
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Hence, there is a £„ E (sn — moj, sn) such that 

(4.7) jK£n) = 0, /I = 0 , 1 , . . . . 

From equation (4.4) we find that 

— \y(t)e&a{s)ds] = p(t)e&a^ds
e-

x*{tXe-y{t-muj) - 1). 
dt 

Then, by integrating both sides of this equation from £„ to s„ and by noting (4.7), we see 
that 

(4.8) y(sn)e&"a{s)ds = f*" (3(t)eSôa^ds
e-

x*{t)(e-y{t-muj) - \)dt 

> -eS«a{s)ds f" {3{t)e~x*{t)dt 

> -e&"a{s)ds J™" f3(i)e~x*{t)dt, 

and so 
y(Sn)>-)0 (3(t)e-x{t)dt=y0 for n = 0 , 1 , . . . . 

Hence, it follows that 

(4.9) y(t)>yo for t>t0. 

By noting the decreasing nature of e~~u and by using (4.9) in (4.8), we find that 

y{sn)eS« a{s)ds < eS>{s)ds(J™" (3(t)e-x*(t)dtye-
yQ - 1), 

and so 
As») < ( j f M)*-™ dtye-

y«-\)=yx for n = 1,2,.... 

Hence, 
y{t) < yx for t > tx 

and so 
yo < y(t) < y\ for t > tx. 

Now assume that 

(4.10) y2k <y(t) <y2k+] fort> tlk+x. 

Then, by using (4.10) in (4.8), we find that 

y(sn)ett,(X{s)ds > e^a{s)ds( jT"/3(0<?~x*(0^)(e"^+l - 1), 

and so 

y(sn) > ( j T f3(t)e-x^dt)(e-y^ - 1) 

= >'2<A+1), « = 2 ( t + l ) , 2 ( * + l ) + l , . . . . 
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Hence, 

(4.11) y(t)>y2(k+\) fort>t2ik+\). 

By using (4.11) in (4.8) we find that 

y{sn)e&"a{s)ds < eS>{s)ds(j™U P(t)e-x*{tUtye-
y^ - 1), 

and so 

y{sn) < (fo
mUf3(t)e-x*(t)dtye-y^ - 1) 

= J^Jt+n+i, /i = 2 ( * + l ) + l , 2(£ + 2 ) , . . . . 

Hence, 
y(t) < y2{k¥\Y-\ for / > t2{k+x)+x, 

and so 

J>2(*+1) < XO < J^+D+l for / > t2k+\ • 

Therefore, by induction, we see that (4.5) holds. 
Now, we claim that 

lim yn - 0. 
n—»oo 

To this end, set 

A ( « ) = ( j f j8(/)e- J ["w*)(e-"- l) . 

Then, 

and so 

(4.12) h'(u)h'(h(uj) = ^f^f3(t)e-x*(t)d?j2e-(u+hm. 

Observe that 
u + A(i/) = u + ( jH" ^(/)^~x*(/) <//) (e~u - 1 ), 

which, in view of (4.2) and the fact that e~u > 1 — u, implies that 

u + h(u)>u + (e~u- 1 ) > 0 forw>0. 

Hence, it follows from (4.12) that 

ti(u)ti(h(uj) < [J^ Pity-™ di) < 1 forw > 0, 

and so by Lemma 1, 
lim yn = 0. 

n—>oo 

Then, in view of (4.5), we see that 

lim y(t) = 0. 
n—>oo 

This completes the proof. 
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REMARK 2. Set x(t) = ly(t). Then equation (1.2) reduces to 

(4.13) x(t) = -ax(t) + Ple-X{t-T\ t > 0. 

equation (1.2) has a unique positive equilibriumy* and so x* = 7y* is the unique positive 
equilibrium of equation (4.13). Clearly, every solution of equation (1.2) oscillates about 
y* if and only if every solution of equation (4.13) oscillates about **; every solution of 
equation (1.2) tends to y* if and only if every solution of equation (4.13) tends to x*. 
Hence, by employing Theorem 2, we see that every solution of equation (1.2) oscillates 
about y* if and only if 

(4.14) eaT(5lre-^ > - . 
e 

Since ay* = (3e~ly*, (4.14) is equivalent to 

(4.15) alry*eaT>-. 
e 

It has been shown in [5] that (4.15) is a necessary and sufficient condition for every 
positive solution of equation (1.2) to oscillate abouti*. 

By employing Theorem 3, we see that every solution of equation (1.2) tends to y* as 
/ tends to oo provided 

i¥lre~lf < 1, 

that is, 

(4.16) cary* <\. 

It has been shown in [6] that if 

(4.17) exp(7/( l -e~aT)) < 2, 

then every positive solution of equation (1.2) tends toy* as / tends to oo. Clearly, (4.16) 
is a different condition from (4.17). 

EXAMPLE 1. Consider the delay differential equation 

(4.i8) m = *> + e + 1 + s i n ? + 2 7 r C 0 S V ^ > . 
v 2?r ln(e + 1 + sin t) 2TT 

It is easy to check that x*(t) = \n(e + 1 + sin/) is a periodic solution of equation (4.18) 
with period 2i\. Observe that 

f ft* 1 , A / ft* e + 1 + sin / + 2TT COS / *m , 
e x P / 7T-T-, : : :dt)\ / ^ e dt 

\h 2?r ln(e + 1+ sin t) J V./o 2?r 
= expf/2\ ,, \ . ^,Vf l ( l + -4^U 

*V° 2TT\n(e + 1 + sint) J \Jo 2ir\ e + l + s i i u / 
^ r2rr 1 / 2lTCOSt , , 

= 1 > 
e 

e + 1 + sin / 
1 
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Hence, by Theorem 2, every solution of equation (4.18) oscillates about x*(t). Also, 
observe that 

r2n e+ \ + Sm t + lïï COSt Y*(* 1 r2n \ / 2lT COS t \ , 
/ e~x {t)dt= — 1 + — )dt=\. 

Jo 2TT JO 2TT V e+l+smtJ 

Hence, by Theorem 3, every solution of equation (4.18) tends to x*(0 as t tends to oo. 
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