Interpolated Derivatives

By B. Spati

(Received 21st July, 1955.)

In a previous paper [Spain, Proc. Roy. Soc. Edinburgh, Vol. LX (1940), 134], I have shown that the application of the cardinal function to the problem of interpolating the derivatives yields the result

$$
D^{n} f(x)=\frac{1}{\Gamma(-n)} \int_{a}^{x} \frac{f(u) d u}{(x-u)^{n+1}}+\frac{1}{\Gamma(-n)} \int_{-\infty}^{a} d u f(u) \int_{1}^{\infty} \frac{t^{n} e^{-t(x-u)} d t}{\Gamma(n+1)} .
$$

This formula is valid for $x>a$ (the constant of integration), and $R(n)<0$. The analytical continuation for $R(n) \geqslant 0$ is indicated in the paper just quoted. The first term is the familiar expression for a fractional derivative, but the second term is not Riemann's complementary function. Furthermore, this result is unsatisfactory because it is impossible to perform the repeated operation of a fractional derivative of a fractional derivative.

The cardinal function interpolation requires the derivatives to be given for both positive and negative values of n. Instead let us try and interpolate by the Gregory-Newton formula for negative values of n. The s th repeated integral of $f(x)$ can be written

$$
F(s)=\frac{1}{(s-1)!} \int_{a}^{x}(x-u)^{s-1} f(u) d u .
$$

The Gregory-Newton formula is

$$
F(n)=\sum_{r=0}^{\infty} \frac{n(n-1) \ldots(n-r+1)}{r!} \Delta^{r} F
$$

where

$$
\Delta^{r} F=\sum_{s=0}^{r}(-1)^{r+s}\binom{r}{s} F(b+w s)
$$

and $F(n)$ the function to be interpolated is given at the points $b, b+w, \ldots, b+w s, \ldots$. In our problem $w=b=1$ and so $b+w s=1+s$ and by substitution we have

$$
\begin{aligned}
F(n+1) & =\sum_{r=0}^{\infty} \frac{n(n-1) \ldots(n-r+1)}{r!} \sum_{s=0}^{r}(-1)^{r+s}\binom{r}{s} \frac{1}{s!} \int_{a}^{x}(x-u)^{s} f(u) d u \\
& =\sum_{r=0}^{\infty} \frac{(-1)^{r} n(n-1) \ldots(n-r+1)}{r!} \int_{a}^{x} d u f(u) \sum_{s=0}^{r}(-1)^{s}\binom{r}{s} \frac{(x-u)^{s}}{s!} \\
& =\sum_{r=0}^{\infty} \frac{(-1)^{r} n(n-1) \ldots(n-r+1)}{r!} \int_{a}^{x} f(u) L_{r}(x-u) d u \\
& =\int_{a}^{x} d u f(u) \sum_{r=0}^{\infty} \frac{(-1)^{r} n(n-1) \ldots(n-r+1)}{r!} L_{r}(x-u),
\end{aligned}
$$

where $L_{r}(x)$ is the normalised Laguerre polynomial of degree r (Kaczmarz and Steinhaus, Theorie der Orthogonalreihen, 140) defined by

$$
L_{r}(x)=\frac{1}{r!} e^{x} \frac{d^{r}}{d x^{r}}\left(e^{-x} x^{r}\right)
$$

with the orthogonal properties

$$
\int_{0}^{\infty} e^{-x} L_{r}(x) L_{l}(x) d x= \begin{cases}0 & \text { if } r \neq t \\ 1 & \text { if } r=t\end{cases}
$$

The summation we require is readily obtained if we expand x^{n} for nonintegral $n>0$ in a series of Laguerre polynomials. That is, write

$$
x^{n}=\sum_{r=0}^{\infty} \lambda_{r} L_{r}(x)
$$

and by the orthogonal properties of the Laguerre polynomials we have

$$
\lambda_{r}=\int_{0}^{\infty} e^{-x} x^{n} L_{r}(x) d x=\frac{1}{r!} \int_{0}^{\infty} x^{n} \frac{d^{r}}{d x^{r}}\left(e^{-x} x^{r}\right) d x
$$

Since $n>0$, repeated application of integration by parts yields

Thus

$$
\begin{aligned}
\lambda_{r} & =\frac{(-1)^{r} n(n-1) \ldots(n-r+1)}{r!} \int_{0}^{\infty} x^{n-r}\left(e^{-x} x^{r}\right) d x \\
& =\frac{(-1)^{r} n(n-1) \ldots(n-r+1) \Gamma(n+1)}{r!} \\
& \frac{x^{n}}{\Gamma(n+1)}=\sum_{r=0}^{\infty} \frac{(-1)^{r} n(n-1) \ldots(n-r+1)}{r!} L_{r}(x)
\end{aligned}
$$

and so

$$
F(n+1)=\frac{1}{\Gamma(n+1)} \int_{a}^{x}(x-u)^{n} f(u) d u
$$

That is,

$$
D^{-n} f(x)=\frac{1}{\Gamma(n)} \int_{a}^{x}(x-u)^{n-1} f(u) d u
$$

We see that the Gregory-Newton interpolation formula does give the familiar generalisation of the fractional derivative.

Sir John Cass College, London.

