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An extension of Pontryagin duality

B.J. Day

Let 1/ denote the symmetric monoidal closed category of limit-

space abelian groups and let L denote the full subcategory of

locally compact Hausdorff abelian groups. Results of Samuel

Kaplan on extension of characters to products of L-groups are

used to show that each closed subgroup of a product of L-groups

is a limit of L-groups. From this we deduce that the limit

closure of L in f is reflective in V and has every group

Pontryagin reflexive with respect to the structure of continuous

convergence on the character groups. The basic duality L ~ L

is then extended.

Introduction

Amongst the cartesian closed extensions of the category T of all

topological spaces and continuous maps there is the quasi-topos

C = (C, 1, x, {-, - } , ...) of limitspaces (also called convergence

spaces). We choose to work with this extension because it is perhaps the

best known (see Binz [21, [3] and Binz and Keller [4]). Other candidates

would include Choquet pseudotopologies [7], [20] or Antoine spaces ['],

[20]. However, because we only work with internal-homs of the form

{X, T} , T a topological group, it can be shown (see [9], [20]) that our

choice is basically irrelevant since {X, T] is always an Antoine space;

that is, {X, T] always lies in the minimum reflexive concrete cartesian

closed extension of T .

We also choose to work with C , an extension of T because, as will

become clear in Section 2, any convenient cartesian closed restriction of
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446 B.J. Day

T , such as fc-spaces, would require a stronger lifting-of-characters

property than that which Kaplan [77] supplies.

In Section 1 we introduce the symmetric monoidal closed category

V = (V, Z, ®, [-, -],...) of abelian group objects in C prior to

studying, in Section 2, the limit closure of L in C (where L denotes

the category of locally compact Hausdorff abelian groups). Pontryagin

duality of topological groups A , with respect to the structure [A, R/Z]

of continuous convergence on the character groups, is considered in Section

3. The results are somewhat analogous to those of- Lambek and Rattray [79]

except that we seek to localise at the whole category L rather than just

at T = R/Z .

It is known (see, for example, Hofmann [75], [76]) that every L-group

is the inverse limit of elementary quotients, an elementary group being one

of the form 1? © hT © G , a, b d N , and G discrete. Thus we could

equally well work with elementary groups as models.

For references to the basic category theory we use Day and Kelly [72],

Eilenberg and Kelly [74], Mac Lane [27], and Schubert [22].

1. Preliminaries

In introducing the symmetric monoidal closed category

V - (V, Z, ®, [-, - ] , ...) of abelian group objects in C we point out

that it is well known that the category of abelian group objects in any

complete and cocomplete cartesian closed category forms a symmetric

monoidal closed category which is itself complete and cocomplete (see, for

example, Borceux and Day [5], [6], and Day [S]). In the case of limit-

spaces the tensor product structure is just an appropriate limitspace

structure on the ordinary tensor product of the underlying abelian groups.

In the following section we shall, however, be more concerned with the

internal-horn [A, B] in V which is the group of homomorphisms in {A, B}

with the subspace limitstructure (often referred to as the structure of

continuous convergence). Even if B is a topological group ( qua limit-

space), the horn [A, B] is generally only a limitspace (see Binz [2],

[3]). Some instances where {X, B} is a topological group may be obtained

as follows.
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Call a quotient map q : X •* Y in T productive if q * W is a

quotient map in T for all W € T ; such maps are completely

characterised in Day and Kelly [73], Theorem 2.

PROPOSITION 1.1. The limitspace {X, Y) of all continuous maps from

X to Y in T is again a topological space if X is a productive

quotient of a locally compact Hausdorff space.

Proof. Suppose q : L -*• X is a productive quotient of L , a locally-

compact Hausdorff space. Then {q, Y} •. {X, Y} •* {I, Y} is a subspace

mapping in C ; to establish this note that, for each W € T and map

f : W •*• {X, Y) , / i s continuous in C if and only if {q, Y}*f is

continuous in C , since the diagram

in C , transforms to the following diagram in T :

Thus it remains to prove •{£, Y) ±s a topological space. Let {X, Y]' be

T(Xt Y) with the compact-open topology. In order to establish that

{L, Y}' = {£, Y) we need only establish that they both admit the same maps

from spaces V € T since T is dense in C . But, while

C(W, {L, Y}) c*C(WxL, Y) = T(W*L, Y) ,

we also have

T(W, {L, Y}') c*T{W*L, Y) ,

and the result follows. //

There is a canonical embedding Tkb c V and it is epireflexive by the

https://doi.org/10.1017/S0004972700008972 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008972


44.8 B. J . Day

special adjoint-functor theorem. The actual embedding will be omitted from

the notation, a topological abelian group being regarded as a special

instance of a limitspace abelian group. In view of this identification we

see that the epireflexive hull H of L in TAb coincides with the

epireflexive hull of L in 1/ .

In order to give a neat description of the reflexion functors

constructed we introduce what might be called the "standard presentation"

of A € 1/ .

PROPOSITION 1.2. The end f LV^A'L^ exists in V for each A € 1/f LV^A'
and lies in the limit closure of L in V .

Proof. Since the end ^ ' i s computed over a large class L ,

we have to find a representation of it which is small. In order to do

this, note that there exists only a small set of continuous maps f • A -*• X,

X Hausdorff, and im f dense in X . For each L € L let V(A, L)

denote the set of dense continuous abelian group homomorphisms from A to

L . Factor any f : A + L in 1/ into a map d : A •* M , d(A) = M ,

followed by an inclusion M 5 L , where M (. L again. This process gives

us a canonical coequaliser diagram in Enb :

X V{M, N) x V(A, M) x L(N, L) j £ V(A, M) x L(M, L) * \){A, L) ,
DAxDA DA

which is natural in L € L and where DA denotes the small set of dense

images of A . Thus we obtain an equaliser diagram in V :

f LV{A,

'L
L) ^j-^LV(A,L) _ J-J LV(M,L)*V(A,M) ,

DA " DAxDA

by the Yoneda Lemma applied to i f t (Day and Kelly [12] and Mac Lane

[ 2 7 ] ) . //

There is a canonical map p^ : A ->• \ L ' .

PROPOSITION 1.3. Tlie process of factoring p. into a continuous

surjection followed by a subspace inclusion constitutes reflexion of \)

into the epireflexive hull H of L in V .
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Proof. Let A •+ SA •* \ L » ' ' \,e the described factorisation of

PA . If B € H , then there is a subspace inclusion B c *] [" L^ . This

means that B -*• \ L ' is a subspace inclusion. Now any map

/ € V(A, B) gives:

f

I

B >

MA,L)

,£)

as required. //

2. The limit closure of L in

We recall from Kelly U S ] that a monic m in H is called strong if,

given any commuting square:

with e an epi in H , there exists a (unique) W rendering both

triangles commutative. We also recall that a (strong) monic is called

regular if it happens to be an equaliser.

In advance one does not know whether or not all strong monies are

regular. Because H is complete and cocomplete this will follow from

Kelly [/S],provided the pushout in H of a strong monic is monic. This,

in turn, will be the case if H has an injective cogenerator.

THEOREM 2.1. H has T = R/Z as an injeetive eogenerator.

Proof. First observe that the canonical map A •* [[A, T], f\ is a

strong monic in 1/ for all A £ H since, by definition of H , there is a

strong monic A >—»- "| |" L. in V ; thus we simply consider the diagram:
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[[A, T], T]

II?

[ [ L x , T\,T\ .

Now consider the composite mapping

A + [ [ A , T], T]+ [_[A, TV, T~] ^SA>T) ,

where [A, T]* -*• [A, T] is the canonical bijection from the discrete space

[A, T]* on the underlying set of [A, T] . This composite is thus a monic,

so T is a cogenerator of H . The circle group T is injective in H

by Kaplan [77], Theorem 1. / /

PROPOSITION 2 . 2 . The pushout in H of a strong monic is mania.

Proof. This i s by a well-known argument. Let i : A •*• B be a strong

monic in H and l e t / : A -*• C in H . Form the pushout

i n H . Then

T)

H(B, T)

- H{C, T)

•* H(A, T)

is a pullback in En& ; thus H(j, T) is a surjection. The result now

follows from considering the diagram

II
COROLLARY 2.3. Ir. H all strong monies are regular.

Proof. By Kelly 11 Si, Proposition 5.10 and Proposition 5.lU. //

We can now compute the epimorphisms in H . Let e : A •*• B be epic
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in H . Factor i t into a continuous surjection followed by a subspace

inclusion:

-> B

Since T is injective in H and C c B is an epimorphism, we must have

H(B, T) =* H(C, T) . However, by Kaplan [77], Theorem 2, this is impossible

unless C = B . Thus the epimorphisms in H are precisely the

epimorphisms in the category TA6? of Hausdorff topological abelian

groups. This, in turn, means that the strong (equals regular) monies in H

are precisely the closed subspace inclusions. Thus each closed subgroup of

a product of L-groups is in fact a limit of /.-groups.

THEOREM 2.4. The limit closure V of L in H (as in \J ) is

epireflexive in H .

Proof. For each A € H we have a subspace inclusion A c \ L ' .

The reflexion of A into P is just the closure of A in \ L . //

Much of the interest in this theorem centres around the fact that the

limit closure P of L in V is cocomplete as well as being complete.

3. Duality in 1/

THEOREM 3.1. Each A e P is Pontryagin reflexive in V .

Proof. Each A € P admits an equaliser presentation

A >—• 1 T L. •+"I \ L , L L d L . Thus we consider the following

A ~*" (J A ]J
diagram:
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A >

n

A** >

m
-1 - i

where the A** denotes the double dual of A . Each product 1 T L. is
A

Pontryagin reflexive in V by Day [/J], Corollary 5.1.5- By injectivity

of T , h is a monic,so m is a monic. But mr\ = 1, so m and r| are

mutually inverse. //

COROLLARY 3.2. Every closed subgroup of a product of L-groups is

Pontryagin reflexive in V .

A closely related subcategory of V is the category Q_ of all direct

limits in 1/ of locally compact Hausdorff abelian groups. Thus A € f is

in Q. if and only if there exists a coequaliser presentation

of A in V , where L , L, £ L .
y A

Since Z is a

projective generator of V, it is straightforward (toy analogy with Section

2) to establish that Q. is closed under colimits (equals direct limits) in

V , and thus is coreflexive in V by the special adjoint-functor theorem.

We denote the coreflexion by /?:!/-»•£.

The functor [-, T] : £ ° P •* ? now has a left adjoint, namely the

opposite of R[-, T] : P P -»• Q. . In view of this adjunction we have

QSB, R[A, T]) Si ?{A, [B, T}) .

Upon setting B = Z we see that the canonical map R[A, T] •* [A, T] is a

continuous bijection.

Finally, we have the usual dual equivalence between

F-OC Q?[-, T], T] C P and F-cx i?[[-, 21], 21] c () . This equivalence extends

the duality L ^ L p , as we shall see in the next section.
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4 . Compactly g e n e r a t e d 1 i m i t s p a c e s

We now introduce the cartesian closed category K. of compactly

generated limitspaces (K-spaces for brief). An object of K. is a limit-

space X for which there exists a strong epimorphism Y C, -»• X in C

X€A A

where all the C-, are compact Hausdorff spaces. Clearly K is closed

under coproducts and strong epimorphisms in C , so K c C has a right

adjoint W : C •* K . Because C(l, X) S C(l, WX) for all X € C we see

that V does not alter underlying sets. Moreover, it is easily seen that

K is cartesian closed, since the product in C of a finite number of

K-spaces is again a K-space.

PROPOSITION 4.1. Each locally compact Hausdorff space is, as a

limitspace, a K-space.

Proof. The embedding T c C preserves all coproducts and those

quotient maps f : X -*• Y which satisfy the following condition (see Day

LiOl): given any y £ Y there exists a finite number of points

{x , ... , x } c f~ y such that each neighbourhood of {x., ..., x } maps

to a neighbourhood of y € Y . Now suppose Y is locally compact and

Hausdorff. For each j C J choose a compact Hausdorff neighbourhood C

and give it the subspace topology in Y . Then Y, C "*" % i-s clearly a

quotient of the required form. //

A strong projective limit in T is a limit lim X-, over a directed
X€A

set A such that each projection p, : lim X, -*• X, is an identification

map in T . For example, a product 1 T X, may be regarded as a strong

\(.k X

limit cofiltered over the set of finite subsets of A .

LEMMA 4.2 . Given a strong projective limit in TAfa with projections

p^ : lim A-y -*• A, 3 the collection {ker p . ; X € A} is a filter base on

lim A-^ and it converges to zero.

Proof. Since A is directed, the collection jpT1^); V open in A,
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is a base for the topology on lim -4^ in TAfa . Thus {ker p, } -»• 0 . //

PROPOSITION 4.3. Let lim A^ be a strong protective limit in TAb .

Then the continuous comparison map colim[4, , f] •*• lim\A-,, T~\ is a

homeomorphism colim V\A^, T] S w{l±m A^, T] .

Proof. Let f : C -*• [lim A,, f] be a continuous (test) map from a

compact Hausdorff space C . This transforms to a morphism

/' : limA^ •* {C, T} . But clearly {C, T} , which has the compact-open

topology, has no small subgroups, so f factors through some projection

p , : lim Ay -*• A. (by the lemma). This then y i e ld s a morphism C -*• \A^, r j

and the r e s u l t follows s ince both colim w\&-i, T~] and W [lira. A., f] admit

the same morphisms from compact Hausdorff spaces . / /

For each s t rong l i m i t lim A, in TAfa of L-groups we have
A

continuous bijections

colim[AA, T] •* i?[lim A^, T] •* [lim A T~\ .

PROPOSITION 4.4. If lim A is a strong protective limit in 1Kb

of l-groups, then lim A^ e Fix[R[-, T], T] .

Proof. Firstly R[lim A^, T] is a /(-space because this object is a

quotient of a sum of locally compact Hausdorff spaces in V ; hence in C

(simply filter each sum in V to obtain a quotient map in C , remembering

that the forgetful functor 1/ -»• C creates filtered colimits (see, for

example [6])). Thus, by Proposition ^.3, we have

, T\ ̂  R[lim Ax, T] s P/[

[colim[4x, T], T] & [ i?[ i i m^A, T] , T] ,

whence lim ^ S p?[l im^x, T] , f\ ; so lim A^ € Tlx\R{-, T], T~] , as

required. / /

From th i s fact we deduce that the dual equivalence

F-tx[i?[-, T], T] c F̂ X i?[[-, T], r ] o p is larger than L ̂  L°P .
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