CONJUGACY SEPARABILITY OF CERTAIN POLYGONAL PRODUCTS

GOANSU KIM

Abstract

We show that polygonal products of polycyclic-by-finite groups amalgamating central cyclic subgroups, with trivial intersections, are conjugacy separable. Thus polygonal products of finitely generated abelian groups amalgamating cyclic subgroups, with trivial intersections, are conjugacy separable. As a corollary of this, we obtain that the group $A_{1} *_{\left\langle a_{1}\right\rangle} A_{2} *_{\left\langle a_{2}\right\rangle} \cdots *_{\left\langle a_{m-1}\right\rangle} A_{m}$ is conjugacy separable for the abelian groups A_{i}.

1. Introduction. A group G is called conjugacy separable (c.s.) iff to each pair $x, y \in G$ either x and y are conjugate in $G\left(x \sim_{G} y\right)$ or their images are not conjugate in some finite quotient of G. For example, polycyclic-by-finite [5], free-by-finite [2], and Fuchsian [4] groups are c.s. In general, it is not known whether free products of those c.s. groups amalgamating a cyclic subgroup are c.s. However free products of freeor nilpotent-groups [3], certain finite extensions of free-or nilpotent - groups [16], and surface groups [15] amalgamating a cyclic subgroup are c.s. Also the conjugacy separability of certain free products of c.s. groups amalgamating a cyclic retract has been considered in $[11,8]$. The purpose of this paper is to investigate the conjugacy separability of certain polygonal products of groups. We show that polygonal products of more than three polycyclic-by-finite groups amalgamating central cyclic subgroups with trivial intersections are c.s. (Theorem 4.1).

Polygonal products of groups were introduced by A. Karrass, A. Pietrowski and D. Solitar [7] in the study of the subgroup structure of the Picard group PSL(2,Z[i]), which is a polygonal product of four finite groups amalgamating cyclic subgroups, with trivial intersections. In [1], Allenby and Tang proved that polygonal products of four finitely generated (f.g.) free abelian groups, amalgamating cyclic subgroups with trivial intersections, are residually finite ($\mathcal{R F}$). And they gave an example of a polygonal product of f.g. nilpotent groups which is not $\mathcal{R F}$. However, in [12, 10], Tang and Kim showed that certain polygonal products of f.g. nilpotent groups are $\mathcal{R} \mathcal{F}$ or π_{c}. In [9], Kim proved that polygonal products of more than three polycyclic-by-finite groups amalgamating central subgroups with trivial intersections are π_{c}; hence they are $\mathcal{R} \mathcal{F}$. In [9], the subgroup separability of polygonal products is also considered. Kim and Tang [13] constructed a polygonal product of f.g. free abelian groups amalgamating cyclic

[^0]subgroups, with trivial intersections, which is not residually p-finite for any prime p. Thus we naturally ask whether polygonal products of f.g. abelian groups amalgamating cyclic subgroups, with trivial intersections, are c.s. In this paper, we obtain that those polygonal products are c.s. (Corollary 4.2).
2. Preliminaries. Briefly, polygonal products of groups can be described as follows [1]: Let P be a polygon. Assign a group G_{v} to each vertex v and a group G_{e} to each edge e of P. Let α_{e} and β_{e} be monomorphisms which embed G_{e} as a subgroup of the two vertex groups at the ends of the edge e. Then the polygonal product G is defined to be the group presented by the generators and relations of the vertex groups together with the extra relations obtained by identifying $g_{e} \alpha_{e}$ and $g_{e} \beta_{e}$ for each $g_{e} \in$ G_{e}. By abuse of language, we say that G is the polygonal product of the (vertex) groups $G_{0}, G_{1}, \ldots, G_{n}$, amalgamating the (edge) subgroups $H_{1}, \ldots, H_{n}, H_{0}$ with trivial intersections, if $G_{i-1} \cap G_{i}=H_{i}$ and $H_{i-1} \cap H_{i}=1$, where $0 \leq i \leq n$ and the subscripts i are taken modulo $n+1$. We only consider the case $n \geq 3$ (see [1]).

We introduce some definitions and results that we shall use in this paper.
We write $x \sim_{G} y$ if there exists $g \in G$ such that $x=g^{-1} y g$ and we write $x \not \chi_{G} y$ otherwise. $\{x\}^{G}$ denotes the conjugacy class $\left\{y \in G: x \sim_{G} y\right\}$ of x in G. We use $\langle X\rangle^{G}$ to denote the normal closure of X in G. We also use $[x, y]=x^{-1} y^{-1} x y$ and $C_{H}(K)=\{h \in$ $H:[h, k]=1$ for all $k \in K\}$.

We denote by $A *_{H} B$ the free product of A and B with their subgroup H amalgamated. If $G=A *_{H} B$ and $x \in G$ then $\|x\|$ denotes the amalgamated free product length of x in G. On the other hand we use $|x|$ to denote the order of x. We write $N \triangleleft_{f} G$ to denote that N is a normal subgroup of finite index in G. If \bar{G} is a homomorphic image of G then we use \bar{x} to denote the image of $x \in G$ in \bar{G}.

Let H be a subset of G. Then we say that G is H-separable if to each $x \in G \backslash H$ there exists $N \triangleleft_{f} G$ such that $x \notin N H$. A group G is said to be residually finite $(\mathcal{R} \mathcal{F})$ if G is $\langle 1\rangle$-separable, and G is said to be π_{c} if G is $\langle x\rangle$-separable for any $x \in G$. We shall use the following results:

Theorem 2.1 ([3]). If A and B are c.s. and H is finite, then $A *_{H} B$ is c.s.
THEOREM 2.2 ([9]). Let G be the polygonal product of the polycyclic-by-finite groups $A_{0}, A_{1}, \ldots, A_{n}(n \geq 3)$, amalgamating any subgroups $H_{1}, \ldots, H_{n}, H_{0}$, with trivial intersections, where $H_{i} \subset Z\left(A_{i-1}\right) \cap Z\left(A_{i}\right)$ for all i, and where subscripts are taken modulo $n+1$. Then G is π_{c}.

Lemma 2.3 ([9]). Let A_{i} and H_{i} be as in Theorem 2.2, and let $E_{m}=A_{0} *_{H_{1}} A_{1} *_{H_{2}}$ $\cdots *_{H_{m}} A_{m}(m \geq 1)$. Then E_{m} is $\left(H_{0} * H_{m+1}\right)$-separable and $H_{0} H_{m+1}$-separable.

For a graph Γ, with vertex set V and edge set E, assign a group G_{v} to each vertex $v \in V$. Then the group $\left\langle G_{v} ;\left[G_{v}, G_{w}\right]\right.$, for $\left.\forall v w \in E\right\rangle$ is called the graph product of the groups G_{v} for the graph Γ. For example, the graph product of cyclic groups $\left\langle a_{i}\right\rangle(i=1,2, \ldots, n)$ for the n-gon is just the polygonal product of abelian groups $\left\langle a_{1}, a_{2}\right\rangle,\left\langle a_{2}, a_{3}\right\rangle \ldots,\left\langle a_{n}, a_{1}\right\rangle$ amalgamating subgroups $\left\langle a_{2}\right\rangle,\left\langle a_{3}\right\rangle, \ldots,\left\langle a_{1}\right\rangle$ with trivial intersections. Hence such polygonal product is c.s. by the next result.

THEOREM 2.4 ([6, P104]). Graph products of c.s. groups are c.s.
As Dyer [3] observed, the main tool to prove the conjugacy separability of a free product with amalgamation is the following result, known as Solitar's theorem:

Theorem 2.5 ([14]). Let $G=A *_{H} B$ and $x \in G$ be of minimal length in its conjugacy class. Suppose $y \in G, y$ is cyclically reduced, and $x \sim_{G} y$.
(1) If $\|x\|=0$, then $\|y\| \leq 1$ and if $y \in A$ say, there is a sequence $h_{1}, h_{2}, \ldots, h_{r}$ of elements in H such that $y \sim_{A} h_{1} \sim_{B} h_{2} \sim_{A} \cdots \sim_{B} h_{r}=x$.
(2) If $\|x\|=1$, then $\|y\|=1$ and either $x, y \in A$ and $x \sim_{A} y$, or else $x, y \in B$ and $x \sim_{B} y$.
(3) If $\|x\| \geq 2$, then $\|x\|=\|y\|$ and $y \sim_{H} x^{*}$ where x^{*} is some cyclic permutation of x.
3. Some lemmas. A group G is called polycyclic-by-finite if it has a normal subgroup N such that N is polycyclic and G / N is finite. Throughout this paper we consider that the A_{i} are polycyclic-by-finite groups and that $a_{i}, a_{i+1} \in Z\left(A_{i}\right),\left\langle a_{i}\right\rangle \cap\left\langle a_{i+1}\right\rangle=1$, and $A_{i} \cap A_{i+1}=\left\langle a_{i+1}\right\rangle$.

Lemma 3.1. Let $E=A_{1} *_{\left\langle a_{2}\right\rangle} A_{2} *_{\left\langle a_{3}\right\rangle} \cdots *_{\left\langle a_{m-1}\right\rangle} A_{m-1}(m \geq 3)$, and $H=\left\langle a_{1}\right\rangle *\left\langle a_{m}\right\rangle$. If $x \sim_{E} y$ for $x, y \in H$, then $x \sim_{H} y$.

Proof. We may assume that x and y are cyclically reduced in H and $x \neq 1 \neq y$.
First, suppose $x \in\left\langle a_{1}\right\rangle$ (or $x \in\left\langle a_{m}\right\rangle$). Let $E=A_{1} *_{\left\langle a_{2}\right\rangle} E_{1}$, where $E_{1}=A_{2} *_{\left\langle a_{3}\right\rangle}$ $\cdots *_{\left\langle a_{m-1}\right\rangle} A_{m-1}$. Since $x \in Z\left(A_{1}\right)$ and $\left\langle a_{1}\right\rangle \cap\left\langle a_{2}\right\rangle=1$, we have $\{x\}^{A_{1}} \cap\left\langle a_{2}\right\rangle=\emptyset$. Thus x has the minimal length 1 in its conjugacy class in E. Thus by Theorem $2.5 x \sim_{E} y$ implies $y \in A_{1}$ and $x \sim_{A_{1}} y$; hence $x=y$. Clearly $x \sim_{H} y$.

Second, suppose $\|x\|=2 n>1$. Let $E=A_{1} *_{\left\langle a_{2}\right\rangle} E_{1}$ be as above. Since x has the minimal length $2 n$ in its conjugacy class in E, by Theorem 2.5 we have $\|x\|=\|y\|$ and $x \sim_{\left\langle a_{2}\right\rangle} y^{*}$ for some cyclic permutation y^{*} of y. If $m=3$, i.e., $E=A_{1} *_{\left\langle a_{2}\right\rangle} A_{2}$, then $x \sim_{\left\langle a_{2}\right\rangle} y^{*}$ implies $x=y^{*}$; hence $x \sim_{H} y$. If $m>3$, then $\left\langle a_{2}, a_{m}\right\rangle=\left\langle a_{2}\right\rangle *\left\langle a_{m}\right\rangle$. Now suppose $x=a_{1}^{\epsilon_{1}} a_{m}^{\delta_{1}} \cdots a_{1}^{\epsilon_{n}} a_{m}^{\delta_{n}}, y^{*}=a_{1}^{\epsilon_{1}^{\prime}} a_{m}^{\delta_{1}^{\prime}} \cdots a_{1}^{\epsilon_{1}^{\prime}} a_{m}^{\delta_{n}^{\prime}}$, and $x=a_{2}^{-\lambda} y^{*} a_{2}^{\lambda}$. Then we have $a_{1}^{\epsilon_{1}}=a_{2}^{-\lambda} a_{1}^{\epsilon_{1}^{\prime}} a_{2}^{\lambda_{1}}, a_{m}^{\delta_{1}}=a_{2}^{-\lambda_{1}} a_{m}^{\delta_{1}^{\prime}} a_{2}^{t_{1}}, a_{1}^{\epsilon_{1}}=a_{2}^{-t_{1}} a_{1}^{\epsilon_{2}^{\prime}} a_{2}^{\lambda_{2}}, \ldots$. Hence $a_{2}^{\lambda}=a_{2}^{\lambda_{1}}$ and $a_{1}^{\epsilon_{1}}=a_{1}^{\epsilon_{1}^{\prime}}$, since $a_{1} \in Z\left(A_{1}\right)$ and $\left\langle a_{1}\right\rangle \cap\left\langle a_{2}\right\rangle=1$. Now, since $\left\langle a_{2}, a_{m}\right\rangle=\left\langle a_{2}\right\rangle *\left\langle a_{m}\right\rangle$, we have $a_{2}^{-\lambda_{1}}=1=a_{2}^{t_{1}}$, and hence $a_{2}^{\lambda}=1$. Thus $x=y^{*}$; hence $x \sim_{H} y$.

Lemma 3.2. Let P be the polygonal product of the polycyclic-by-finite groups $\left\langle a_{0}, a_{1}\right\rangle, A_{1} \ldots, A_{m}(m \geq 3)$, amalgamating the central subgroups $\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{m}\right\rangle,\left\langle a_{0}\right\rangle$ with trivial intersections. Denote $A=\left\langle a_{0}, a_{1}\right\rangle$. Then we have
(a) If $x \sim_{P} y$ for $x, y \in A$, then $x=y$.
(b) If $x \sim_{P} y$ for $x \in A$ and $y \in A_{1}$, then $y \in A$ and $x=y$.

Proof. (a) Let $E=\left\langle a_{0}, a_{1}\right\rangle *_{\left\langle a_{1}\right\rangle} A_{1}, F=A_{m} *_{\left\langle a_{m}\right\rangle} \cdots *_{\left\langle a_{3}\right\rangle} A_{2}$, and $H=\left\langle a_{0}\right\rangle *\left\langle a_{2}\right\rangle$. Then $P=E *_{H} F$. We may assume $x \neq 1 \neq y$.

CASE 1. Suppose $x \in\left\langle a_{0}\right\rangle$.
Since $\|x\|=0$ in P and $y \in\left\langle a_{0}, a_{1}\right\rangle \subset E$, by Theorem 2.5 there exist $h_{i} \in H$ such that $y \sim_{E} h_{1} \sim_{F} h_{2} \sim_{E} \cdots \sim_{E} h_{r}=x$. It follows from Lemma 3.1 that $y \sim_{E} x$. Now $1 \neq x \in\left\langle a_{0}\right\rangle$ and $a_{1} \in Z(E)$; hence x has the minimal length 1 in its conjugacy class in $E=\left\langle a_{0}, a_{1}\right\rangle *_{\left\langle a_{1}\right\rangle} A_{1}$. Thus, by Theorem 2.5, $y \in A$ and $x \sim_{A} y$, where $A=\left\langle a_{0}, a_{1}\right\rangle$ is abelian. Therefore $x=y$.

CASE 2. Suppose $x \notin\left\langle a_{0}\right\rangle$. Clearly $x \notin H$.
First, we note that x has the minimal length 1 in its conjugacy class in $P=E *_{H} F$. For, if $x \sim_{P} h$ for some $h \in H$, then $x \sim_{E} h_{1} \sim_{F} h_{2} \sim_{E} \cdots \sim_{E} h_{r}=h$ for some $h_{i} \in H$. Then, by Lemma 3.1, we have $x \sim_{E} h$. Thus $x \sim_{E} h^{*}$ for a cyclically reduced cyclic permutation h^{*} of h. If $x \in\left\langle a_{1}\right\rangle$, then $x=h^{*} \in\left\langle a_{0}, a_{1}\right\rangle \cap H=\left\langle a_{0}\right\rangle$. Hence, by assumption, $x \notin\left\langle a_{1}\right\rangle$. Then x has the minimal length 1 in its conjugacy class in $E=\left\langle a_{0}, a_{1}\right\rangle *_{\left\langle a_{1}\right\rangle} A_{1}$. Thus by Theorem 2.5, $h^{*} \in A$ and $x \sim_{A} h^{*}$, where $A=\left\langle a_{0}, a_{1}\right\rangle$. Hence $x=h^{*} \in H \cap A=\left\langle a_{0}\right\rangle$, a contradiction. Therefore x has the minimal length 1 in its conjugacy class in $P=E *_{H} F$. Then, by Theorem 2.5, $x \sim_{E} y$. Now if $x \in\left\langle a_{1}\right\rangle$ then $x=y$. If $x \notin\left\langle a_{1}\right\rangle$ then x has the minimal length 1 in its conjugacy class in $E=A *{ }_{\left\langle a_{1}\right\rangle} A_{1}$, and then by Theorem 2.5 $x \sim_{A} y$. Thus $x=y$.

The proof of (b) is very similar to that of (a) above.
Lemma 3.3. Let $F=A_{0} *_{\left\langle a_{1}\right\rangle} A_{1} *_{\left\langle a_{2}\right\rangle} \cdots *_{\left\langle a_{m}\right\rangle} A_{m}(m \geq 1)$. If $\left[a_{0}^{k}, f\right]=1$ for $a_{0}^{k} \neq 1$ and $f \in F$, then $f \in A_{0}$ and hence $\left[a_{0}, f\right]=1$.

Proof. Let $F=A_{0} *_{\left\langle a_{1}\right\rangle} F_{1}$, where $F_{1}=A_{1} *_{\left\langle a_{2}\right\rangle} \cdots *_{\left\langle a_{m}\right\rangle} A_{m}$. If $f \in F_{1} \backslash\left\langle a_{1}\right\rangle$, then clearly $f \neq a_{0}^{-k} f a_{0}^{k}$, since $\left\|a_{0}^{-k} f a_{0}^{k}\right\|=3$. Thus suppose $f \notin A_{0} \cup F_{1}$. Since $a_{0}^{k} \in Z\left(A_{0}\right)$, it suffices to consider $f=f_{1} \alpha_{1} \cdots \alpha_{n-1} f_{n}$, where $\alpha_{i} \in A_{0} \backslash\left\langle a_{1}\right\rangle$ and $f_{i} \in F_{1} \backslash\left\langle a_{1}\right\rangle$. Then $a_{0}^{-k} f a_{0}^{k}=a_{0}^{-k} f_{1} \alpha_{1} \cdots f_{n} a_{0}^{k}$ is reduced with length $\|f\|+2$. Thus $f \neq a_{0}^{-k} f a_{0}^{k}$. Consequently, $f \in A_{0}$, and hence $\left[a_{0}, f\right]=1$.

Lemma 3.4. Let P be the polygonal product of the polycyclic-by-finite groups $A_{0}, A_{1}, \ldots, A_{m}(m \geq 3)$, amalgamating the central subgroups $\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{m}\right\rangle,\left\langle a_{0}\right\rangle$ with trivial intersections. Let $a_{0}^{k} \neq 1 \neq a_{1}^{\ell}$ and $p \in P$.
(a) If $a_{0}^{k} \in C_{A_{0}}(p)$, then $a_{0} \in C_{A_{0}}(p)$; hence $C_{A_{0}}(p) \cap\left\langle a_{0}\right\rangle=\left\langle a_{0}\right\rangle$.
(b) If $a_{0}^{k} a_{1}^{\ell} \in C_{A_{0}}(p)$, then $p \in A_{0}$; hence $C_{A_{0}}(p) \cap\left\langle a_{0}, a_{1}\right\rangle=\left\langle a_{0}, a_{1}\right\rangle$.

Proof. (a) Let $E=A_{0} *_{\left\langle a_{1}\right\rangle} A_{1}, F=A_{m} *_{\left\langle a_{m}\right\rangle} \cdots *_{\left\langle a_{3}\right\rangle} A_{2}$, and $H=\left\langle a_{0}\right\rangle *\left\langle a_{2}\right\rangle$. Then $P=E *_{H} F$.

First, if $p \in E$ (or $p \in F$), then by Lemma 3.3 we have $p \in A_{0}$ (or $p \in A_{m}$). Then $\left[a_{0}, p\right]=1$, since $a_{0} \in Z\left(A_{0}\right) \cap Z\left(A_{m}\right)$.

Second, if $p \notin E \cup F$, suppose $p=e_{1} f_{1} \cdots e_{n} f_{n}$, where $e_{i} \in E \backslash H$ and $f_{i} \in F \backslash H$ (the other cases are similar). Since $e_{1} f_{1} \cdots e_{n} f_{n}=a_{0}^{-k} e_{1} f_{1} \cdots e_{n} f_{n} a_{0}^{k}$, we have $e_{1}=a_{0}^{-k} e_{1} h_{1}$, $f_{1}=h_{1}^{-1} f_{1} k_{1}, e_{2}=k_{1}^{-1} e_{2} h_{2}, \ldots, e_{n}=k_{n-1}^{-1} e_{n} h_{n}$, and $f_{n}=h_{n}^{-1} f_{n} a_{0}^{k}$, for some $h_{i}, k_{i} \in H$. Then by Lemma 3.1, $a_{0}^{k} \sim_{H} h_{1} \sim_{H} h_{1}^{*}$ for some cyclically reduced cyclic permutation h_{1}^{*} of h_{1}. Hence $a_{0}^{k}=h_{1}^{*}$, and it follows that $h_{1}=w_{1}^{-1} a_{0}^{k} w_{1}$ for some $w_{1} \in H$. Thus $e_{1}=a_{0}^{-k} e_{1} h_{1}=a_{0}^{-k} e_{1} w_{1}^{-1} a_{0}^{k} w_{1}$. By Lemma 3.3, $e_{1} w_{1}^{-1} \in A_{0}$. Now $f_{1}=h_{1}^{-1} f_{1} k_{1}=$
$w_{1}^{-1} a_{0}^{-k} w_{1} f_{1} k_{1}$; hence $w_{1} f_{1}=a_{0}^{-k} \cdot w_{1} f_{1} \cdot k_{1}$. Then as before there exists $v_{1} \in H$ such that $k_{1}=v_{1}^{-1} a_{0}^{k} v_{1}$ and $w_{1} f_{1} v_{1}^{-1} \in A_{m}$. Inductively, suppose there exist $w_{n-1}, v_{n-1} \in H$ such that $k_{n-1}=v_{n-1}^{-1} a_{0}^{k} v_{n-1}$, and $w_{n-1} f_{n-1} v_{n-1}^{-1} \in A_{m}$. Then $e_{n}=k_{n-1}^{-1} e_{n} h_{n}=v_{n-1}^{-1} a_{0}^{-k} v_{n-1} e_{n} h_{n}$; hence as before there exists $w_{n} \in H$ such that $h_{n}=w_{n}^{-1} a_{0}^{k} w_{n}$, and $v_{n-1} e_{n} w_{n}^{-1} \in A_{0}$. Then $f_{n}=h_{n}^{-1} f_{n} a_{0}^{k}=w_{n}^{-1} a_{0}^{-k} w_{n} f_{n} a_{0}^{k}$. Hence, by Lemma 3.3, $w_{n} f_{n} \in A_{m}$. Therefore $p=e_{1} f_{1} \cdots e_{n} f_{n}=e_{1} w_{1}^{-1} \cdot w_{1} f_{1} v_{1}^{-1} \cdots v_{n-1} e_{n} w_{n}^{-1} \cdot w_{n} f_{n}$ is a product of elements in A_{0} and A_{m}. Since $a_{0} \in Z\left(A_{0}\right) \cap Z\left(A_{m}\right)$, we have $\left[a_{0}, p\right]=1$.
(b) Let E, F, H be as above. If $p \in E$ then we have $a_{0}^{k} p=p a_{0}^{k}$. By Lemma 3.3, we have $p \in A_{0}$. Thus we shall show that if $p \notin E$ then $a_{0}^{k} a_{1}^{\ell} \notin C_{A_{0}}(p)$. If $p \in F \backslash H$ then clearly $a_{0}^{k} a_{1}^{\ell} p \neq p a_{0}^{k} a_{1}^{\ell}$, so suppose that $p \notin E \cup F$. If $p=f_{1} e_{1} \cdots$, or if $p=\cdots e_{n} f_{n}$, where $e_{i} \in E \backslash H$ and $f_{i} \in F \backslash H$, then clearly $a_{0}^{k} a_{1}^{\ell} p \neq p a_{0}^{k} a_{1}^{\ell}$. Thus we suppose $p=e_{1} f_{1} \cdots f_{n-1} e_{n}$, where $e_{i} \in E \backslash H$ and $f_{i} \in F \backslash H$. Now if $a_{0}^{k} a_{1}^{\ell} p=p a_{0}^{k} a_{1}^{\ell}$ then $a_{0}^{k} a_{1}^{\ell} e_{1} \notin H, e_{n} a_{0}^{k} a_{1}^{\ell} \notin H$, and we have $a_{0}^{k} a_{1}^{\ell} e_{1}=e_{1} h_{1}$ for some $h_{1} \in H$. Thus $a_{0}^{k} a_{1}^{\ell} \sim_{E} h_{1} \sim_{H} h_{1}^{*}$ for some cyclically reduced cyclic permutation h_{1}^{*} of h_{1}. Since $a_{0}^{k} a_{1}^{\ell}$ has the minimal length 1 in its conjugate class in E, we have $h_{1}^{*} \in A_{0}$ and $a_{0}^{k} a_{1}^{\ell} \sim_{A_{0}} h_{1}^{*}$. Hence $a_{0}^{k} a_{1}^{\ell}=h_{1}^{*} \in A_{0} \cap H=\left\langle a_{0}\right\rangle$, a contradiction.

Let P be as in Lemma 3.4. Then, for integers $s, t>1$, we may construct a polygonal product \bar{P} of $\bar{A}_{0}, \bar{A}_{1}, \ldots, \bar{A}_{m}(m \geq 3)$, amalgamating subgroups $\left\langle\bar{a}_{1}\right\rangle, \ldots,\left\langle\bar{a}_{m}\right\rangle,\left\langle\bar{a}_{0}\right\rangle$, with trivial intersections, where $\bar{A}_{0}=A_{0} /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle, \bar{A}_{1}=A_{1} /\left\langle a_{1}^{t}\right\rangle, \bar{A}_{m}=A_{m} /\left\langle a_{0}^{s}\right\rangle$, and $\bar{A}_{i}=A_{i}$ for $i \neq 0,1, m$. Then there exists a natural homomorphism $\phi_{s . t}: P \rightarrow \bar{P}$ with $\operatorname{ker} \phi_{s . t}=\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$. Hence we may consider $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$.

Lemma 3.5. Let P be the polygonal product of the polycyclic-by-finite groups $A=$ $\left\langle a_{0}, a_{1}\right\rangle, A_{1}, \ldots, A_{m}(m \geq 3)$, amalgamating the central subgroups $\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{m}\right\rangle,\left\langle a_{0}\right\rangle$ with trivial intersections. If $\{x\}^{P} \cap A=\emptyset$, where $x \in P$, then there exist s, t such that, in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$, we have $\{\bar{x}\}^{\widehat{P}} \cap \bar{A}=\emptyset$.

Proof. Let $E=A *_{\left\langle a_{1}\right\rangle} A_{1}, F=A_{m} *_{\left\langle a_{m}\right\rangle} \cdots *_{\left\langle a_{3}\right\rangle} A_{2}$, and $H=\left\langle a_{0}\right\rangle *\left\langle a_{2}\right\rangle$. Then $P=E *_{H} F$. Clearly $x \notin A$. We may assume that x has minimal length in its conjugacy class in $P=E *_{H} F$.

Case 1. Suppose $x \in E$.
Thus $\{x\}^{E} \cap A=\emptyset$. Now $x \notin A$, and we may assume that x has minimal length in its conjugacy class in E. If $x \in A_{1} \backslash\left\langle a_{1}\right\rangle$, then $\bar{x} \in \bar{A}_{1} \backslash\left\langle\bar{a}_{1}\right\rangle$ for any s, t. Thus \bar{x} has the minimal length 1 in its conjugacy class in $\bar{E}=\bar{A} *_{\left\langle\bar{a}_{1}\right\rangle} \bar{A}_{1}$. Thus we have $\{\bar{x}\}^{\bar{E}} \cap \bar{A}=\emptyset$. If $x=\alpha_{1} \beta_{1} \cdots \alpha_{n} \beta_{n}$, where $\alpha_{i} \in A \backslash\left\langle a_{1}\right\rangle$ and $\beta_{i} \in A_{1} \backslash\left\langle a_{1}\right\rangle$. Choose s, t so that $\alpha_{i} \notin\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle\left\langle a_{1}\right\rangle$. Then, in \bar{E}, we have $\|x\|=\|\bar{x}\|$ and hence $\{\bar{x}\}^{\bar{E}} \cap \bar{A}=\emptyset$. Now, in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$, we claim $\{\bar{x}\}^{\bar{P}} \cap \bar{A}=\emptyset$. For this, suppose $\bar{x} \sim_{\bar{P}} \bar{\alpha}$, for some $\alpha \in A$. If $\bar{\alpha} \in\left\langle\bar{a}_{0}\right\rangle$, then $\bar{x} \sim_{\bar{E}} \bar{h}_{1} \sim_{\bar{F}} \bar{h}_{2} \sim_{\bar{E}} \cdots \sim_{\bar{E}} \bar{h}_{r}=\bar{\alpha}$. Thus, by Lemma 3.1, $\bar{x} \sim_{\bar{E}} \bar{\alpha}$. If $\bar{\alpha} \notin\left\langle\bar{a}_{0}\right\rangle$ then, as in the proof of Lemma 3.2, $\bar{\alpha}$ has the minimal length 1 in its conjugacy class in $\bar{P}=\bar{E} *_{\bar{H}} \bar{F}$. Thus by Theorem 2.5 we have $\bar{\alpha} \sim_{\bar{E}} \bar{x}$, which contradicts the fact that $\{\bar{x}\}^{\bar{E}} \cap \bar{A}=\emptyset$. Therefore, we have $\{\bar{x}\}^{\bar{P}} \cap \bar{A}=\emptyset$.

CASE 2. Suppose $x \in F \backslash H$.
Since F is H-separable (Lemma 2.3), there is s_{1} such that $x \notin\left\langle a_{0}^{s_{1}}\right\rangle^{F} H$. Now $\{x\}^{F} \cap$ $\left\langle a_{0}\right\rangle=\emptyset$, and we may assume that x is cyclically reduced in $F=A_{m} *_{\left\langle a_{m}\right\rangle} F_{1}$, where $F_{1}=A_{m-1} *_{\left\langle a_{m-1}\right\rangle} \cdots *_{\left\langle a_{3}\right\rangle} A_{2}$. If $x=\alpha_{1} f_{1} \cdots$, where $\alpha_{i} \in A_{m} \backslash\left\langle a_{m}\right\rangle$ and $f_{i} \in F_{1} \backslash\left\langle a_{m}\right\rangle$, then there exists s_{2} such that $\alpha_{i} \notin\left\langle a_{0}^{s_{2}}\right\rangle\left\langle a_{m}\right\rangle$. Let $s=s_{1} s_{2}$ and t be arbitrary. Then in $\bar{F}=A_{m} /\left\langle a_{0}^{s}\right\rangle *_{\left\langle a_{m}\right\rangle} F_{1}, \bar{x}$ is cyclically reduced with $\|\bar{x}\|=\|x\|$, and any $\bar{a}_{0}^{\epsilon}(\neq 1)$ has the minimal length 1 in its conjugacy class in \bar{F}. Hence, we have $\{\bar{x}\}^{\bar{F}} \cap\left\langle\bar{a}_{0}\right\rangle=\emptyset$. In $\bar{P}=$ $P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$, if $\bar{x} \sim_{\bar{P}} \bar{\alpha}$ for some $\alpha \in A$ then, as in Case 1 above, $\bar{x} \sim_{\bar{F}} \bar{\alpha} \in \bar{A} \cap \bar{F}=\left\langle\bar{a}_{0}\right\rangle$. Therefore, since $\{\bar{x}\}^{\bar{F}} \cap\left\langle\bar{a}_{0}\right\rangle=\emptyset$, we have $\{\bar{x}\}^{\bar{P}} \cap \bar{A}=\emptyset$.

CASE 3. Suppose $x \notin E \cup F$.
Let $x=e_{1} f_{1} \cdots e_{n} f_{n}$, where $e_{i} \in E \backslash H$ and $f_{i} \in F \backslash H$. Since E, F are H-separable (Lemma 2.3), there exist s, t such that $e_{i} \notin\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{E} H$ and $f_{i} \notin\left\langle a_{0}^{s}\right\rangle^{F} H$. Then, in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P},\|\bar{x}\|=\|x\|=2 n$. Thus $\{\bar{x}\}^{\bar{P}} \cap \bar{A}=\emptyset$.

The following few lemmas are used to prove Lemma 3.9.
Lemma 3.6. Let $F=A_{m} *_{\left\langle a_{m}\right\rangle} \cdots *_{\left\langle a_{3}\right\rangle} A_{2}, H=\left\langle a_{0}\right\rangle *\left\langle a_{2}\right\rangle$, and let $f, f^{\prime} \in F$.
(a) Iff $f^{\prime} \notin\left\langle a_{0}\right\rangle$ f H, then there exists s such that $\bar{f}^{\prime} \notin\left\langle\bar{a}_{0}\right\rangle \bar{f} \bar{H}$ in $\bar{F}=F /\left\langle a_{0}^{s}\right\rangle^{F}$.
(b) Iff $f^{\prime} \notin\left\langle a_{0}\right\rangle f\left\langle a_{2}\right\rangle$, then there exists s such that $\bar{f}^{\prime} \notin\left\langle\bar{a}_{0}\right\rangle \overline{\bar{f}}\left\langle\bar{a}_{2}\right\rangle$ in $\bar{F}=F /\left\langle a_{0}^{s}\right\rangle F$.
(c) Iff $\notin\left\langle a_{0}\right\rangle f\left\langle a_{0}\right\rangle$, then there exists s such that $\bar{f}^{\prime} \notin\left\langle\bar{a}_{0}\right\rangle \bar{f}\left\langle\bar{a}_{0}\right\rangle$ in $\bar{F}=F /\left\langle a_{0}^{s}\right\rangle^{F}$.
(d) If $f^{\prime} \notin\left\langle a_{2}\right\rangle f H$, then there exists s such that $\bar{f}^{\prime} \notin\left\langle\bar{a}_{2}\right\rangle \bar{f} \bar{H}$ in $\bar{F}=F /\left\langle a_{0}^{s}\right\rangle^{F}$.
(e) Iff $\notin\left\langle a_{2}\right\rangle f\left\langle a_{2}\right\rangle$, then there exists s such that $\bar{f}^{\prime} \notin\left\langle\bar{a}_{2}\right\rangle \bar{f}\left\langle\bar{a}_{2}\right\rangle$ in $\bar{F}=F /\left\langle a_{0}^{s}\right\rangle^{F}$.

Proof. (a) We write $F=A_{m} *_{\left\langle a_{m}\right\rangle} F_{1}$, where $F_{1}=A_{m-1} *_{\left\langle a_{m-1}\right\rangle} \cdots *_{\left\langle a_{3}\right\rangle} A_{2}$. For each $s>1$, we have the natural homomorphism $\psi_{s}: A_{m} *_{\left\langle a_{m}\right\rangle} F_{1} \rightarrow A_{m} /\left\langle a_{0}^{s}\right\rangle *_{\left\langle a_{m}\right\rangle} F_{1}$ with $\operatorname{Ker} \psi_{s}=\left\langle a_{0}^{s}\right\rangle^{F}$. Since F is π_{c} and H-separable, there exists s such that $\left\|f \psi_{s}\right\|=\|f\|$, $\left\|f^{\prime} \psi_{s}\right\|=\left\|f^{\prime}\right\|$, and $\left(f^{-1} f^{\prime}\right) \psi_{s} \notin H \psi_{s}$.

CASE 1. Suppose $f \in A_{m}$ (or $f^{\prime} \in A_{m}$).
Since $a_{0} \in Z\left(A_{m}\right)$ and $\left(f^{-1} f^{\prime}\right) \psi_{s} \notin H \psi_{s}$, clearly $f^{\prime} \psi_{s} \notin\left(\left\langle a_{0}\right\rangle f H\right) \psi_{s}$.
CASE 2. Suppose $f \in F_{1} \backslash\left\langle a_{m}\right\rangle$ (or $f^{\prime} \in F_{1} \backslash\left\langle a_{m}\right\rangle$).
Considering Case 1, we may assume $f \notin\left\langle a_{m}\right\rangle\left\langle a_{2}\right\rangle$ and $f^{\prime} \notin A_{m}$. Moreover, if $f^{\prime}=$ $f_{1}^{\prime} f_{2}^{\prime} \cdots$ is reduced with length ≥ 2, then we suppose $f_{1}^{\prime} \notin\left\langle a_{0}\right\rangle\left\langle a_{m}\right\rangle$. Then in $\bar{F}=F \psi_{s}$, if $\bar{f}^{\prime}=\bar{a}_{0}^{\epsilon} \bar{f} \bar{h}$ for $h \in H$, then we have $\bar{a}_{0}^{\epsilon}=1$; hence $\bar{f}^{-1} \bar{f}^{\prime} \in \bar{H}$. It contradicts the choice of s.

Case 3. Suppose $\|f\|,\left\|f^{\prime}\right\| \geq 2$.
Let $f=f_{1} f_{2} \cdots f_{n}$ and $f^{\prime}=f_{1}^{\prime} f_{2}^{\prime} \cdots f_{r}^{\prime}$ be reduced in $F=A_{m} *_{\left\langle a_{m}\right\rangle} F_{1}$. We may assume $f_{n}, f_{r}^{\prime} \notin\left\langle a_{m}\right\rangle\left\langle a_{0}\right\rangle \cup\left\langle a_{m}\right\rangle\left\langle a_{2}\right\rangle$ and $f_{1}, f_{1}^{\prime} \notin\left\langle a_{0}\right\rangle\left\langle a_{m}\right\rangle$. Moreover, if $f_{1}, f_{1}^{\prime} \in A_{m}$, then we assume $f_{1}^{-1} f_{1}^{\prime} \notin\left\langle a_{0}\right\rangle\left\langle a_{m}\right\rangle$. We shall show that $f^{\prime} \psi_{s} \notin\left(\left\langle a_{0}\right\rangle f H\right) \psi_{s}$. For, supposing $\overline{f^{\prime}}=$ $\bar{a}_{0}^{\bar{f}} \bar{h}$ for $h \in H$, where $\bar{F}=F \psi_{s}$, we derive a contradiction as follows:
(1) If $f_{1}, f_{1}^{\prime} \in A_{m}$, then $\overline{f_{1}^{\prime}} \in \bar{a}_{0}^{\epsilon} \bar{f}_{1}\left\langle\bar{a}_{m}\right\rangle$; hence $\overline{f_{1}^{-1} f_{1}^{\prime}} \in\left\langle\bar{a}_{0}\right\rangle\left\langle\bar{a}_{m}\right\rangle$. Thus $f_{1}^{-1} f_{1}^{\prime} \in\left\langle a_{0}\right\rangle\left\langle a_{m}\right\rangle$.
(2) If $f_{1} \in A_{m}$ and $f_{1}^{\prime} \in F_{1}$, then $\bar{a}_{0}^{\bar{f}} \bar{f}_{1} \in\left\langle\bar{a}_{m}\right\rangle$, and hence $\overline{f_{1}} \in\left\langle\bar{a}_{0}\right\rangle\left\langle\bar{a}_{m}\right\rangle$. Therefore $f_{1} \in\left\langle a_{0}\right\rangle\left\langle a_{m}\right\rangle$.
(3) If $f_{1}^{\prime} \in A_{m}$ and $f_{1} \in F_{1}$, then $\overline{f_{1}^{\prime}} \in\left\langle\bar{a}_{0}\right\rangle\left\langle\bar{a}_{m}\right\rangle$. Therefore $f_{1}^{\prime} \in\left\langle a_{0}\right\rangle\left\langle a_{m}\right\rangle$.
(4) If $f_{1}, f_{1}^{\prime} \in F_{1}$, then $\bar{a}_{0}^{t}=1$; hence $\overline{f^{-1} f^{\prime}} \in \bar{H}$.

We may prove (b) and (c) in a similar way. In particular, we may use for (b) the fact that F is also $\left\langle a_{0}\right\rangle\left\langle a_{2}\right\rangle$-separable (Lemma 2.3). The proofs of (d) and (e) are also similar to the proofs of (a) and (b), respectively, considering the homomorphism $\psi_{s}^{\prime}: F_{2} *_{\left\langle a_{3}\right\rangle} A_{2} \rightarrow$ $F_{2} /\left\langle a_{0}^{s}\right\rangle^{F_{2}} *_{\left\langle a_{3}\right\rangle} A_{2}$, where $F_{2}=A_{m} *_{\left\langle a_{m}\right\rangle} \cdots *_{\left\langle a_{4}\right\rangle} A_{3}$.

Lemma 3.7. Let $E=\left\langle a_{0}, a_{1}\right\rangle *_{\left\langle a_{1}\right\rangle}\left\langle a_{1}, a_{2}\right\rangle, F=A_{m} *\left\langle a_{m}\right\rangle \cdots *_{\left\langle a_{3}\right\rangle} A_{2}$, and $H=\left\langle a_{0}\right\rangle *\left\langle a_{2}\right\rangle$. Let $P=E *_{H} F$. Suppose $p=f_{1} e_{1} \cdots e_{n-1} f_{n}$ and $q=f_{1}^{\prime} e_{1}^{\prime} \cdots e_{n-1}^{\prime} f_{n}^{\prime}$, where $e_{i}, e_{i}^{\prime} \in E \backslash H$ and $f_{i}, f_{i}^{\prime} \in F \backslash H$.
(a) If $q \notin\left\langle a_{0}\right\rangle p\left\langle a_{2}\right\rangle$, then there exist s, t such that $\bar{q} \notin\left\langle\bar{a}_{0}\right\rangle \bar{p}\left\langle\bar{a}_{2}\right\rangle$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{\prime}\right\rangle^{P}$.
(b) If $q \notin\left\langle a_{0}\right\rangle p\left\langle a_{0}\right\rangle$, then there exist s, t such that $\bar{q} \notin\left\langle\bar{a}_{0}\right\rangle \bar{p}\left\langle\bar{a}_{0}\right\rangle$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$.
(c) If $q \notin\left\langle a_{2}\right\rangle p\left\langle a_{2}\right\rangle$, then there exist s, such that $\bar{q} \notin\left\langle\bar{a}_{2}\right\rangle \bar{p}\left\langle\bar{a}_{2}\right\rangle$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$.

Proof. Since the proofs of (b) and (c) are very similar to (a), we only consider (a).
Lemma 3.6 shows the result holds for $n=1$. Note $e_{i}=a_{1}^{\epsilon_{i}} k_{i}$ and $e_{i}^{\prime}=a_{1}^{\epsilon_{i}^{\prime}} k_{i}^{\prime}$, for some $k_{i}, k_{i}^{\prime} \in H$. If $e_{i}^{\prime} \notin H e_{i} H$ for some i, that is $a_{1}^{\epsilon_{i}^{i}} \neq a_{1}^{\epsilon_{i}}$, then one can easily find \bar{P} such that $\overline{e_{i}^{\prime}} \notin \overline{H e_{i} H},\|\bar{p}\|=\|p\|$, and $\left\|\bar{p}^{\prime}\right\|=\left\|p^{\prime}\right\|$. Then $\bar{q} \notin\left\langle\bar{a}_{0}\right\rangle \bar{p}\left\langle\bar{a}_{2}\right\rangle$. Hence it suffices to consider the case $q=f_{1}^{\prime} a_{1}^{\epsilon_{1}} f_{2}^{\prime} \cdots a_{1}^{\epsilon_{n-1}} f_{n}^{\prime}$ and $p=f_{1} a_{1}^{\epsilon_{1}} f_{2} \cdots a_{1}^{\epsilon_{n-1}} f_{n}$. Now since F is H separable, there exist s_{1}, t_{1} such that $f_{i}, f_{i}^{\prime} \notin\left\langle a_{0}^{s_{1}}\right\rangle^{F} H$ and $a_{1}^{\epsilon_{i}} \notin\left\langle a_{1}^{t_{1}}\right\rangle$. Then $\left\|p \phi_{s_{1}, t_{1}}\right\|=\|p\|$ and $\left\|q \phi_{s_{1, t}, t}\right\|=\|q\|$, where $\phi_{s_{\text {.t }}}$ is as on p.298.

If $f_{1}^{\prime} \notin\left\langle a_{0}\right\rangle f_{1} H$, then by Lemma 3.6, there exists s_{2} such that $f_{1}^{\prime} \notin\left\langle a_{0}^{s_{2}}\right\rangle^{F}\left\langle a_{0}\right\rangle f_{1} H$. Let $s=s_{1} s_{2}$ and $t=t_{1}$. Then, in $\bar{P}=P \phi_{s . t}$, we have $\bar{q} \notin\left\langle\bar{a}_{0}\right\rangle \bar{p}\left\langle\bar{a}_{2}\right\rangle$, since $\|\bar{p}\|=\|p\|$, $\|\bar{q}\|=\|q\|$, and $\overline{f_{1}^{\prime}} \notin\left\langle\bar{a}_{0}\right\rangle \overline{f_{1}} \bar{H}$.

So, suppose $f_{1}^{\prime}=a_{0}^{\mu} f_{1} k_{1}$, for some $k_{1} \in H$.
CASE 1. Suppose $f_{1}^{-1} a_{0} f_{1} \notin H$.
Then, by Lemmas 3.1 and 3.3 , we have $f_{1}^{-1} a_{0}^{i} f_{1} \notin H$ for any $a_{0}^{i} \neq 1$. Then $q \notin$ $\left\langle a_{0}\right\rangle p\left\langle a_{2}\right\rangle$ iff $\left(f_{2} a_{1}^{\epsilon_{2}} \cdots f_{n}\right)^{-1} k_{1}\left(f_{2}^{\prime} a_{1}^{\epsilon_{2}} \cdots f_{n}^{\prime}\right) \notin\left\langle a_{2}\right\rangle$. Since P is π_{c} (Theorem 2.2) and H separable, there exist s_{2}, t_{2} such that $\left(f_{2} a_{1}^{\epsilon_{2}} \cdots f_{n}\right)^{-1} k_{1}\left(f_{2}^{\prime} a_{1}^{\epsilon_{2}} \cdots f_{n}^{\prime}\right) \notin\left\langle a_{0}^{s_{2}}, a_{1}^{t_{2}}\right\rangle^{P}\left\langle a_{2}\right\rangle$, and $f_{1}^{-1} a_{0} f_{1} \notin\left\langle a_{0}^{s_{2}}, a_{1}^{t_{2}}\right\rangle^{P} H$. Let $s=s_{1} s_{2}$ and $t=t_{1} t_{2}$. Then, in $\bar{P}=P \phi_{\text {s.t }}$, we have $\|\bar{p}\|=\|p\|$, $\|\bar{q}\|=\|q\|, \overline{f_{1}^{-1} a_{0} f_{1}} \notin \bar{H}$, and $\overline{\left(f_{2} a_{1}^{\epsilon_{2}} \cdots f_{n}\right)^{-1} k_{1}\left(f_{2}^{\prime} a_{1}^{\epsilon_{2}} \cdots f_{n}^{\prime}\right)} \notin \overline{\left\langle a_{2}\right\rangle}$. These imply that $\bar{q} \notin\left\langle\bar{a}_{0}\right\rangle \bar{p}\left\langle\bar{a}_{2}\right\rangle$, as required.

CASE 2. Suppose $f_{1}^{-1} a_{0} f_{1}=h_{1} \in H$.
Then $a_{0} \sim_{F} h_{1}^{*}$ for a cyclically reduced cyclic permutation h_{1}^{*} of h_{1}. Thus $a_{0} \sim_{A_{m}} h_{1}^{*}$; hence $a_{0}=h_{1}^{*}$. Thus there exists $w_{1} \in H$ such that $h_{1}=w_{1}^{-1} a_{0} w_{1}$. Now we have $\left[w_{1} f_{1}^{-1}, a_{0}\right]=1$. Then we note that $q \notin\left\langle a_{0}\right\rangle p\left\langle a_{2}\right\rangle$ iff $a_{0}^{\mu} f_{1} k_{1} a_{1}^{\epsilon_{1}} f_{2}^{\prime} \cdots f_{n}^{\prime} \notin\left\langle a_{0}\right\rangle f_{1} w_{1}^{-1}$. $w_{1} \cdot a_{1}^{\epsilon_{1}} f_{2} \cdots f_{n}\left\langle a_{2}\right\rangle$ iff $f_{1} w_{1}^{-1} \cdot a_{1}^{\epsilon_{1}} \cdot w_{1} k_{1} f_{2}^{\prime} \cdots f_{n}^{\prime} \notin\left\langle a_{0}\right\rangle f_{1} w_{1}^{-1} \cdot a_{1}^{\epsilon_{1}} \cdot w_{1} f_{2} \cdots f_{n}\left\langle a_{2}\right\rangle$ iff $w_{1} k_{1} f_{2}^{\prime} \cdots f_{n}^{\prime} \notin\left\langle a_{0}\right\rangle w_{1} f_{2} \cdots f_{n}\left\langle a_{2}\right\rangle$. By induction, there exist s_{2}, t_{2} such that $\left(w_{1} k_{1} f_{2}^{\prime} \cdots f_{n}^{\prime}\right) \phi_{s_{2}, t_{2}} \notin\left(\left\langle a_{0}\right\rangle w_{1} f_{2} \cdots f_{n}\left\langle a_{2}\right\rangle\right) \phi_{s_{2}, t_{2}}$. Let $s=s_{1} s_{2}$ and $t=t_{1} t_{2}$. Then, in $\frac{\bar{P}=P \phi_{s . t}, \text { we have } \bar{q} \notin\left\langle\bar{a}_{0}\right\rangle \bar{p}\left\langle\bar{a}_{2}\right\rangle \text {, since }\|\bar{p}\|=\|p\|,\|\bar{q}\|=\|q\| \text {, and } \overline{w_{1} k_{1} f_{2}^{\prime} \cdots f_{n}^{\prime}} \notin, ~ . ~}{\left\langle a_{0}\right\rangle w_{1} f_{2} \cdots f_{n}\left\langle a_{2}\right\rangle .}$.

Lemma 3.8. Let $E=\left\langle a_{0}, a_{1}\right\rangle *\left\langle a_{1}\right\rangle\left\langle a_{1}, a_{2}\right\rangle, F=A_{m} *_{\left\langle a_{m}\right\rangle} \cdots *_{\left\langle a_{3}\right\rangle} A_{2}$, and $H=\left\langle a_{0}\right\rangle *\left\langle a_{2}\right\rangle$. Let $P=E *_{H} F, A=\left\langle a_{0}, a_{1}\right\rangle$, and $B=\left\langle a_{1}, a_{2}\right\rangle$. Then we have the following, for $p, q \in P$:
(a) If $q \notin A p B$, then there exist s, such that $\bar{q} \notin \bar{A} \bar{p} \bar{B}$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$.
(b) If $q \notin B p A$, then there exist s, such that $\bar{q} \notin \bar{B} \bar{p} \bar{A}$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$.
(c) If $q \notin A p A$, then there exist s, t such that $\bar{q} \notin \bar{A} \bar{p} \bar{A}$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$.
(d) If $q \notin B p B$, then there exist s, s such that $\bar{q} \notin \bar{B} \bar{p} \bar{B}$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$.

Proof. (a) and (b) are equivalent, since $q \in A p B$ iff $q^{-1} \in B p^{-1} A$. And the proofs of (c) and (d) are similar to that of (a); hence we only consider (a).

CASE 1. Suppose $p \in E$ (or $q \in E$).
If $q \notin E$ then, considering the length of q in P, one can easily choose \bar{P} such that $\bar{q} \notin \bar{E}$. Then clearly $\bar{q} \notin \bar{A} \bar{p} \bar{B}$. If $q \in E$, then $p=a_{1}^{\epsilon_{1}} h_{1}$ and $q=a_{1}^{\epsilon_{2}} h_{2}$ for $h_{1}, h_{2} \in H$. Note that $q \in A p B$ iff $h_{2} \in\left\langle a_{0}\right\rangle h_{1}\left\langle a_{2}\right\rangle$. By Lemma 3.6, there exists s such that $h_{2} \psi_{s} \notin\left(\left\langle a_{0}\right\rangle h_{1}\left\langle a_{2}\right\rangle\right) \psi_{s}$. For any t, we have $\bar{q} \notin \bar{A} \bar{p} \bar{B}$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$.

CASE 2. Suppose $p, q \in F \backslash H$.
There exists s_{1} such that $p, q \notin\left\langle a_{0}^{s_{1}}\right\rangle^{F} H$. By Lemma 3.6, there exists s_{2} such that $q \psi_{s_{2}} \notin\left(\left\langle a_{0}\right\rangle p\left\langle a_{2}\right\rangle\right) \psi_{s_{2}}$. Let $s=s_{1} s_{2}$ and let t be arbitrary. Then, in $\bar{P}=P \phi_{s . t}$, we have $\bar{q} \notin \bar{A} \bar{p} \bar{B}$, since $\bar{q} \notin\left\langle\bar{a}_{0}\right\rangle \bar{p}\left\langle\bar{a}_{2}\right\rangle$.

CASE 3. Suppose $p \notin E \cup F$ (or $q \notin E \cup F$).
Since $A H=E=H B$, we may assume $q=f_{1}^{\prime} a_{1}^{\epsilon_{1}^{\prime}} f_{2}^{\prime} \cdots a_{1}^{\epsilon_{1}^{\prime-1}} f_{r}^{\prime}$ and $p=f_{1} a_{1}^{\epsilon_{1}} f_{2} \cdots a_{1}^{\epsilon_{n}-1} f_{n}$, where $f_{i}, f_{i}^{\prime} \in F \backslash H$ and $a_{1}^{\epsilon_{i}} \neq 1 \neq a_{1}^{\epsilon_{i}^{\prime}}$. Then $q \in A p B$ iff $r=n$ and $q \in\left\langle a_{0}\right\rangle p\left\langle a_{2}\right\rangle$. If $r \neq n$ then we can easily find \bar{P} such that $\bar{q} \notin \bar{A} \bar{p} \bar{B}$, by a length preserving homomorphism. Hence we let $r=n$ and $q \notin\left\langle a_{0}\right\rangle p\left\langle a_{2}\right\rangle$. Then, by Lemma 3.7, there exist s, t such that $\bar{q} \notin\left\langle\bar{a}_{0}\right\rangle \bar{p}\left\langle\bar{a}_{2}\right\rangle,\|\bar{q}\|=\|q\|$, and $\|\bar{p}\|=\|p\|$, where $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$. Then we have $\bar{q} \notin \bar{A} \bar{p} \bar{B}$.

Lemma 3.9. Let $E=\left\langle a_{0}, a_{1}\right\rangle *_{\left\langle a_{1}\right\rangle}\left\langle a_{1}, a_{2}\right\rangle, F=A_{m} *_{\left\langle a_{m}\right\rangle} \cdots *_{\left\langle a_{3}\right\rangle} A_{2}$, and $H=\left\langle a_{0}\right\rangle *\left\langle a_{2}\right\rangle$. Let $P=E *_{H} F$, and $P_{1}=P *_{B} A_{1}$, where $B=\left\langle a_{1}, a_{2}\right\rangle$. Suppose $x, y \in P_{1}$ are such that $x \notin$ AyA, where $A=\left\langle a_{0}, a_{1}\right\rangle$. Then there exists, ssuch that $\bar{x} \notin \bar{A} \bar{y} \bar{A}$ in $\overline{P_{1}}=P_{1} /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P_{1}}$.

Proof.
CASE 1. Suppose $x, y \in P$.
Then by Lemma 3.8 there exist s, t such that $x \notin\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P} A y A$. Then clearly, $\bar{x} \notin \overline{A y A}$ in $\overline{P_{1}}=P_{1} /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P_{1}}=\bar{P} *_{\bar{B}} \bar{A}_{1}$, where $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}, \bar{A}_{1}=A_{1} /\left\langle a_{1}^{t}\right\rangle$.

Case 2. Suppose $x \notin P$ and $y \in P$.
If $x \in A_{1} \backslash B$ then, for any s, t, we have $\bar{x} \in \bar{A}_{1} \backslash \bar{B}$; hence $\bar{x} \notin \overline{A y A}$, where $\overline{P_{1}}=\bar{P} *_{\bar{B}} \bar{A}_{1}$. Suppose $\|x\| \geq 2$, say $x=p_{1} \alpha_{1} \cdots$, where $p_{i} \in P \backslash B$ and $\alpha_{i} \in A_{1} \backslash B$. Then there exist s, t such that $p_{i} \notin\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P} B$, by Lemma 3.8. Then $\alpha_{i} \notin\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P} B$, thus $\|\bar{x}\|=\|x\| \geq 2$, and hence $\bar{x} \notin \overline{A y A}$, where $\overline{P_{1}}=\bar{P} *_{\bar{B}} \bar{A}_{1}$.

CASE 3. Suppose $x, y \in A_{1} \backslash B$.
Since $x \notin A y A$, we have $x \notin\left\langle a_{1}\right\rangle y\left\langle a_{1}\right\rangle=y\left\langle a_{1}\right\rangle$. Thus we can choose t such that $y^{-1} x \notin\left\langle a_{1}^{t}\right\rangle$. Then for any s, in $\overline{P_{1}}=P_{1} /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P_{1}}$, we have $\bar{x} \notin \overline{A y A}$.

CASE 4. Suppose $x \in A_{1} \backslash B$ and $\|y\| \geq 2$ (or $y \in A_{1} \backslash B$ and $\|x\| \geq 2$).
Considering the above cases, we may assume that $y=y_{1} y_{2} \cdots y_{n}$ is reduced and $y_{1} \notin A B, y_{n} \notin B A$. As in Case 2 , we can find $\overline{P_{1}}=\bar{P} *_{\bar{B}} \bar{A}_{1}$ such that $\|\bar{y}\|=\|y\| \geq 2$, $\bar{y}_{1} \notin \overline{A B}$, and $\bar{y}_{n} \notin \overline{B A}$ (using Lemma 3.8). Then clearly $\bar{x} \notin \overline{A y A}$, if $\|\bar{y}\|=\|y\| \geq 4$. If $n=2,3$ and $\bar{x} \in \overline{A y A}$, then we have $\bar{y}_{1} \in \overline{A B}$, or $\bar{y}_{n} \in \overline{B A}$, a contradiction.

CASE 5. Suppose $\|x\| \geq 2$ and $\|y\| \geq 2$.
Suppose that $x=x_{1} x_{2} \cdots x_{n}$ and $y=y_{1} y_{2} \cdots y_{r}$ are reduced in P_{1} and $x_{1}, y_{1} \notin A B$, $x_{n}, y_{r} \notin B A$. Then as above, there exist s_{1}, t_{1} such that, in $\overline{\overline{P_{1}}}=P_{1} /\left\langle a_{0}^{s_{1}}, a_{1}^{t_{1}}\right\rangle^{P_{1}},\|\overline{\bar{x}}\|=\|x\|$, $\|\overline{\bar{y}}\|=\|y\|, \overline{\overline{x_{1}}}, \overline{\overline{y_{1}}} \notin \overline{\overline{A B}}$, and $\overline{\overline{x_{n}}}, \overline{\overline{y_{r}}} \notin \overline{\overline{B A}}$.

If x_{1} and y_{1} are in different factors, say $x_{1} \in A_{1}$ and $y_{1} \in P$, then $\bar{x} \notin \overline{A y A}$, where $\overline{P_{1}}=\overline{\overline{P_{1}}}$, since $\bar{y}_{1} \in \bar{P} \backslash \overline{A B}$ and $\bar{x}_{1} \in \bar{A}_{1} \backslash \bar{B}$. Hence we may assume that x_{1} and y_{1} are in the same factor of P_{1}. Similarly, considering $x^{-1} \notin A y^{-1} A$, we may assume that x_{n} and y_{r} are in the same factor of P_{1}. In this case, if $n \neq r$, then clearly $\bar{x} \notin \overline{A y A}$, where $\overline{P_{1}}=\overline{\overline{P_{1}}}$. Thus we only consider the case $n=r$.

SUBCASE 1. Suppose $x=p_{1}^{\prime} \alpha_{1}^{\prime} \cdots \alpha_{n-1}^{\prime} p_{n}^{\prime}$ and $y=p_{1} \alpha_{1} \cdots \alpha_{n-1} p_{n}$, where $p_{i}, p_{i}^{\prime} \in$ $P \backslash B$ and $\alpha_{i}, \alpha_{i}^{\prime} \in A_{1} \backslash B$.

If $\alpha_{i}^{-1} \alpha_{i}^{\prime} \notin B$ for some i, then $\overline{\alpha_{i}^{-1} \alpha_{i}^{\prime}} \notin \bar{B}$; hence $\bar{x} \notin \overline{A y A}$, where $\overline{P_{1}}=\overline{\overline{P_{1}}}$. So it suffices to consider $x=p_{1}^{\prime} \alpha_{1} \cdots \alpha_{n-1} p_{n}^{\prime}$ and $y=p_{1} \alpha_{1} \cdots \alpha_{n-1} p_{n}$. Note that $x \in A y A$ iff $p_{1}^{\prime}=d_{1} p_{1} b_{1}, \alpha_{1}=b_{1}^{-1} \alpha_{1} b_{1}, p_{2}^{\prime}=b_{1}^{-1} p_{2} b_{2}, \ldots, p_{n}^{\prime}=b_{n-1}^{-1} p_{n} d_{2}$, where $b_{i} \in B$ and $d_{1}, d_{2} \in A$. Now if $p_{1}^{\prime} \notin A p_{1} B$, or $p_{i}^{\prime} \notin B p_{i} B(1<i<n)$, or $p_{n}^{\prime} \notin B p_{n} A$, then by Lemma 3.8 , we can find $s, t\left(s_{1} \mid s\right.$ and $\left.t_{1} \mid t\right)$ such that $\overline{p_{1}^{\prime}} \notin \overline{A p_{1} B}$, or $\overline{p_{i}^{\prime}} \notin \overline{B p_{i} B}$, or $\overline{p_{n}^{\prime}} \notin \overline{B p_{n} A}$. Then, since $\|\bar{x}\|=\|\overline{\bar{x}}\|=\|x\|,\|\bar{y}\|=\|\overline{\bar{y}}\|=\|y\|$, we have $\bar{x} \notin \overline{A y A}$.

Thus we assume $p_{1}^{\prime} \in A p_{1} B, p_{i}^{\prime} \in B p_{i} B(1<i<n)$, and $p_{n}^{\prime} \in B p_{n} A$. Then one of the following holds:

$$
\begin{gather*}
p_{1}^{\prime} \alpha_{1} \cdots \alpha_{i-1} p_{i}^{\prime} \in A p_{1} \alpha_{1} \cdots \alpha_{i-1} p_{i} B, \quad \text { but } \tag{*}\\
p_{1}^{\prime} \alpha_{1} \cdots \alpha_{i} p_{i+1}^{\prime} \notin A p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} B \quad \text { for } i<n-1, \quad \text { or } \\
p_{1}^{\prime} \alpha_{1} \cdots \alpha_{n-2} p_{n-1}^{\prime} \in A p_{1} \alpha_{1} \cdots \alpha_{n-2} p_{n-1} B, \quad \text { but } \tag{**}\\
p_{1}^{\prime} \alpha_{1} \cdots \alpha_{n-1} p_{n}^{\prime} \notin A p_{1} \alpha_{1} \cdots \alpha_{n-1} p_{n} A .
\end{gather*}
$$

If $(*)$ holds, then let $p_{1}^{\prime} \alpha_{1} \cdots \alpha_{i-1} p_{i}^{\prime}=d_{1} p_{1} \alpha_{1} \cdots \alpha_{i-1} p_{i} u$ and $p_{i+1}^{\prime}=v p_{i+1} w$ for $u, v, w \in B, d_{1} \in A$. Since $p_{1}^{\prime} \alpha_{1} \cdots \alpha_{i} p_{i+1}^{\prime} \notin A p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} B$, we have $u v \notin$ $C_{\left\langle a_{1}\right\rangle}\left(p_{1} \alpha_{1} \cdots p_{i} \alpha_{i}\right) C_{B}\left(p_{i+1}\right)=S$. Then $S=1$, or $\left\langle a_{1}\right\rangle$, or $\left\langle a_{2}\right\rangle$ by Lemma 3.4. Now since P_{1} is π_{c} by Lemma 2.2, there exist $s, t\left(s_{1}\left|s, t_{1}\right| t\right)$ such that $\overline{u v} \notin \bar{S}$, and such that $C_{\left\langle\bar{a}_{1}\right\rangle}\left(\overline{p_{1} \alpha_{1} \cdots p_{i} \alpha_{i}}\right) C_{\bar{B}}\left(\overline{p_{i+1}}\right)=\bar{S}$ by Lemma 3.4. Then we note that $\overline{p_{1}^{\prime} \cdots p_{i}^{\prime} \alpha_{i} p_{i+1}^{\prime}} \notin$ $\overline{A p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} B}$. For, if $\overline{p_{1}^{\prime} \cdots p_{i}^{\prime} \alpha_{i} p_{i+1}^{\prime}} \in \overline{A p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} B}$, then we have $\overline{p_{1} \cdots p_{i} u v \alpha_{i} p_{i+1} w} \in \overline{A p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} B}$. Hence, by Lemma 3.2, for some $u_{1} \in B$, and $d_{2} \in A$, we have $\bar{p}_{1}=\overline{d_{2} p_{1} u_{1}}, \bar{\alpha}_{1}=\overline{u_{1}^{-1} \alpha_{1} u_{1}}, \bar{p}_{2}=\overline{u_{1}^{-1} p_{2} u_{1}}, \ldots, \overline{p_{i} u v}=\bar{u}_{1}^{-1} \bar{p}_{i} \bar{u}_{1} \overline{u v}$, $\bar{\alpha}_{i}=\left(\overline{u_{1} u v}\right)^{-1} \bar{\alpha}_{i} \overline{u_{1} u v}$, and $\overline{p_{i+1}}=\left(\overline{u_{1} u v}\right)^{-1} \overline{p_{i+1} u_{1} u v}$. By Lemma 3.2, $\overline{d_{2}} \in \bar{A} \cap \bar{B}=\left\langle\bar{a}_{1}\right\rangle$, and $\bar{d}_{2}^{-1}=\bar{u}_{1}$. Now $\bar{u}_{1} \in C_{\bar{B}}\left(\overline{p_{1} \alpha_{1} \cdots p_{i} \alpha_{i}}\right) \cap\left\langle\bar{a}_{1}\right\rangle$ and $\overline{u_{1} u v} \in C_{\bar{B}}\left(\overline{p_{i+1}}\right)$. Thus $\overline{u v} \in \bar{S}$, a contradiction.

The case ($* *$) can be similarly handled.

SUBCASE 2. Suppose $x=\alpha_{1}^{\prime} p_{1}^{\prime} \cdots \alpha_{n}^{\prime} p_{n}^{\prime}$ and $y=\alpha_{1} p_{1} \cdots \alpha_{n} p_{n}$, where $p_{i}, p_{i}^{\prime} \in P \backslash B$ and $\alpha_{i}, \alpha_{i}^{\prime} \in A_{1} \backslash B$.

If $\alpha_{i}^{-1} \alpha_{i}^{\prime} \notin B$ for some i, then $\overline{\alpha_{i}^{-1} \alpha_{i}^{\prime}} \notin \bar{B}$; hence $\bar{x} \notin \overline{A y A}$, where $\overline{P_{1}}=\overline{\overline{P_{1}}}$. So it suffices to consider $x=\alpha_{1} p_{1}^{\prime} \cdots \alpha_{n} p_{n}^{\prime}$ and $y=\alpha_{1} p_{1} \cdots \alpha_{n} p_{n}$. Note that $x \in A y A$ iff $x^{\prime} \in\left\langle a_{1}\right\rangle y^{\prime} A$, where $x^{\prime}=p_{1}^{\prime} \alpha_{2} \cdots p_{n}^{\prime}$ and $y^{\prime}=p_{1} \alpha_{2} \cdots p_{n}$. Thus if $x^{\prime} \notin A y^{\prime} A$ then we can find $\overline{P_{1}}$, by Subcase 1 , such that $\bar{x}^{\prime} \notin \overline{A y^{\prime} A}$. Then $\bar{x} \notin \overline{A y A}$. Now if $x^{\prime} \in A y^{\prime} A \backslash\left\langle a_{1}\right\rangle y^{\prime} A$, let $x^{\prime}=d_{1} p_{1} \alpha_{2} \cdots p_{n} d_{2}$, where $d_{1}, d_{2} \in A$ and $d_{1} \notin\left\langle a_{1}\right\rangle$. Choose $s, t\left(s_{1} \mid s\right.$ and $\left.t_{1} \mid t\right)$ such that $\bar{d}_{1} \notin\left\langle\bar{a}_{1}\right\rangle$. Now if $\bar{x} \in \overline{A y A}$, then $\bar{x}^{\prime} \in\left\langle\bar{a}_{1}\right\rangle \bar{y}^{\prime} \bar{A}$; hence $\overline{d_{1} p_{1}}=\bar{a}_{1}^{\prime} \bar{p}_{1} \bar{u}_{1}$ for some $u_{1} \in B$. Thus by Lemma 3.2 we have $\bar{d}_{1}=\bar{a}_{1}^{\epsilon} \bar{u}_{1} \in \bar{A} \cap \bar{B}=\left\langle\bar{a}_{1}\right\rangle$, a contradiction. Therefore $\bar{x} \notin \overline{A y A}$.

SUBCASE 3. Suppose $x=p_{1}^{\prime} \alpha_{1}^{\prime} \cdots p_{n}^{\prime} \alpha_{n}^{\prime}$ and $y=p_{1} \alpha_{1} \cdots p_{n} \alpha_{n}$, where $p_{i}, p_{i}^{\prime} \in P \backslash B$ and $\alpha_{i}, \alpha_{i}^{\prime} \in A_{1} \backslash B$.

This case is similar to Subcase 2, since $x^{-1} \notin A y^{-1} A$.
SUBCASE 4. Suppose $x=\alpha_{1}^{\prime} p_{1}^{\prime} \cdots p_{n}^{\prime} \alpha_{n+1}^{\prime}$ and $y=\alpha_{1} p_{1} \cdots p_{n} \alpha_{n+1}$, where $p_{i}, p_{i}^{\prime} \in$ $P \backslash B$ and $\alpha_{i}, \alpha_{i}^{\prime} \in A_{1} \backslash B$.

If $\alpha_{i}^{-1} \alpha_{i}^{\prime} \notin B$ for some i, then $\overline{\alpha_{i}^{-1} \alpha_{i}^{\prime}} \notin \bar{B}$; hence $\bar{x} \notin \overline{A y A}$, where $\overline{P_{1}}=\overline{\overline{P_{1}}}$. So it suffices to consider $x=\alpha_{1} p_{1}^{\prime} \cdots p_{n}^{\prime} \alpha_{n+1}$ and $y=\alpha_{1} p_{1} \cdots p_{n} \alpha_{n+1}$. Note that $x \in A y A$ iff $x \in\left\langle a_{1}\right\rangle y\left\langle a_{1}\right\rangle$ iff $x^{\prime} \in\left\langle a_{1}\right\rangle y^{\prime}\left\langle a_{1}\right\rangle$ iff $x^{\prime} \in A y^{\prime} A$, where $x^{\prime}=p_{1}^{\prime} \alpha_{2} \cdots p_{n}^{\prime}$ and $y^{\prime}=$ $p_{1} \alpha_{2} \cdots p_{n}$. Thus if $x^{\prime} \notin A y^{\prime} A$ then we can find $\overline{P_{1}}$ such that $\overline{x^{\prime}} \notin \overline{A y^{\prime} A}$ by Subcase 1. Then $\bar{x} \notin \overline{A y A}$. Now if $x^{\prime} \in A y^{\prime} A \backslash\left\langle a_{1}\right\rangle y^{\prime}\left\langle a_{1}\right\rangle$, let $x^{\prime}=d_{1} y^{\prime} d_{2}=d_{1} p_{1} \alpha_{2} \cdots p_{n} d_{2}$, where $d_{1}, d_{2} \in A$ and $d_{1} \notin\left\langle a_{1}\right\rangle$ or $d_{2} \notin\left\langle a_{1}\right\rangle$. Choose $s, t\left(s_{1} \mid s\right.$ and $\left.t_{1} \mid t\right)$ such that $\bar{d}_{1}, \bar{d}_{2} \notin\left\langle\bar{a}_{1}\right\rangle$. Now if $\bar{x} \in \overline{A y A}$, then $\overline{\alpha_{1} p_{1}^{\prime} \cdots p_{n}^{\prime} \alpha_{n+1}}=\overline{d_{3} \alpha_{1} p_{1} \cdots p_{n} \alpha_{n+1} d_{4}}$, for some $d_{3}, d_{4} \in A$. Then $\bar{d}_{3} \in \bar{A} \cap \bar{B}=\left\langle\bar{a}_{1}\right\rangle$ and $\bar{d}_{4} \in\left\langle\bar{a}_{1}\right\rangle$. It follows that $\overline{d_{3} p_{1} \alpha_{2} \cdots p_{n} d_{4}}=\overline{d_{1} p_{1} \alpha_{2} \cdots p_{n} d_{2}} ;$ hence $\bar{d}_{3} \bar{p}_{1}=\bar{d}_{1} \bar{p}_{1} \bar{u}_{1}$ for some $u_{1} \in B$. Thus, by Lemma 3.2, $\frac{\bar{p}_{1}^{-1} d_{3}}{d_{1}} \bar{u}_{1} \in \bar{A} \cap \bar{B}=\left\langle\bar{a}_{1}\right\rangle$. Hence $\bar{d}_{1} \in\left\langle\bar{a}_{1}\right\rangle$, and similarly, $\bar{d}_{2} \in\left\langle\bar{a}_{1}\right\rangle$, which contradicts the choice of s, t.

4. Main result.

THEOREM 4.1. Let P be the polygonal product of the polycyclic-by-finite groups $A_{0}, A_{1}, \ldots, A_{m}(m \geq 3)$, amalgamating the central subgroups $\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{m}\right\rangle,\left\langle a_{0}\right\rangle$ with trivial intersections. Then P is c.s.

Proof. First, we note that the reduced polygonal product P_{0}, which is a polygonal product of abelian groups $\left\langle a_{0}, a_{1}\right\rangle,\left\langle a_{1}, a_{2}\right\rangle, \ldots,\left\langle a_{m}, a_{0}\right\rangle$ amalgamating cyclic subgroups $\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{m}\right\rangle,\left\langle a_{0}\right\rangle$, with trivial intersections, is a graph product of the cyclic groups $\left\langle a_{1}\right\rangle, \ldots,\left\langle a_{m}\right\rangle,\left\langle a_{0}\right\rangle$. Hence P_{0} is c.s. by Theorem 2.4. Let $P_{i}=$ $\left(\cdots\left(\left(P_{0} *_{B_{m}} A_{m}\right) *_{B_{m-1}} A_{m-1}\right) \cdots\right) *_{B_{m-i+1}} A_{m-i+1}$, where $B_{j}=\left\langle a_{j}, a_{j+1}\right\rangle$ with subscripts taken modulo $m+1$. Then P_{i} is the polygonal product of $\left\langle a_{0}, a_{1}\right\rangle \ldots,\left\langle a_{m-i}, a_{m-i+1}\right\rangle$, A_{m-i+1}, \ldots, A_{m} amalgamating the central subgroups $\left\langle a_{1}\right\rangle \ldots .,\left\langle a_{m-i+1}\right\rangle, \ldots,\left\langle a_{0}\right\rangle$, with trivial intersections, and $P_{i+1}=P_{i} *_{B_{m-i}} A_{m-i}$. Since P_{0} is c.s., for an induction we assume that P_{m} is c.s. and we show that $P=P_{m+1}=P_{m} *_{B_{0}} A_{0}$ is c.s. By the assumption, every polygonal product of polycyclic-by-finite groups $\left\langle c_{0}, c_{1}\right\rangle, C_{1}, \ldots, C_{m}$, amalgamating the central subgroups $\left\langle c_{1}\right\rangle, \ldots,\left\langle c_{m}\right\rangle,\left\langle c_{0}\right\rangle$ with trivial intersections, is c.s. Hence
$\overline{P_{m}}=P_{m} /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle_{m}$ is c.s. for any $s, t>1$, since $\overline{P_{m}}$ is the polygonal product of $\left\langle\overline{a_{0}}, \overline{a_{1}}\right\rangle$, $A_{1} /\left\langle a_{1}^{t}\right\rangle, A_{2}, \ldots, A_{m-1}, A_{m} /\left\langle a_{0}^{s}\right\rangle$, amalgamating the subgroups $\left\langle\bar{a}_{1}\right\rangle,\left\langle a_{2}\right\rangle \ldots .\left\langle a_{m}\right\rangle,\left\langle\bar{a}_{0}\right\rangle$. Thus $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}=\overline{P_{m}} *_{\bar{A}} \bar{A}_{0}$ is c.s. for any $s, t>1$, where $\bar{A}_{0}=A_{0} /\left\langle a_{0}^{s} . a_{1}^{t}\right\rangle$, since $\bar{A}=\left\langle\bar{a}_{0}, \bar{a}_{1}\right\rangle$ is finite. Hence, for each pair $x, y \in P$ with $x \not \chi_{P} y$, we shall find $s . t$ such that $\bar{x} \not \chi_{\bar{p}} \bar{y}$.

Let $x, y \in P=P_{m} *_{B_{0}} A_{0}$ such that $x \not \chi_{P} y$, each of minimal length in its conjugacy class in $P_{m} *_{B_{0}} A_{0}$. Throughout the proof, we denote $A=B_{0}=\left\langle a_{0}, a_{1}\right\rangle$ and

$$
\phi_{s . t}: P_{m} *_{A} A_{0} \rightarrow \overline{P_{m}} *_{\bar{A}} \bar{A}_{0} .
$$

where $\overline{P_{m}}=P_{m} /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P_{m}}, \bar{A}_{0}=A_{0} /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle$, and $\bar{A}=\left\langle\bar{a}_{0}, \bar{a}_{1}\right\rangle$. By Lemma 3.9, P_{m} is A-separable. Hence there exist s_{0}, t_{0} such that $\|x\|=\left\|x \phi_{s_{0}, t_{0}}\right\|$ and $\|y\|=\left\|y \phi_{s_{0}, t_{0}}\right\|$.

Since P is $\mathcal{R} \mathcal{F}$ by Theorem 2.2, we may assume $x \neq 1 \neq y$.
CASE 1. $\|x\|=0$ and $\|y\|=1$ (or, similarly, $\|y\|=0$ and $\|x\|=1$).
Firstly, we suppose $y \in A_{0} \backslash A$. Let $s=s_{0}, t=t_{0}$. Then $\bar{y} \notin \bar{A}$; hence $\{\bar{y}\}^{\bar{A}_{0}} \cap \bar{A}=\emptyset$, thus $\bar{x} \not \chi_{\bar{P}} \bar{y}$.

Secondly, suppose $y \in P_{m} \backslash A$. By Lemma 3.5, there exist s_{1}, t_{1} such that $\left\{y \phi_{s_{1}, t_{1}}\right\}^{P_{m} \phi_{s_{1}, t_{1}}} \cap A \phi_{s_{1}, t_{1}}=\emptyset$. Let $s=s_{0} s_{1}$ and $t=t_{0} t_{1}$. Then $\{\bar{y}\}^{\overline{P_{m}}} \cap \bar{A}=\emptyset$ and $\bar{y} \notin \bar{A}$. Hence $\bar{x} \not \chi_{\bar{P}} \bar{y}$ by Theorem 2.5.

CASE 2. $\|x\| \neq\|y\|$ and $\|x\| \geq 2$ (or, similarly, $\|x\| \neq\|y\|$ and $\|y\| \geq 2$).
Since x has minimal length in its conjugacy class in P, x is cyclically reduced. Let $s=s_{0}$ and $t=t_{0}$. Then $\|\bar{x}\|=\|x\| \neq\|y\|=\|\bar{y}\|$. Thus $\bar{x} \not \chi_{\bar{p}} \bar{y}$ by Theorem 2.5.

CASE 3. $\|x\|=\|y\|=0$.
Since P is $\mathcal{R} \mathcal{F}$, there exist s_{1}, t_{1} such that $y^{-1} x \notin\left\langle a_{0}^{s_{1}}, a_{1}^{t_{1}}\right\rangle^{P}$. Let $s=s_{1}$ and $t=t_{1}$. If $\bar{x} \sim_{\bar{P}} \bar{y}$, then $\bar{x} \sim_{\bar{P}_{m}} \bar{\alpha}_{1} \sim_{\bar{A}_{0}} \cdots \sim_{\bar{A}_{0}} \bar{\alpha}_{r}=\bar{y}$ for $\bar{\alpha}_{i} \in \bar{A}$. It follows by Lemma 3.2 that $\bar{x}=\bar{\alpha}_{i}=\bar{y}$, since $\bar{A} \in Z\left(\bar{A}_{0}\right)$. Hence $\bar{x} \not \chi_{\bar{p}} \bar{y}$ by Theorem 2.5.

CASE 4. $\|x\|=\|y\|=1$.
 There exist s_{1}, t_{1} such that $\left\{x \phi_{s_{1}, t_{1}}\right\}^{P_{m} \phi_{s_{1}, t_{1}}} \cap A \phi_{s_{1}, t_{1}}=\emptyset$ and there exist s_{2}, t_{2} such that $x \phi_{s_{2}, t_{2}} \not \chi_{P_{m} \phi_{s_{2}, t_{2}}} y \phi_{s_{2}, t_{2}}$, since P_{m} is c.s. by the induction hypothesis. Let $s=s_{0} s_{1} s_{2}$ and $t=t_{0} t_{1} t_{2}$. Then $\{\bar{x}\}^{\overline{P_{m}}} \cap \bar{A}=\emptyset, \bar{x} \not \chi_{\overline{P_{m}}} \bar{y}$, and $\|\bar{x}\|=\|\bar{y}\|=1$. Hence $\bar{x} \not \chi_{\bar{p}} \bar{y}$ by Theorem 2.5.

Secondly, suppose $x, y \in A_{0} \backslash A$. Since $x \not \chi_{A_{0}} y$, and since A_{0} is c.s., there exist s_{1}, t_{1} such that $x \phi_{s_{1}, t_{1}} \not \chi_{A_{0} \phi_{s_{1}, t_{1}}} y \phi_{s_{1}, t_{1}}$. Let $s=s_{0} s_{1}$ and $t=t_{0} t_{1}$. Then $\bar{x} \not \chi_{\bar{A}_{0}} \bar{y}$ and $\{\bar{x}\}^{\bar{A}_{0}} \cap \bar{A}=\emptyset$; hence, by Lemma 3.2 and Theorem 2.5, we have $\{\bar{x}\}^{\bar{P}} \cap \bar{A}=\emptyset$. It follows that $\bar{x} \not \chi_{\bar{P}} \bar{y}$ by Theorem 2.5.

Finally, suppose $x \in A_{0} \backslash A$ and $y \in P_{m} \backslash A$. Let $s=s_{0}$ and $t=t_{0}$. Then as before $\{\bar{x}\}^{\bar{P}} \cap \bar{A}=\emptyset$. Hence $\bar{x} \not \chi_{\bar{P}} \bar{y}$ by Theorem 2.5 , since $\bar{y} \in \overline{P_{m}} \backslash \bar{A}$.

CASE 5. $\|x\|=\|y\|=2 n$.
Let $x=p_{1} \alpha_{1} \cdots p_{n} \alpha_{n}$ and $y=p_{1}^{\prime} \alpha_{1}^{\prime} \cdots p_{n}^{\prime} \alpha_{n}^{\prime}$, where $p_{j}, p_{j}^{\prime} \in P_{m} \backslash A$ and $\alpha_{j}, \alpha_{j}^{\prime} \in A_{0} \backslash A$ for all j. Since $x \not \chi_{P} y$, we have $x \not \chi_{A} y^{*}$ for all cyclic permutation y^{*} of y. Thus each of the equations

$$
\text { (j) } p_{j}^{\prime} \alpha_{j}^{\prime} \cdots p_{n}^{\prime} \alpha_{n}^{\prime} p_{1}^{\prime} \alpha_{1}^{\prime} \cdots p_{j-1}^{\prime} \alpha_{j-1}^{\prime}=a^{-1} p_{1} \alpha_{1} \cdots p_{n} \alpha_{n} a
$$

has no solution $a \in A$. We shall find s_{j}, t_{j} such that $(j) \phi_{s_{j}, t_{j}}$ has no solution $a \phi_{s_{j, t}, t_{j}} \in A \phi_{s_{j}, t_{j}}$ for each j. Then, for $s=s_{0} s_{1} \cdots s_{n}$ and $t=t_{0} t_{1} \cdots t_{n}$, we have $\|\bar{x}\|=\|x\|=\|y\|=\|\bar{y}\|$ and $\bar{x} \not \chi_{\bar{A}} \bar{y}^{*}$ for any cyclic permutation \bar{y}^{*} of \bar{y}. Hence we have $\bar{x} \not \chi_{\bar{P}} \bar{y}$ as required.

Here we only consider the case $j=1$, since the others are similar.
Claim. If $p_{1}^{\prime} \alpha_{1}^{\prime} \cdots p_{n}^{\prime} \alpha_{n}^{\prime} \not \chi_{A} \quad p_{1} \alpha_{1} \cdots p_{n} \alpha_{n}$ then there exist s, t such that $\overline{p_{1}^{\prime} \alpha_{1}^{\prime} \cdots p_{n}^{\prime} \alpha_{n}^{\prime}} \chi_{\bar{A}} \overline{p_{1} \alpha_{1} \cdots p_{n} \alpha_{n}}$.

If $\alpha_{i}^{-1} \alpha_{i}^{\prime} \notin A$ for some i then, taking $s=s_{0}$ and $t=t_{0}$, we have $\overline{\alpha_{i}^{-1} \alpha_{i}^{\prime}} \notin \bar{A}$; hence clearly $\bar{x} \not \chi_{\bar{A}} \bar{y}$. Thus it suffices to consider the case $\alpha_{i}=\alpha_{i}^{\prime}$ for all i. Now if $p_{i}^{\prime} \notin A p_{i} A$ for some i then, by Lemma 3.9, there exist s_{1}, t_{1} such that $p_{i}^{\prime} \phi_{s_{1}, t_{1}} \notin\left(A p_{i} A\right) \phi_{s_{1}, t_{1}}$. Let $s=s_{0} s_{1}$ and $t=t_{0} t_{1}$. Then $\overline{p_{i}^{\prime}} \notin \overline{A p_{i} A}$; hence $\bar{x} \not \chi_{\bar{A}} \bar{y}$. Therefore, we suppose $\alpha_{i}^{\prime}=\alpha_{i}$ and $p_{i}^{\prime} \in A p_{i} A$ for all i. Then one of the following is true:

$$
\begin{equation*}
p_{1}^{\prime} \alpha_{1} \cdots \alpha_{i-1} p_{i}^{\prime} \in A p_{1} \alpha_{1} \cdots \alpha_{i-1} p_{i} A, \quad \text { but } \tag{}
\end{equation*}
$$

$$
p_{1}^{\prime} \alpha_{1} \cdots \alpha_{i} p_{i+1}^{\prime} \notin A p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} A, \quad \text { for some } i \text {. or }
$$

$$
\begin{gather*}
p_{1}^{\prime} \alpha_{1} \cdots p_{n}^{\prime} \alpha_{n} \in A p_{1} \alpha_{1} \cdots p_{n} \alpha_{n} A, \quad \text { but } \tag{}\\
p_{1}^{\prime} \alpha_{1} \cdots p_{n}^{\prime} \alpha_{n} \not \chi_{A} p_{1} \alpha_{1} \cdots p_{n} \alpha_{n} .
\end{gather*}
$$

If $(*)$ is true, then let $p_{1}^{\prime} \alpha_{1} \cdots \alpha_{i-1} p_{i}^{\prime}=d_{1} p_{1} \alpha_{1} \cdots \alpha_{i-1} p_{i} d_{2}$ and $p_{i+1}^{\prime}=d_{3} p_{i+1} d_{4}$ for $d_{k} \in A$. Since $p_{1}^{\prime} \alpha_{1} \cdots \alpha_{i} p_{i+1}^{\prime} \notin A p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} A$, we have $d_{2} d_{3} \notin C_{A}\left(p_{1} \alpha_{1} \cdots p_{i} \alpha_{i}\right) C_{A}\left(p_{i+1}\right)$. Hence, by Lemma 3.4, $C_{A}\left(p_{1} \alpha_{1} \cdots p_{i} \alpha_{i}\right) C_{A}\left(p_{i+1}\right)$ is a cyclic subgroup of A. Now since P is π_{c} by Lemma 2.2, there exist s_{1}, t_{1} such that, in $\bar{P}=P /\left\langle a_{0}^{s_{1}}, a_{1}^{t_{1}}\right\rangle^{P}$, $\overline{\overline{d_{2} d_{3}}} \notin \overline{\overline{C_{A}\left(p_{1} \alpha_{1} \cdots p_{i} \alpha_{i}\right) C_{A}\left(p_{i+1}\right)}}, C_{\overline{\bar{A}}}\left(\overline{\left.\overline{p_{1} \cdots p_{i} \alpha_{i}}\right)}=\overline{\left.\overline{C_{A}\left(p_{1} \cdots p_{i} \alpha_{i}\right.}\right)}\right.$, and $C_{\bar{A}}\left(\overline{\overline{p_{i+1}}}\right)=$ $\overline{\overline{C_{A}\left(p_{i+1}\right)}}$. Let $s=s_{0} s_{1}$ and $t=t_{0} t_{1}$. Then, in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$, we have $\overline{d_{2} d_{3}} \notin \overline{C_{A}\left(p_{1} \alpha_{1} \cdots p_{i} \alpha_{i}\right) C_{A}\left(p_{i+1}\right)}, C_{\bar{A}}\left(\overline{p_{1} \cdots \alpha_{i} p_{i}}\right)=\overline{C_{A}\left(p_{1} \cdots \alpha_{i} p_{i}\right)}$, and $C_{\bar{A}}\left(\overline{p_{i+1}}\right)=$ $\overline{C_{A}\left(p_{i+1}\right)}$. Now we note that $\bar{x} \not_{\bar{A}} \bar{y}$. For, if $\bar{x} \sim_{\bar{A}} \bar{y}$, then $\overline{p_{1}^{\prime} \cdots p_{i}^{\prime} \alpha_{i} p_{i+1}^{\prime}} \in$ $\overline{A p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} A}$, and hence $\overline{p_{1} \cdots p_{i} d_{2} \alpha_{i} d_{3} p_{i+1}}=\overline{d_{5} p_{1} \alpha_{1} \cdots \alpha_{i} p_{i+1} d_{6}}$ for some $d_{5}, d_{6} \in$ A. Then, by Lemma 3.2, and since $\bar{A} \subset Z\left(\bar{A}_{0}\right)$, we have $\bar{p}_{1}=\overline{d_{5} p_{1} d_{5}^{-1}}, \bar{\alpha}_{1}=\overline{d_{5} \alpha_{1} d_{5}^{-1}} \ldots$, $\bar{p}_{i} \bar{d}_{2} \bar{d}_{3}=\bar{d}_{5} \bar{p}_{i} \bar{d}_{5}^{-1}\left(\overline{d_{2} d_{3}}\right), \bar{\alpha}_{i}=\left(\overline{d_{2} d_{3}}\right)^{-1} \bar{d}_{5} \bar{\alpha}_{i} \bar{d}_{5}^{-1} \overline{d_{2} d_{3}}$, and $\overline{p_{i+1}}=\left(\overline{d_{2} d_{3}}\right)^{-1} \bar{d}_{5} \overline{p_{i+1}} \bar{d}_{6}$; hence $\bar{d}_{6}=\bar{d}_{5}^{-1} \overline{d_{2} d_{3}}$ by Lemma 3.2. It follows that $\bar{d}_{5}^{-1} \overline{d_{2} d_{3}} \in C_{\bar{A}}\left(\overline{p_{i+1}}\right)$, and $\bar{d}_{5} \in C_{\bar{A}}\left(\overline{p_{1} \cdots \alpha_{i} p_{i}}\right)$. Thus $\overline{d_{2} d_{3}} \in C_{\bar{A}}\left(\overline{p_{1} \cdots \alpha_{i} p_{i}}\right) C_{\bar{A}}\left(\overline{p_{i+1}}\right)=\overline{C_{A}\left(p_{1} \alpha_{1} \cdots p_{i} \alpha_{i}\right) C_{A}\left(p_{i+1}\right)}$, a contradiction.

If $(* *)$ is true, then let $p_{1}^{\prime} \alpha_{1} \cdots p_{n}^{\prime} \alpha_{n}=d_{1} p_{1} \alpha_{1} \cdots p_{n} \alpha_{n} d_{2}$, where $d_{1}, d_{2} \in A$ and $d_{1} d_{2} \neq 1$. Choose s_{1}, t_{1} such that $d_{1} d_{2} \notin\left\langle a_{0}^{s_{1}}, a_{1}^{t_{1}}\right\rangle^{P}$. Let $s=s_{0} s_{1}$ and $t=t_{0} t_{1}$.

We note that $\bar{x} \not \chi_{\bar{A}} \bar{y}$ in $\bar{P}=P /\left\langle a_{0}^{s}, a_{1}^{t}\right\rangle^{P}$. For, if $\bar{x} \sim_{\bar{A}} \bar{y}$, then $\overline{\bar{d}_{1} p_{1} \cdots p_{n} \alpha_{n} d_{2}}=$ $\overline{d_{3}^{-1} p_{1} \alpha_{1} \cdots p_{n} \alpha_{n} d_{3}}$, for some $d_{3} \in A$. Hence, by Lemma 3.2, we have $\overline{d_{1} p_{1}}=\bar{d}_{3}^{-1} \bar{p}_{1} \overline{d_{3} d_{1}}$, $\bar{\alpha}_{1}=\left(\overline{d_{3} d_{1}}\right)^{-1} \bar{\alpha}_{1} \overline{d_{3} d_{1}}, \ldots, \bar{p}_{n}=\left(\overline{d_{3} d_{1}}\right)^{-1} \bar{p}_{n} \overline{d_{3} d_{1}}, \overline{\alpha_{n} d_{2}}=\left(\overline{d_{3} d_{1}}\right)^{-1} \bar{\alpha}_{n} \bar{d}_{3}$. Thus we have $\bar{d}_{2}=\bar{d}_{1}^{-1}$, which contradicts the choice of s_{1}, t_{1}. This completes the proof.

COROLLARY 4.2. Let P be the polygonal product of the f.g. abelian groups $A_{0}, A_{1}, \ldots . A_{m}(m \geq 3)$, amalgamating subgroups $\left\langle a_{1}\right\rangle \ldots,\left\langle a_{m}\right\rangle,\left\langle a_{0}\right\rangle$, with trivial intersections. Then P is c.s.

Corollary 4.2 generalizes Theorem 3.4 in [1]. We also have the following.
Corollary 4.3. Let $E_{m}=A_{1} *_{\left\langle a_{2}\right\rangle} A_{2} *_{\left\langle a_{3}\right\rangle} \cdots *_{\left\langle a_{m-1}\right\rangle} A_{m-1}(m \geq 3)$, where the A_{i} are polycyclic-by-finite and $a_{i} \in Z\left(A_{i-1}\right) \cap Z\left(A_{i}\right)$ with $\left\langle a_{i}\right\rangle \cap\left\langle a_{i+1}\right\rangle=1$. Then E_{m} is c.s.

Proof. Let $E=\left\langle a_{0}, a_{1}\right\rangle *_{\left\langle a_{1}\right\rangle}\left(\left\langle a_{1}\right\rangle \times A_{1}\right) *_{\left\langle a_{2}\right\rangle} \cdots *_{\left\langle a_{m-1}\right\rangle}\left(A_{m-1} \times\left\langle a_{m}\right\rangle\right) *_{\left\langle a_{m}\right\rangle}\left\langle a_{m}, a_{m+1}\right\rangle$, and $F=\left\langle a_{0}, a_{m+2}\right\rangle *_{\left\langle a_{m+2}\right\rangle}\left\langle a_{m+2}, a_{m+1}\right\rangle$, where $\left\langle a_{0}, a_{1}\right\rangle,\left\langle a_{m}, a_{m+1}\right\rangle,\left\langle a_{0}, a_{m+2}\right\rangle$, and $\left\langle a_{m+2}, a_{m+1}\right\rangle$ are free abelian groups of rank 2. We write $H=\left\langle a_{0}, a_{m+1}\right\rangle=\left\langle a_{0}\right\rangle *\left\langle a_{m+1}\right\rangle$, and $P=E *_{H} F$. Then P is a polygonal product of polycyclic-by-finite groups, amalgamating cyclic central subgroups with trivial intersections. Hence P is c.s. by our main result. Note that there is a natural homomorphism $\pi: P \rightarrow E_{m}$ such that $a_{i} \pi=1$ for $i=0$, $1, m+1, m+2$ and $\left.\pi\right|_{E_{m}}$ is the identity map on E_{m}. Simply, E_{m} is a retract of P. It follows immediately that E_{m} is c.s., since P is c.s.

References

1. R. B. J. T. Allenby and C. Y. Tang, On the residual finiteness of certain polygonal products, Canad. Math. Bull. (1) 32(1989), 11-17.
2. J. L. Dyer, Separating conjugates in free-by-finite groups, J. London Math. Soc. (2) 20(1979), 215-221.
3. J. L. Dyer, Separating conjugates in amalgamated free products and HNN extensions, J. Austral. Math. Soc. Ser. A (1) 29(1980), 35-51.
4. B. Fine and G. Rosenberger, Conjugacy separability of Fuchsian groups and related questions, Contemp. Math., Amer. Math. Soc. 109(1990), 11-18.
5. E. Formanek, Conjugate separability in polycyclic groups, J. Algebra 42(1976), 1-10.
6. E. R. Green, Graph Products of Groups, Ph. D. thesis, University of Leeds, 1990.
7. A. Karrass, A. Pietrowski, and D. Solitar, The subgroups of polygonal products of groups, unpublished manuscript.
8. G. Kim, Conjugacy separability of certain free product amalgamating retracts, preprint.
9. On polygonal products of finitely generated abelian groups, Bull. Austral. Math. Soc. (3) 45(1992), 453-462.
10. \qquad , Cyclic subgroup separability of generalized free products, Canad. Math. Bull. (3) 36(1993), 296-302.
11. G. Kim, J. McCarron, and C. Y. Tang, Adjoining roots to conjugacy separable groups, J. Algebra 176(1995), 327-345.
12. G. Kim and C. Y. Tang, On the residual finiteness of polygonal products of nilpotent groups, Canad. Math. Bull. (3) 35(1992), 390-399.
13. G. Kim and C. Y. Tang, Polygonal products which are residually finite p-groups. In: Group Theory Proc. of the Biennial Ohio State-Dennison Conference, World Sci. Pub. Co., Singapore, 1993, 275-287.
14. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Pure and Applied Math. Vol. XIII, Wiley-Interscience, New York, London, Sydney, 1966.
15. C. Y. Tang, Conjugacy separability of generalized free products of surface groups, J. Pure Appl. Algebra, to appear.
16. Conjugacy separability of generalized free products of certain conjugacy separable groups, Canad. Math. Bull. 38(1995), 120-127.

Department of Mathematics
Kangnung National University
Kangnung, 210-702
Korea
e-mail: gskim@knusun.kangnung.ac.kr

[^0]: The author was supported by N.D.R.F., Korea Research Foundation, 1994.
 Received by the editors Novmber 9, 1995.
 AMS subject classification: Primary: 20E26, 20E06; secondary: 20 F 10.
 Key words and phrases: Polygonal products, generalized free products, conjugacy separable, residually finite.
 (C) Canadian Mathematical Society, 1996.

