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Direct numerical simulations of oscillatory boundary-layer flows in the transitional regime
were performed to explain discrepancies in the literature regarding the phase difference
Δφ between the bed-shear stress and free-stream velocity maxima. Recent experimental
observations in smooth bed oscillatory boundary-layer (OBL) flows, showed a significant
change in the widely used Δφ diagram (Mier et al., J. Fluid Mech., vol. 922, 2021, A29).
However, the limitations of the point-wise measurement technique did not allow us to
associate this finding with the turbulent kinetic energy budget and to detect the approach
to a ‘near-equilibrium’ condition, defined in a narrow sense herein. Direct numerical
simulation results suggest that a phase lag occurs as the result of a delayed and incomplete
transition of OBL flows to a stage that mimics the fully turbulent regime. Data from
the literature were also used to support the presence of the phase lag and propose a
new Δφ diagram. Simulations performed for Reδ = 671 confirmed the sensitivity in the
development of self-sustained turbulence on the background disturbances (Reδ = Uoδ/ν,
where δ = [2ν/ω]1/2 is the Stokes’ length, Uo is the maximum free stream velocity of
the oscillation, ν is the kinematic viscosity and ω = 2π/T is the angular velocity based
on the period of the oscillation T). Variations of the mean velocity slope and intersect
values for oscillatory flows are also explained in terms of the proximity to near-equilibrium
conditions. Relaminarization and transition effects can significantly delay the development
of OBL flows, resulting in an incomplete transition. The shape and defect factors are
examined as diagnostic parameters for conditions that allow the formation of a logarithmic
profile with the universal von Kármán constant and intersect. These findings are of
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relevance for environmental fluid mechanics and coastal morphodynamics/engineering
applications.

Key words: coastal engineering, turbulent boundary layers, boundary layer structure

1. Introduction

In Mier, Fytanidis & García (2021), the experimental observations of mean flow structure
and bed-shear stress/free-stream velocity maximum phase difference were presented for
the case of intermittently turbulent oscillatory boundary-layer (OBL) flows over smooth
walls. A revision of the bed-shear stress/free-stream velocity maxima phase difference
diagram was proposed and a threshold value of Reδ = 763 was identified as a critical Reδ

value for which phase lag starts being observed (Reδ = Uoδ/ν, where δ = [2ν/ω]1/2 is the
Stokes length, Uo is the maximum free-stream velocity of the oscillation, ν is the kinematic
viscosity and ω = 2π/T is the angular velocity based on the period of the oscillation T).
This new diagram explains inconsistencies in the literature regarding the instance when the
maximum of the bed-shear stress was predicted with respect to the instance of free-stream
velocity maximum. In the present work, flows in the same regime as those of Mier et al.
(2021) will be examined in an effort to analyse their characteristics. These results are
of relevance for environmental fluid mechanics applications, and coastal engineering and
morphodynamics (Sleath 1984; Fredsøe & Deigaard 1992; Nielsen 1992; Garcia 2008;
Sumer 2014).

OBL flows can be categorized into different regimes (Akhavan, Kamm & Shapiro
1991a; Pedocchi, Cantero & García 2011; Ozdemir, Hsu & Balachandar 2014), namely: (i)
the laminar regime (Reδ < Reδcr1), for which analytical solutions exist for the velocity and
shear stress profiles (Batchelor 1967); (ii) the disturbed laminar regime (Reδcr1 < Reδ <

Reδcr2), in which small perturbations are superimposed on the laminar profiles without
altering the mean characteristics of the flow such as the mean velocity or shear stress
profiles (Carstensen, Sumer & Fredsøe 2010); (iii) the intermittently turbulent regime
(Reδcr2 < Reδ < Reδcr3), for which the flow tends to remain in a quasi-laminar state for
part of the acceleration phase until turbulent bursts are observed later during the period
(starting at the beginning of the deceleration phase and moving closer to the end of the
acceleration phase as Reδ increases), altering both the mean flow velocity profiles and
the bed-shear stress signature of the flow (Merkli & Thomann 1975; Hino et al. 1983;
Akhavan et al. 1991a; Akhavan, Kamm & Shapiro 1991b); and (iv) the fully turbulent
regime (Reδ > Reδcr3) in which high turbulence levels are observed during the whole
cycle of the oscillation and the logarithmic layer is valid for most of the time during the
oscillation cycle, excluding a period close to the flow reversal (Jensen, Sumer & Fredsøe
1989). Different flow regimes have been identified to alter significantly the temporal
variation of mean flow characteristics (Hino, Sawamoto & Takasu 1976; Jensen et al. 1989;
Akhavan et al. 1991a; Mier et al. 2021) and bed-shear stress (Jensen et al. 1989; Mier et al.
2021) over the period. Even in the early works of Kajiura (1964), Kamphuis (1975) and
Sarpkaya (1993), these researchers had recognized the effect of different flow regimes on
the friction coefficient fw (defined as fw = 2τmax/2U2

o , where τmax is the maximum of the
ensemble-average bed-shear stress).

The values of the critical Reynolds numbers Reδcr1 , Reδcr2 and Reδcr3 have been the
subject of many studies. Reviews of these efforts can be found in works by Akhavan
et al. (1991a,b), Sarpkaya (1993), Blondeaux & Vittori (1994), Blennerhassett & Bassom
(2002), Ozdemir et al. (2014) and Thomas et al. (2015). For Reδcr1 , a value of 85 is
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Flow structure and phase difference diagram in OBL flows

commonly accepted (Blondeaux & Seminara 1979; Akhavan et al. 1991a). The reported
values for Reδcr2 in the literature vary. Values of 500–550 are reported experimentally and
numerically by Hino et al. (1976) and Jensen et al. (1989). A value of 600 is reported by
Vittori & Verzicco (1998). Blennerhassett & Bassom (2002) proposed an Reδcr2 value of
∼700. However, the actual value for the transition to intermittently turbulent regime seems
to be affected by wall imperfections (Blondeaux & Vittori 1994; Vittori & Verzicco 1998),
background disturbances (Ozdemir et al. 2014) and high frequency perturbations (Thomas
et al. 2015). This possibly can explain the wide variability between the reported values in
different experimental facilities (e.g. Merkli & Thomann 1975; Hino et al. 1976; Fishler
& Brodkey 1991). Finally, Jensen et al. (1989) reported a value of Reδcr3 = 3460. For this
Reynolds number, Jensen et al. (1989) observed the existence of the logarithmic layer for
90 % of the period. The existence of the logarithmic layer is the criterion used by coastal
engineers to determine the fully turbulent regime (e.g. Fredsøe 1984; Fredsøe & Deigaard
1992; Ozdemir et al. 2014). The analysis presented herein is not focused on the estimation
of the critical Reynolds number for the intermittent turbulent regime. Instead, the presence
of negative phase difference is examined in an effort to explain inconsistencies in the
literature regarding the phase difference values. It is important to note that the negative
phase difference occurs for Reynolds numbers higher than the threshold value Reδcr2 whose
estimation is challenging and seems to be affected by many parameters.

Jensen et al. (1989) in their pioneering work presented results of bed-shear stress
variations over time for a wide range of flows (Reδ between 257 and 3464). Of interest is
the ‘phase lead’ diagram proposed by Jensen et al. (1989) which can be used to predict the
phase difference between the instance when the maximum of the bed-shear stress happens
with respect to the free-stream velocity. Such diagrams are commonly included in coastal
engineering text books (e.g. Fredsøe & Deigaard 1992). According to this classic diagram,
a bed-shear stress phase lead Δφ of π/4 can be predicted by the analytical solution for
the laminar regime (for Reδ values up to ∼300), while for the fully turbulent regime the
semi-empirical formula by Fredsøe (1984) can be applied (for Reδ larger than ∼1450). It
is also accepted that, as Reδ increases, the phase lead will approach zero. This is expected
to happen with a slow rate that scales with one over the logarithm of the Reynolds number
∼1/ log[Reδ] (Spalart & Baldwin 1989). Although experimental and numerical results
in the literature were contradictory (see Mier et al. (2021) for a review of these works),
it is usually assumed that these two behaviours are smoothly connected, with the phase
difference Δφ being reduced from π/4 to values of just below π/18 (10◦) for Reδ = 1450
(see Fredsøe (1984), p. 1110, table 2). Mier et al. (2021) showed that this was not the
actual behaviour, highlighting the presence of negative phase differences Δφ (phase lag)
in a portion of the transitional regime. In addition, the variation of the mean flow structure
over time was presented for a wide range of different Reδ . High turbulence levels during the
deceleration phase were associated with the occurrence of the bed-shear stress phase lag
with respect to the free-stream velocity maximum. However, due to the applied point-wise
measurement technique in their analysis (laser Doppler velocimetry, LDV), it was really
challenging to associate the presence of phase lag with the turbulent kinetic energy budget
and also the presence of quasi-equilibrium conditions as presented in this work. Herein,
the association of phase lag with the flow structure and the reason behind the presence of
a phase lag are elucidated using direct numerical simulation (DNS) results.

Hino et al. (1983) examined the flow structure of an oscillatory boundary layer at
Reδ = 876. They presented turbulent statistics and showed that a logarithmic mean
velocity profile with slope and intersect values close to those of equilibrium unidirectional
boundary-layer flows exist for parts of the period. It is also worth noting that, after a close
examination of the results by Hino et al. (1983) (figure 10 of their work), it can be seen
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that the phase difference for the case they presented should have a negative value. Jensen
et al. (1989) studied the mean velocity and turbulent structure of the OBL for a much
higher Reδ and identified a Reδ value of 3460 as the threshold condition Reδcr3 for the fully
turbulent OBL to occur, for which a logarithmic profile exists for almost all the parts of
the period. However, similarly to many previous studies in the published literature, which
are summarized later in the text as well as in Mier et al. (2021), both Hino et al. (1983)
and Jensen et al. (1989) did not associate the turbulence characteristics with the presence
of a phase lag in the wall-shear stress with respect to the free-stream velocity. Probably,
this consistent neglect of the phase lag in the literature can be attributed partially to the
difficulties associated with the measurement of wall-shear stresses in oscillatory flows (see
§ 3.1.1) but also due to the fact that the range of flow conditions studied by previous authors
had either one or no Reδ cases that, according to the analysis by Mier et al. (2021), would
exhibit the presence of a phase lag between wall-shear stress and free-stream velocity
maxima.

Of interest to the analysis of the phase lag is the second burst of sediment entrainment
which is commonly observed in oscillatory sheet flows (Ribberink et al. 2000, 2008). This
second sediment entrainment event during the deceleration phase has been puzzling the
coastal engineering community. While the presence of enhanced Reynolds stresses during
the deceleration phase has been recognized by coastal modellers (e.g. in the one dimension
vertical 1DV analysis by Guizien, Dohmen-Janssen & Vittori 2003) as a characteristic
of transitional OBL flows that enhances sediment entrainment, no detailed analysis is
available in the literature that shows how the negative phase difference Δφ changes with
Reδ . In fact, although the results from these Reynolds-averaged Navier–Stokes (RANS)
simulations are promising, the predictions do not agree with the experimental observations
(e.g. figure 7 in their work shows that the modified k−ω model predicts a secondary peak
during the deceleration for Reδ = 565, Rew = 1.6 × 105 in their work’s notation). This
disagrees with the measurements by Jensen et al. (1989) and Mier et al. (2021).

Mier et al. (2021) presented results of mean flow and turbulence statistics for a range
of flows between 254 ≤ Reδ ≤ 1315. Their observations show that a logarithmic profile
starts to exist in the middle of the deceleration phase for Reδ = 763 and as Reδ increases,
the velocity profiles approach the log law for a longer part of the period and for a larger
region of the boundary layer. These findings are in agreement with previous work by Hino
et al. (1983), Jensen et al. (1989), Akhavan et al. (1991a) and others, who have observed
that a logarithmic profile starts appearing during the deceleration phase. However, the
von Kármán constant κ and the intersect As of those profiles do not seem to agree with
those of the equilibrium logarithmic profile of the unidirectional zero-pressure gradient
boundary-layer flows (ZPGBL) (Krug, Philip & Marusic 2017; Jiménez 2018). This is also
consistent with some of the observations in recent DNS studies by Ebadi et al. (2019)
for oscillatory channel flows and the large eddy simulation (LES) analysis by Kaptein
et al. (2020) for oscillatory boundary layers, both of whom reported a range of slopes and
intersects for the mean velocity profiles for oscillatory boundary layers that differ from
those of equilibrium ZPGBL. We believe that this lack of equilibrium conditions is also
relevant to the inconsistencies found in the literature regarding the presence of a phase lag
between the bed-shear stress and the free-stream velocity. In addition, simplified models
(e.g. Guizien et al. 2003; Blondeaux, Vittori & Porcile 2018), fail to accurately predict
the underlying physics related to the turbulent flow–bed interaction and the presence of a
phase lag between the bed-shear stress and the free-stream velocity in OBL, highlighting
the need for further research of the bed-shear stress and turbulence characteristics in the
transitional regime of OBL flows.
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Flow structure and phase difference diagram in OBL flows

In the present analysis, oscillatory flows over smooth walls are considered. Oscillatory
flows in real coastal applications occur over complex, rough, porous and moving beds
(e.g. Pedocchi & Garcia 2009; Mazzuoli et al. 2020). More analysis is needed to examine
the effects of the bed characteristics on the phase difference. However, the results for the
analysis of the canonical/smooth-wall case may be relevant for more complex OBL flows.

The present work focuses on the theoretical and numerical analysis of turbulence
characteristics of smooth-wall OBL of the same Reδ range as the one in Mier et al.
(2021). Specifically, the available experimental data combined with DNS results are
analysed to explain the mechanisms behind the presence of phase lags in transitional OBL
flows and to elucidate the structure of unsteady boundary layers. The approximation of a
‘quasi-equilibrium’ state is discussed and the results are compared with other transitional
flow data. Relaminarization and retransition effects are also discussed in the examined
regime. Additionally, some turbulence characteristics are presented in comparison with
the presence of phase lag in the bed-shear stress and with Reδ in the transitional regime.

2. Mathematical formulation and simulation details

DNS simulations were conducted to investigate the turbulence characteristics in OBL
flow in the intermittently turbulent regime. The non-dimensional conservation equations
governing the flow are

∇ · ũ = 0, (2.1)

Dũ
Dt̃

= ∇P̃ + 1
Reδ

∇2ũ + 2
Reδ

sin
(

2t̃
Reδ

)
ex, (2.2)

where the non-dimensional quantities are denoted as tilded and ũ = u/Uo is the
normalized instantaneous velocity, Uo is the maximum free-stream velocity of the
oscillation, δ is the Stokes’ boundary thickness which is used to set dimensionless the
spatial coordinates and derivatives (X̃ = X/δ), P is the normalized pressure P̃ = P/ρU2

o
and t̃ is the normalized time t̃ = tUo/δ. The last term of the right-hand side of (2.2) is
the driving force, which was considered as a body force acting only in the streamwise
direction ex.

The governing equations were solved using the highly scalable spectral element method
(SEM) based solver Nek5000 (Fischer, Lottes & Kerkemeier 2008). The PN − PN
formulation was adopted for our simulations (Deville, Fischer & Mund 2002). In the
SEM, the functions are represented as tensor-product polynomials of degree p within
each element Ωe, e = 1, . . . , E. The domain Ω = ∪Ωe, where it is assumed that
the elements do not overlap. The polynomial basis comprises Lagrange interpolating
polynomials on Gauss–Lobatto–Legendre quadrature points, which ensures stability and
allows efficient point-wise quadrature operations inside each e element (Deville et al.
2002). The incompressible Navier–Stokes algorithms implemented in Nek5000 ensure
rapid (exponential) convergence in space and third-order accuracy in time. A de-aliasing
procedure was used in our simulations following the 3/2 rule for the over-integration of
the advection operation (Deville et al. 2002). The simulation results in the present analysis
were conducted using seventh-order elements (p = 7) to maximize both spatial accuracy
and computational efficiency for fast convergence of the simulations. All the linear terms
were treated implicitly with pressure/velocity decoupling while the nonlinear advection
terms were treated explicitly using third-order time integration and extrapolation schemes
(third order backward differentiation and extrapolation schemes BDF3/EXT3).
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Figure 1. Computational domain and boundary conditions.

The simulations were conducted in a rectangular domain (figure 1). To simulate the
development of the boundary layer under purely sinusoidal oscillatory forcing, periodic
boundary conditions were imposed in the streamwise (x or x1) and spanwise directions
(z or x3), while in the vertical non-homogeneous direction (y or x2), a no-slip boundary
condition was adopted at the bottom of the domain (ymin) and a stress-free boundary
condition was imposed at the top of the domain (ymax).

Preliminary simulations were performed in a small domain (domain A, L × H × W =
160δ × 30δ × 40δ) which had the same width W and height H as in the works by Spalart
& Baldwin (1989) and Ozdemir et al. (2014) for channel flows and double the length L
of their domain. Most of the simulation results presented herein were conducted using
a computational domain with L = 160δ length, H = 50δ height and W = 80δ width
(domain B). This domain is significantly larger (double the size) in the streamwise and
spanwise directions than the corresponding DNS channel simulations of similar flow
regimes by Spalart & Baldwin (1989) and by Ozdemir et al. (2014). In the vertical
direction the height was also larger than the corresponding half-channel height of the
aforementioned studies. Finally, a simulation was conducted using a significantly longer
domain (domain C, L × H × W = 250δ × 50δ × 80δ) and was used to validate that the
results obtained were independent of the chosen domain size. In addition, a higher-order
polynomial (eighth order) was adopted for this larger simulation to ensure that the results
are also independent of the spatial resolution. This latter domain has similar dimensions
to the domain used by Mazzuoli, Vittori & Blondeaux (2011) to study turbulent spot
formation in OBL at similar Reδ . While no significant differences were noticed between
the simulations of different domain size, it was observed that the statistics converge faster
for the medium and large size domains compared with the smaller domain. This rate
of convergence was evaluated after ignoring the first two periods, which were affected
by the initial transient of each simulation. No significant differences were observed in
the computation of friction factor and phase difference of bed-shear stress/free-stream
velocity maxima, something that ensures the independence of the results from the size of
the domain.

A summary of the examined cases as well as the grid resolution used for each run
is presented in table 1. The resolution of the streamwise and spanwise directions was
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Case Reδ L H W Ex Ey Ez nx ny nz np dx+ dy+
min dz+ nT

small domain A
552A 552 160δ 30δ 40δ 188 40 47 1316 280 329 121 229 920 3.4 0.03 3.4 15
763A 763 160δ 30δ 40δ 188 40 47 1316 280 329 121 229 920 4.2 0.04 4.2 15
819A 819 160δ 30δ 40δ 188 40 47 1316 280 329 121 229 920 4.8 0.05 4.8 15
1036A 1036 160δ 30δ 40δ 188 40 47 1316 280 329 121 229 920 6.6 0.06 6.6 15

medium domain B
671B 671 160δ 50δ 80δ 188 49 94 1316 343 658 297 013 304 3.7 0.04 3.7 7
763B 763 160δ 50δ 80δ 188 49 94 1316 343 658 297 013 304 4.1 0.04 4.1 10
819B 819 160δ 50δ 80δ 188 49 94 1316 343 658 297 013 304 4.8 0.05 4.8 10
1036B 1036 160δ 50δ 80δ 188 49 94 1316 343 658 297 013 304 6.6 0.06 6.6 10
1315B 1315 160δ 50δ 80δ 188 49 94 1316 343 658 297 013 304 7.9 0.08 7.9 10

large domain C
763C 763 250δ 50δ 80δ 300 49 94 2400 392 752 707 481 600 3.6 0.03 3.6 5

Table 1. Summary of simulations conducted in the present study. Here, L is the streamwise length, H is the height and W is the width of the domain; Ex, Ey and Ez are the
number of elements used in each direction, nx, ny and nz are the number of computational points/degrees of freedom in each direction (ni = Eip), np is the total number of
computational points for each simulation; dx+ and dz+ are resolutions in the streamwise and spanwise directions normalized using the maximum shear velocity u∗max over
the period and the kinematic viscosity ν. dy+

min is the first point location in wall units; nT is the number of periods used to compute statistics. Letters A, B and C correspond
to the computations using the small, medium and large domain sizes, respectively.
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kept uniform and is also included in table 1 in wall units (dx+ = u∗maxdx/ν and dz+ =
u∗max dz/ν, where u∗max is the maximum ensemble-average shear velocity over the period
and ν is the kinematic viscosity). In the vertical direction a Chebyshev distribution was
adopted between y/δ = 0 and y/δ = 30 for all the domains. Uniform elements were
adopted between y/δ = 30 and 50 for the medium and large domains (domains B and C).
The present resolutions were chosen based on a series of tests, summarized in Appendix A,
and were found to be sufficient for the target Reynolds numbers.

The initialization of the flow was conducted in a similar way as in the work by Ozdemir
et al. (2014). Specifically, the laminar solution for ωt = π/2 was superimposed by an
initial fluctuating velocity vector that followed a uniform probability distribution between
−1 and 1 multiplied by 2.5 % and was scaled accordingly as a function of the vertical
distance from the bed. This was used as the initial condition. A discussion about the need
of special initialization for case 671B is included in paragraph 3.1. To avoid initialization
effects, the first 2 periods of the flow were ignored for the computation of flow statistics.
Thus, all the results presented herein were averaged over the remaining nT periods. The
nT used from each case are also summarized in table 1. Analysis of the statistics showed
that the results presented herein converged. Some characteristic plots that demonstrate the
convergence of the statistics are shown in Appendix A. To ensure that enough statistics are
collected, the symmetry between ωt and ωt + π was also exploited (see Appendix A).

All the simulations were conducted in the Petascale Computing Facility Blue Waters
of the National Center for Supercomputing Applications of the University of Illinois at
Urbana-Champaign over three years (2017–2020). A typical simulation was performed
using 512 computational nodes and required on average approximately 6000 node hours
per period for simulations conducted using domain A, 12 000 node hours per period for
simulations conducted using domain B and 50 000 node hours per period for simulations
conducted using domain C. The total computational resource required for the present study
is approximately 1 300 000 node hours.

The volume integrals of the turbulent kinetic energy (TKE), the TKE production and
TKE dissipation rates were monitored at the beginning of each simulation to ensure that
the initial conditions and the initial transient until the flow reaches equilibrium state did
not affect the flow statistics. This same approach was used by Ozdemir et al. (2014).
Similarly, to their observation, the flows considered in our study reached equilibrium after
a couple of periods (in most of the cases a single period was enough). Thus, the two
periods were discarded from each simulation before statistics were collected. In Vittori &
Verzicco (1998) a different initialization was used based on analytical fields from Vittori
(1992). They also introduced wall imperfections as a mechanism for triggering transition
to turbulence in the Stokes layer similarly to the works by Blondeaux & Vittori (1994),
Verzicco & Vittori (1996) and Costamagna, Vittori & Blondeaux (2003). In their analysis,
convergence was obtained at the end of the first cycle for Reδ < 550 and Reδ > 600.
For these flows, similarly to the present work, Vittori & Verzicco (1998) discarded the
first two periods before collecting statistics. It is worth noting that Vittori & Verzicco
(1998) observed that a higher number of periods was required to reach equilibrium at
a Reynolds number close to 550–600. Later, Ozdemir et al. (2014) reported that the
transition to turbulence at a Reδ close to 600 may depend on the levels of ‘background
disturbances’. In our analysis, the case of Reδ = 679 also showed signs of dependence on
initialization regarding whether self-sustained turbulence would be achieved. As discussed
later, similarly to the work by Ozdemir et al. (2014), self-sustained turbulence was
maintained when the flow was initialized using a fully developed turbulent field. This
is also reasonably close to the predictions from the stability analysis by Blennerhassett &
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Flow structure and phase difference diagram in OBL flows

Bassom (2002), who propose a critical Reynolds number of ∼709 for the transition. For
the case of Reδ = 679 considered herein, the flow reached equilibrium after two periods.

3. Results and discussion

While all the simulations performed herein were initialized at the instance when
the maximum free-stream velocity occurs, for the presentation of results, the typical
convention used in the coastal engineering literature is adopted. According to this
convention the results are presented in intervals within ωt = (0, π) for which the
free-stream velocity is zero at ωt = 0, ωt = π/2 corresponds to the maximum free-stream
velocity, the free stream velocity changes direction at ωt = π etc.

3.1. Mean velocity profiles and root-mean-square velocity fluctuations – Reynolds
number effect

The presence of the universal logarithmic velocity profile has been associated with the
equilibrium flow conditions when the mean/ensemble quantities become constant and
independent of the streamwise location. The average velocity profile obeys the well-known
log-law equation for a smooth boundary

u+ = 1
κ

ln( y+) + As, (3.1)

where u+ = ū/u∗,u∗ is the ensemble-average shear velocity defined as u∗ = √
τb/ρ,

κ ≈ 0.41 and As ≈ 5.1. Equation (3.1) is assumed to be valid close to the wall (typically
∼20 % of the water depth, Nezu & Nakagawa 1993), while far from the wall the wake
effects can become significant (Krug et al. 2017; Jiménez 2018). Equilibrium boundary
layer (BL) flows defined e.g. in Clauser (1954), Rotta (1962) and Townsend (1980) for
zero-pressure gradient flows and extended for boundary layers under pressure gradients
(Clauser 1954; Townsend 1956; Coles 1957; Mellor & Gibson 1966) are flows for which the
proportional contribution of each term in the flow equations remains constant with respect
to the streamwise direction. The theoretical analyses by Townsend (1956) and Mellor
& Gibson (1966) showed that, to reach a near-equilibrium state in spatially accelerating
flows, a power-law relation (U∞ = C(x − xo)

m, with −1/3 < m < 0) is required for the
free-stream velocity variation. The analyses of these flows have become the focus of many
theoretical, numerical and experimental works (reviews can be found in Bobke et al. 2017;
Kitsios et al. 2017; Vila et al. 2020). Recently, there have been efforts to collapse the
velocity profiles of self-similar adverse pressure gradient BL flows (Kitsios et al. 2016;
Bobke et al. 2017). Similar efforts to identify the proper velocity and length scales as well
as the conditions that will collapse the velocity profiles of non-equilibrium BL flows, when
those reach a near-equilibrium state, can be found in the spatially varying boundary-layer
literature (Marušić & Perry 1995; Perry & Marušić 1995; Castillo & Wang 2004, and
more).

Here, the canonical purely sinusoidal OBL flows were examined, which belong to the
general family of unsteady and non-equilibrium flows. However, even from the early works
of Hino et al. (1976) and Jensen et al. (1989), the presence of a self-similar logarithmic
profile had been observed. The present analysis focuses on describing the behaviour and
identifying the characteristics of the BL properties and how these are associated with
the mean velocity profile slope and intersect as well as the TKE budgets. There exist
parts of the period that reach a ‘near-equilibrium’ state which will be loosely called
‘quasi-equilibrium’ here. For such stages, the flow characteristic and BL properties will be
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analysed in the following paragraphs, in an effort to identify the necessary and sufficient
conditions that will result in the log-law profiles.

Clauser’s parameter, β = (δ∗/τb)(dP/dx), where δ∗ is the displacement thickness and
dP/dx is the mean streamwise pressure gradient, has been used in the past to examine
spatially accelerating BL. This parameter is negative β < 0 for accelerating flows, positive
β > 0 for decelerating flows, β = 0 for zero-pressure gradient flows and β → ∞ for
flows that experience separation. In the context of temporally accelerating flows, Clauser’s
parameter can be written as β = (−ρδ∗/τb)(dU/dt). Thus, the equivalent variation of β in
space (as a function of streamwise direction x, β(x)) can be easily expressed with respect
to time/phase (β(ωt)). The structure of the boundary layer experiencing positive values
of β will be significantly different from the one in a BL under negative β values (Perry,
Marusic & Jones 2002). In addition, experimental and numerical results from the OBL
literature had shown that flow relaminarizes for part of the acceleration phase.

Relaminarization is also known to occur when a severely strong favourable pressure
gradient interacts with an initially turbulent boundary layer, causing the flow to turn fully
laminar. The precursor to relaminarization, ‘laminarescence’ is the stage when the flow
loses part of its turbulent behaviour without becoming fully laminar. Herein, the terms
‘laminarization’ and ‘laminarization phase’ are loosely used to describe the portion of the
acceleration phase where the flow loses energy. Interested readers can refer to the reviews
by Narasimha & Sreenivasan (1979) and Sreenivasan (1982), on the relaminarization
of unidirectional flows. In oscillatory flows of the intermittently turbulent regime (and
for Reδ larger than ∼600), as shown by Mier et al. (2021) and the previous works by
Merkli & Thomann (1975), Hino & Sawamoto (1975), Akhavan et al. (1991a), Akhavan
et al. (1991b), Ozdemir et al. (2014) and Carstensen et al. (2010), the turbulence statistics
increase during the deceleration phase.

The ensemble-averaged velocity profiles were calculated after averaging the
instantaneous fields with respect to the phase of the period and the homogeneous
streamwise and spanwise directions. The ensemble-average value of a quantity φ is
denoted as φ̄ and is computed as φ̄( y, ωt) = (1/nT)

∑nT
1

∫∫
SA

φ(x, y, z, ωt) dSA/
∫∫

SA
dSA,

where SA is the horizontal homogeneous direction area and nT is the number of periods
over which the ensemble averaging is conducted. The local fluctuation values are defined
as φ

′ = φ − φ̄. Due to the symmetry between the positive and negative parts of the
oscillation, the results presented are only for half the period (ωt = 0 − π). No significant
differences are observed between the positive and negative parts of the oscillation.

Ozdemir et al. (2014) observed that, for a Reδ of 600, initializing the flow with the
results of a higher Reδ (Reδ = 1000) can lead to a self-sustained transitional flow. When
a similar initialization was attempted for the case 552A (initialized using the fluctuation
results of case 1036A), the turbulence was not sustained and the initially turbulent flow
lost its energy after a period. This was not the case herein when initializing the flow
for the Reδ = 671. For this flow, similarly to the observations by Ozdemir et al. (2014),
initializing the flow with the fluctuation field from case 1036B leads to a self-sustained
transitional flow. When the standard initialization described earlier was used, the flow was
turning laminar after a period. The results presented here for Reδ = 671 are those that
correspond to the self-sustained turbulence case. For the other cases, no sensitivity to the
initial conditions was observed, as self-sustained turbulence could be maintained and the
ensemble-averaged profiles were independent of the initial conditions.

The mean flow/ensemble-averaged velocity profiles for all the examined flows of table 1
are shown in figure 2. The numerical results are plotted using wall units in figures 2(a),
2(b) and 2(c), for which streamwise velocity was normalized using the corresponding
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Figure 2. Reynolds number effect. Ensemble-average velocity profiles in wall units for (a) ωt = π/4, (b) ωt =
π/2, (c) ωt = 3π/4. Ensemble-average velocity defect profile normalized with free-stream velocity U∞ and
δ for (d) ωt = π/4, (e) ωt = π/2, ( f ) ωt = 3π/4. Ensemble-average velocity defect profile normalized with
shear velocity u∗ for (h) ωt = π/4, (i) ωt = π/2, (g) ωt = 3π/4. Dashed orange lines show logarithmic fit for
the cases with Reδ ≥ 763. The arrows show the increasing Reδ path.
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Figure 3. Reynolds number effect. Ensemble-average u′2+
profiles for (a) ωt = π/4, (b) ωt = π/2, (c) ωt =

3π/4. Ensemble-average w′2+
profiles for (d) ωt = π/4, (e) ωt = π/2, ( f ) ωt = 3π/4. Ensemble-average v

′2+

profiles for (h) ωt = π/4, (i) ωt = π/2, (g) ωt = 3π/4.

ensemble-average shear velocity u∗, and are plotted vs y+ coordinates (where y+ = u∗y/ν)
for ωt = π/4, π/2 and 3π/4. The ensemble-average velocity defect profile normalized
with free-stream velocity U∞ and Stokes length δ are plotted in figure 2(d) for ωt = π/4,
(e) for ωt = π/2 and ( f ) for ωt = 3π/4. Finally, the ensemble-average velocity defect
profiles normalized with shear velocity u∗ vs y+ are shown in figure 2(h) for ωt = π/4, (i)
for ωt = π/2 and (g) for ωt = 3π/4. It is shown in these plots that, as Reδ increases, the
velocity profiles for ωt = π/2 and 3π/4 approach a logarithmic behaviour. However, as is
shown by the orange dashed lines, which correspond to a logarithmic fit of the data, these
logarithmic profiles are not always self-similar and thus the slope and intersect values do
not have physical meaning. No clear logarithmic profiles are observed for ωt = π/4, which

928 A33-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.827


Flow structure and phase difference diagram in OBL flows

is in agreement with the experimental observations of Mier et al. (2021), who observed
that flow looses part of its energy and behaves similarly to a relaminarized flow during
the parts of the period which experience severe favourable pressure gradient; namely,
during the relaminarization phase. Hino et al. (1983) argued that OBL flows can show
a behaviour similar to the fully turbulent state for Reδ > 800. Sarpkaya (1993) and Jensen
et al. (1989) have shown that OBL can exhibit behaviour that mimics the fully turbulent
regime for Reδ ≥ 1750, which was similar to the LES observations by Salon, Armenio &
Crise (2007). Figure 3 shows results of the normal components of the Reynolds Stresses
tensor in wall units for the examined flows. The streamwise, spanwise and vertical profiles

of the ensemble-average u′2+
, w′2+

and v
′2+

are plotted for ωt = π/4, π/2 and 3π/4,
respectively. For the streamwise component, it is shown in figures 3(b) and 3(c) that there
is a trend towards an overlapping profile for Reδ 1036 and 1315. For the examined Reδ

range, the ensemble spanwise (figure 3e, f ) and vertical (figure 3h,i) components do not
seem to converge to a profile for ω = tπ/2 and 3π/4, although there is indeed a trend
towards the high Reδ values. Figures 3(a), 3(d) and 3(g) show that the Reynolds stresses
grow faster for higher Reδ , which is a sign that, as expected, more turbulent flows will start
developing earlier during the period. Still, no significant overlap towards similar profiles
are observed for ωt = π/4.

3.1.1. Friction coefficient fw
The friction coefficient fw, defined as fw = 2τmax/ρU2

o is a measure of the maximum
ensemble-average bed-shear stress τmax over the period. The estimation of the values of
fw and the development of graphs for its prediction for various wave conditions have been
the focus of the early works by Kajiura (1964), Yalin & Russell (1966), Jonsson (1966),
Riedel, Kamphuis & Brebner (1973) and Kamphuis (1975). These studies highlighted the
importance of the flow regime on the friction coefficient (Kajiura 1964; Jensen et al.
1989; Sarpkaya 1993). Figure 4 summarizes the data from the literature combined with the
results of the present analysis. Note that the fw data are plotted both with respect to Reδ and
Rew, which is a different Reynolds number, defined using half of the oscillation amplitude
(note the relationship between the two Reynolds numbers, Rew = Re2

δ/2). The analytical
solution and the theoretical solution by Fredsøe (1984) are also plotted. In figure 4, a plot
using a linear axis is also included for the range between Reδ = 200 and Reδ = 2000.
This plot shows the spread of the reported fw values in the transitional regime. Differences
as high as 100 % are observed in some cases. These discrepancies may be relevant to
the difficulties that experimentalists face when trying to measure the bed-shear stress in
unsteady flows as well as the crisis that seem to take place near the critical Reynolds
number. The DNS results of the present study are in good agreement with the previous
experimental results by Hino et al. (1983), Jensen et al. (1989), Sarpkaya (1993) and
Carstensen et al. (2010) and the DNS results of Spalart & Baldwin (1989), as well as the
experimental observations of Mier et al. (2021). A detailed comparison between the DNS
results and the experimental observations is included in table 2 of Appendix B. Data from
Kamphuis (1975) underestimate the friction by a factor of 20%. In general, for the data in
the literature a deviation from the laminar prediction starts being observed for Reδ > 600.
For values Reδ ≥ 1036 the present data are in good agreement with the observations of
Sarpkaya (1993) and Carstensen et al. (2010). The theoretical prediction by Fredsøe (1984)
seems to predict well the experimental results for Reδ ≥ 3000, which is reasonably close
to the Reδcr3 value of 3460 proposed by Jensen et al. (1989) as the threshold value for the
fully turbulent regime.
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Figure 4. Friction coefficient as a function of Reδ and Rew.

fw Δφ (in degrees)
Reδ Exp. DNSA DNSB DNSC Exp. DNSA DNSB DNSC

254 0.0100 — — — 40 — — —
405 0.0072 — — — 39 — — —
552 0.0057 0.0051 — — 38 45 — —
671 0.0043 — 0.0042 — 37 — 37 —
763 0.0042 0.0041 0.0039 0.004 −27 −23 −26 −25
819 0.0057 0.0045 0.0051 — −16 −19 −18 —
937 0.0048 — — — 7 — — —
1036 0.0045 0.0055 0.0055 — −8 6 6 —
1123 0.0063 — — — 6 — — —
1364 0.0050 — 0.0051 — 2 — 11 —

Table 2. Friction factor fw and phase difference Δφ (in degrees) computations: comparison between
experimental observations and DNS results. Indices A, B and C correspond to the computations using the
small, medium and large domain sizes, respectively.

The variation of shear stress over the period can be seen in figure 5. For Reδ =
552, it is shown that the bed-shear stress of the numerical results agree well with the
prediction of the analytical solution of the laminar regime, τb/ρU2

o = √
2/Reδ sin(ωt +

π/4) (Batchelor 1967). Indeed, a π/4 radians phase lead Δφ of the bed-shear stress
maximum with respect to the free-stream velocity has been observed. For Reδ = 671, two
peaks can be observed, one during the acceleration phase, which can be linked to the
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laminar flow regime, and one weaker peak during the deceleration phase. The first peak
happens closer to ωt = π/2 compared with the Δφ value of Reδ = 552 (Δφ = 37◦ or 0.65
radians). Mier et al. (2021) associated the second peak with the transition to turbulence.
As Reδ increases further, this second peak increases in magnitude and eventually the first,
‘laminar’ peak, vanishes due to the enhanced effect of the ‘turbulent’ peak for Reδ ≥ 1036.
It is also important to note here that, for Reδ = 763, the bed-shear stress maximum
happens during the deceleration phase, i.e. ‘lagged’ with respect to the free-stream velocity
maximum. A similar behaviour has been observed for Reδ = 819 although the peak of the
bed-shear stress seems to take place earlier during the deceleration phase compared with
Reδ = 763. This is consistent with the experimental observations by Mier et al. (2021).
After a close inspection of the ensemble-averaged bed-shear stress measurement by Hino
et al. (1976) it is easy to conclude that they had also observed negative phase differences
for a flow of Reδ = 876 (see p. 373, figure 10 in their work). Similarly, observations have
been made in the literature both experimentally (Jensen et al. 1989; Carstensen et al. 2010)
and numerically (Spalart & Baldwin 1989; Ozdemir et al. 2014; Bettencourt & Dias 2018;
Ebadi et al. 2019). A more extended presentation and summary of these works can be
found in Mier et al. (2021). However, all these studies have not stressed the need to revise
the phase difference diagram that is included in the classic papers by Jensen et al. (1989),
Sarpkaya (1993) and Carstensen et al. (2010), among others.

A revised version of the classic phase lead diagram (here plotted as phase difference)
is plotted in figure 6. In addition to the data of the present study and the experimental
measurements by Mier et al. (2021), the measurements done by Hino et al. (1976),
Jensen et al. (1989), Sarpkaya (1993) and Carstensen et al. (2010) and the DNS results
by Spalart & Baldwin (1989), Ozdemir et al. (2014) and Bettencourt & Dias (2018) are
also plotted for comparison. Note that the phase difference Δφ values that are plotted here
(e.g. for the case of Hino et al. (1983) and Jensen et al. (1989)) are those as read after
processing the bed-shear stress signals rather than the positive values reported earlier.
From figure 6 it can be observed that there is a clear threshold value Reδ∼750 after which
the data of the current study and the literature show negative phase difference. Small
differences and discrepancies regarding the absolute value of the Δφ can be attributed
to the challenges associated with the measurement of bed-shear stress under oscillatory
conditions in general and the different temporal resolutions at which the bed-shear stresses
were measured. Some dependencies of the numerical results on the height of the domain,
which have been reported by Kaptein et al. (2019), may also explain some of the variations
of the numerical results. Kaptein et al. (2019) used LES to examined the effect of h/δ ratio
(where h is the height of the domain). They concluded that, for h/δ ≥ 40, the velocity,
the turbulence characteristics and bed-shear stress results converge to those for h/δ → ∞,
which is the focus of the present study. The data presented here show no significant effect
on the height of the domain. The final results, however, were extracted in a domain with
h/δ = 50, which is above the height-limited conditions reported by Kaptein et al. (2019).
Finally, the consistent presence of negative phase differences in the literature shows in
a convincing way that phase lag does exist in the intermittently turbulent regime for
750 ≤ Reδ ≤ 1000.

The DNS results and the Δφ measurements by Mier et al. (2021) are also summarized
in table 2 (Appendix B). To ensure that the bed-shear stress signal will be captured in
maximum detail, the bed-shear stress was computed while running the simulations at every
time step, which had a significantly smaller size than 1◦ and was determined in a way that
the Courant–Friedrichs–Lewy number was less than 0.45 for all portions of the cycle.
The results presented here are the ensemble-average results of these extracted values.
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Figure 5. Normalized bed-shear stress variation for various Reδ .

Note that the symmetry between ωt and ωt + π was also used to enhance the collected
statistics.

3.1.2. Flow structures
In figure 7, time variation of some characteristic dimensionless Reynolds numbers
are reported, which will allow for the comparison of the examined OBL flows with
previous studies from the literature. In figure 7 a, the shear Reynolds number Reδ∗ =
u∗δ/ν as introduced by Sarpkaya (1993) is presented. In figures 7(b) and 7(c), the
classic Reynolds numbers that are usually used in studies of developing boundary layers
are plotted, namely Reθ = U∞θ/ν, defined using the momentum thickness θ and the
mean free-stream velocity U∞ (with U∞(ωt) = Uo sin(ωt)), and Reτ = u∗ymax/ν defined
using the ensemble-average u∗ (which is also varying with ωt) and the thickness of
the boundary layer ymax defined in agreement with the conventions by Jensen et al.
(1989) and Mier et al. (2021) as the height for which the shear stress becomes
zero τ̄ = 0.
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Figure 6. Phase difference Δφ diagram as a function of Reδ and Rew.

The displacement thickness and the momentum thickness are computed as

δ∗(ωt) =
∫ ymax

0

U∞(ωt) − ū( y, ωt)
U∞(ωt)

dy (3.2)

θ(ωt) =
∫ ymax

0

ū( y, ωt)
U∞(ωt)

(
U∞(ωt) − ū( y, ωt)

U∞(ωt)

)
dy. (3.3)

Note that, for the case of oscillatory flows, the definitions of (3.2) and (3.3) can lead
to negative δ∗ and θ values during the acceleration phase. This is the result of the
characteristic near-bed overshoots of the velocity that can be observed in oscillatory flows.
The parts of the flow when overshoots occur are excluded from the present analysis since
there is no clear physical meaning in negative momentum and displacement thickness
values.

From figure 7 it can be observed that Reθ and Reτ continue to grow during the
deceleration phase, despite the fact that both U∞ and the shear velocity may decrease.
This is explained later in figure 12(b), which shows that both ymax and θ continue growing
for a portion of the deceleration phase.

OBL flow structures have been examined in the past both experimentally (Sarpkaya
1993; Carstensen et al. 2010) and numerically (Verzicco & Vittori 1996; Costamagna et al.
2003; Mazzuoli et al. 2011; Ozdemir et al. 2014; Xiong et al. 2020). Analyses have been
also extended to rough bed OBL flows by others (Carstensen, Sumer & Fredsøe 2012;
Ghodke & Apte 2016; Mujal-Colilles et al. 2016; Mazzuoli & Vittori 2019). It is already
established that turbulent spots (TS), which are highly energetic Λ-shaped flow structures,
exist for OBL flows of the intermittently turbulent regime such as those examined in the
present work. The presence of these structures marks the onset of turbulence (Carstensen
et al. 2010) and are known to alter the wall-shear stress signals (Vittori & Verzicco 1998;
Carstensen et al. 2010; Mazzuoli et al. 2011). TS are also observed in unidirectional
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Figure 7. Variation of (a) Reδ∗, (b) Reθ and (c) Reτ over the period.

developing boundary layers (Cantwell, Coles & Dimotakis 1978; Perry, Lim & Teh 1981;
Park et al. 2012; Wu et al. 2017) and are usually associated with bypass transition to
turbulence (Schlatter et al. 2008; Wu et al. 2017).

In figure 8, the coherent structures visualized using the λ2 criterion introduced by Jeong
& Hussain (1995) are shown for Reδ = 763 and at ωt = π/2, 7π/12 and 2π/3. The
isosurfaces of λ2 = −0.0025 are plotted, coloured using the velocity magnitude u/Uo.
In figure 8(a), the generation of hairpin packets that are randomly distributed in space
is shown. These packets, generated towards the end of the acceleration phase, later grow
and form what looks like the TS (figure 8b) described by Wu et al. (2017), until these TS
merge later, during the deceleration phase (figure 8c). The fact that TS keep growing and
merging for as long as 45◦ (π/4 radians) during the deceleration phase is another sign
that the OBL keeps developing during parts of the deceleration phase until near-bed flow
reversal occurs. The final state of what looks like the final developed stage of the flow is
shown in figure 9 for ωt = 3π/2, during which hairpin vortices have occupied most of the
simulation domain. It is also instructional to notice the variation of bed-shear stress during
this period (also plotted in figures 8 and 9). Indeed, as the flow structures start developing,
the bed-shear stress continues to increase during the deceleration phase until ωt = 2π/3.
Then, the bed-shear stress starts decreasing again under the effect of deceleration.
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This late transition of the flow to an increased energy state is the reason for the phase
lag in the bed-shear stress signal that is shown in figures 5 and 6.

In agreement with the work of Wu et al. (2017), the TS are generated randomly in space
and time. However, it is clear that, as Reδ increases, the TS are generated earlier during
the period (Carstensen et al. 2010). These OBL flow features have been examined in the
past by Carstensen et al. (2010), who observed their presence for as low as Reδ = 550
(Rew = 1.5 × 105 in the original work). In the present analysis, TS started appearing for
Reδ = 671, since Reδ = 552 behaves in a laminar fashion. Sarpkaya (1993) had identified
a critical Reδ∗ value between 20 and 28 for which the high–low velocity streaks appear
and disappear periodically. This threshold value of (Reδ∗∼24) is plotted with an orange
dotted line in figure 7(a). This threshold value is in good qualitative agreement with our
observations, which show Reδ∗ > 24 for part of the period of the intermittently turbulent
flows examined here. Park et al. (2012) also observed that TS may appear as ‘individual’
for Reθ∼300 and as ‘merged’ for Reθ∼500 (plotted in figure 7(b) using blue and orange
dashed lines, respectively). For the flow presented here (Reδ = 763), Reθ reaches a value
of 436 for the state which is shown in figure 9. This value, although close enough to the
Reθ∼500 by Park et al. (2012), represents a state when the flow characteristics mimic those
of fully turbulent flow. As shown in figure 10, this is the part of the flow when a velocity
profile that resembles the characteristics of the logarithmic profile can be observed. Later,
we will show that the actual slope and intersect of this velocity profile differ from those
of the equilibrium BL. Figure 10 also includes the laminar solution and the logarithmic
profile by VanDriest (1956)

ū+ = 2
∫ y+

0

dy+

1 + [1 + 4κ2y+2(1 − exp(−y+/Av))2]1/2 , (3.4)

where κ = 0.41 and Av = 26. This profile agrees well with (3.1) for y+ ≥ 30. A
logarithmic fit to the data is also plotted with orange dashed lines. The LDV data by
Mier et al. (2021) for the same Reδ , data by Hino et al. (1976) for Reδ = 876 and Spalart
& Baldwin (1989) and Jensen et al. (1989) for Reδ = 1000 are plotted for comparison. It
is shown that a logarithmic profile is observed for ωt = 2π/3 and 3π/4. These are the
instances during the period when τb and Reθ (also plotted in figure 10) are also increased.
In addition, the shape factor H, defined as the ratio between displacement and momentum
thickness (H = δ∗/θ ) approaches a constant value. This value is slightly larger than the
H∼1.4 that was observed by Mier et al. (2021) as the converged value at the fully turbulent
stage. As shown later, this happens due to an incomplete transition, in a narrow sense.

Figure 10 shows a general good agreement between the DNS results and the
experimental observations, with the exception of results for ωt = 5π/6, which is an instant
really close to the near-bed flow reversal when τb = 0. Thus, these deviations which are
magnified due to the low u∗ values are attributed to the challenges associated with the
measurement of τb values that are close to zero. Also, the comparison with the results
by Jensen et al. (1989) and Spalart & Baldwin (1989) shows that a logarithmic profile
occurs earlier for higher Reδ values. Finally, the figure shows some deviations between the
results presented here and the observations by Hino et al. (1976). These deviations had
been reported earlier by Jensen (1989), who also observed that his velocity profiles differ
from those by Hino et al. (1983) and highlighted the challenges of experimental works to
estimate near-bed velocity profiles in OBL flows.

Figure 11 show the corresponding results for Reδ = 1315. Again, an excellent agreement
between the numerical and experimental results is observed (with the same deviations at
ωt∼5π/6 when τb → 0). As Reδ increases, the part of the circle for which a logarithmic
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Figure 8. Development of flow structures. Coherent structures visualized using λ2 = −0.0025 and coloured
using the normalized velocity magnitude u/Uo at (a) ωt = π/2 (b) ωt = 7π/12 and (c) ωt = 2π/3.
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Figure 9. Development of flow structures. Coherent structures visualized using λ2 = −0.005 and coloured
with the normalized velocity magnitude u/Uo at ωt = 3π/4.

layer is observed increases. In addition, Reθ values get larger earlier and reach higher
maximum values. A comparison of the slope and intersect values of the logarithmic fit
shows values reasonably close to those of a fully turbulent unidirectional ZPGBL.

Shape factor H values also get close to the threshold value of H∼1.4 reported by Mier
et al. (2021) for these flows in the regions where the logarithmic self-similar profile exists.
Another diagnostic parameter of interest is the defect shape factor G, defined as

G =
∫ ymax

0 (U+∞ − u+)2dy∫ ymax

0
(U+

∞ − u+)dy
. (3.5)

Note the relationship between G and H, G = (H − 1)/(H
√

cf /2) where cf = 2(u∗/U∞)

is the time varying skin-friction coefficient (Bobke et al. 2017). Mellor & Gibson (1966)
showed that G values become constant in near-equilibrium conditions for flows with
constant Clauser parameter β. Here, despite the fact that β values are not constant, we
will evaluate the values of H and G that correspond to the part of the flows for which a
self-similar velocity profile is observed.

Figure 12 summarizes the results of the examined flows for the Reδ in the intermittently
turbulent regime. The temporal variations of the skin-friction coefficient cf , normalized
boundary-layer thickness ymax/δ, displacement thickness δ∗/δ and momentum thickness
θ/δ are plotted together with the values of H, G and the fitted values of the slope κ and
the intersect As of the velocity profiles. From figure 12, it becomes clear that, as Reδ

increases, the maximum value of the boundary-layer thickness increases and the diagnostic
shape factors H and G reach nearly constant values earlier during the period. At the
same time, the values of the slope and intersect of the velocity reach values close to the
well-accepted values of the von Kármán constant κ = 0.41 and As = 5.1 (Krug et al. 2017;
Jiménez 2018). It is important to stress here the log-law slope and intersect κ and As were
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Figure 10. Ensemble-average velocity profiles u+ and logarithmic fit for Reδ = 763 (case 763B).

used across the period solely as diagnostic parameters for defining the part of the period
that is ‘near equilibrium’ (when κ and As get the standard values). This same approach has
been used in the previous works by Hino et al. (1983) (see figures 7 and 9 in their original
manuscript) and Akhavan et al. (1991b) (figures 19 and 23 in their original work), Ebadi
et al. (2019) (figure 3 in their original work) and Kaptein et al. (2020) (figures 7 and 8 in
their original manuscript).

Figure 12 shows the path towards a transition to a state that mimics well the
characteristics of the fully turbulent regime. This is illustrated for the examined flow range
of Reδ 671 and 1315. Here, Reδ = 671 experiences a late transition that never actually
gets to a stage that qualitatively looks similar to turbulent. The slope and intersect of the
velocity profile deviate significantly from these of equilibrium for the whole period. Also,
diagnostic parameters H and G do not get close to the threshold values of H∼1.4 observed
by Mier et al. (2021) and G∼7.3–7.4 observed in figure 12(d). For Reδ = 763, which
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Figure 11. Ensemble-average velocity profiles u+ and logarithmic fit for Reδ = 1315 (case 1315B).

is the threshold value for phase lag to exist (figure 6), the quantities start approaching
the behaviour of the fully turbulent regime during the deceleration phase; a logarithmic
velocity profile is observed (see also figure 10), H and G values get close to the equilibrium
values and κ and As values advance towards the equilibrium values. In addition, the
characteristic increase of the skin-friction coefficient cf takes place during the deceleration
phase. As shown later, the absolute values of κ and As do not actually reach the 0.41 and
5.1 values but they start getting close. A similar behaviour is observed for Reδ = 819. The
transition starts earlier, but again, κ and As values do not converge to the equilibrium
values, although the near-equilibrium conditions allow the formation of a logarithmic
profile during the deceleration phase. For Reδ = 1036, the behaviour starts changing,
with the diagnostic parameters H and G reaching the equilibrium values earlier and the
equilibrium κ and As values start appearing for parts of the circle. This becomes even more
convincing for Reδ = 1315. However, as the flow experiences a severe adverse pressure
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gradient (i.e. β ≥ 1) the flow starts deviating from these equilibrium conditions. This
finding expands slightly the Reδ ≥ 1750 limit for OBL behaviour that mimics the fully
turbulent regime observed by Sarpkaya (1993) and Jensen et al. (1989) and Salon et al.
(2007). It seems that it is possible to observe near-equilibrium conditions that match the
universal velocity slope and intersect (κ = 0.41 and As = 5.1) for as low as Reδ∼1000.

3.2. Turbulence characteristics, quasi-equilibrium and logarithmic profile
The TKE budgets were computed for the examined flows. The process adopted here is
similar to that of Pedocchi et al. (2011), who conducted DNS for Reδ = 1679. The TKE
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budget can be written as

Dk
Dt

= Pr + ε + Π + Π s + D + T, (3.6)

where k is the TKE, Pr is the production of TKE, ε is the TKE dissipation rate, Π is the
velocity pressure gradient term, Π s is the pressure–strain term, D is the viscous diffusion
of TKE term and T is the turbulent transport of TKE term. All the terms are computed as
presented in Pedocchi et al. (2011) and Vinuesa et al. (2017).

For the analysis of the TKE budget both the profiles of each term and the integrals of
production and dissipation inside the boundary layers are used. These integrals are defined
as

IPr =
∫ ymax

0
Pr dy, (3.7)

and

Iε =
∫ ymax

0
ε dy. (3.8)

In figures 13 and 14 the TKE budgets over the period for Reδ 763 (case 763B) and 1315
(case 1315B) are plotted. All the terms are normalized using δ/U3

o . In addition, the ratio of
the integral of the production to the integral of dissipation IPr/Iε inside the boundary layer
is plotted using blue dashed lines. Also, the normalized integral of the TKE inside the
boundary-layer thickness ymax (Ik = ∫ ymax

0 k dy) is plotted divided by the maximum value
|Ik|max (red dashed line). The normalized bed-shear stress τb/τbmax is plotted in green.

Figure 13 shows that TKE terms start increasing during the acceleration phase.
Production integral IPr becomes larger than the absolute magnitude of the dissipation rate
integral |Iε | for ωt ≥ π/6 and continues increasing until ωt∼π/2. After that, the IPr/Iε
ratio drops and approaches a value close to ∼1. This part of the period when IPr/Iε∼1
is the same part in which a logarithmic profile exists. Also, it is the same instance when
the bed-shear stress and the integral of the k over the boundary-layer thickness reach their
maximum values. Later, when ymax decreases, IPr/Iε and Ik/|Ik|max also decrease.

As Reδ increases, turbulent statistics increase earlier during the acceleration phase. In
figure 14 it is shown that IPr/Iε ratio becomes larger than 1 at ωt ∼π/12. The Ik integrals
continue to get their maximum values during the deceleration phase as ymax continues
to increase, until eventually becoming nearly zero at the near-bed reversal. Finally, IPr/Iε
approached a value of 1 at the parts of the circle when the logarithmic velocity profile
exists.

It is also important to note that for the parts of the period when IPr/Iε is nearly one, the
TKE budget terms remain similarly constant when they are normalized in wall units using
ν/u4∗. Indeed, when the results are plotted with the shear-velocity/viscous normalization
(figure 15 shows the results for Reδ = 1315), this similarity becomes obvious. Pedocchi
et al. (2011) performed a similar analysis for Reδ = 1679 (originally reported using
Rew = 1.41 × 106). A peak production value at y+∼10 was observed in their DNS results.
A similar peak can be seen in figure 15. Further, close to the wall, where the dissipation
rate εν/u4∗ is balanced by the viscous diffusion Dν/u4∗ and both obtain a value of ∼0.27,
Π and Πs contributions are in general smaller across most of the period. This can be
noticed in both figures 14 and 15. Some of their contributions may seem to become
important when expressed in wall units at ωt∼11π/12, which should be expected due
to the enhanced velocity–pressure gradient term Π . However, these are normalized with a
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TKE budget for Reδ = 763
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Figure 13. TKE budget for Reδ = 763. Terms are normalized using δ/U3
o . Also plotted are the time variation

of the ratio between the integral of production and the integral of the dissipation rate IPr/Iε , the normalized
bed-shear stress τb/τbmax and the normalized TKE integral Ik/Ikmax .

shear velocity that is very close to zero and are still small when the absolute magnitude of
these contributions is concerned. Finally, the variation of turbulent transport contributions
remains small far from the wall (y+ > 30), which is the region where logarithmic profile is
in general observed. This is a region that all the terms except Pr and ε become practically
zero. Close to the wall, the turbulent transport term switches sign between negative at
y+∼10 to positive for y+∼4 until it becomes zero at the wall.

From the TKE budget analysis above it becomes obvious that TKE budget is dominated
by the production and dissipation terms far from the wall (y+ > 30). The presence of a
logarithmic profile is usually associated with local equilibrium between the production
and dissipation rate of TKE (Pr ≈ ε). In figure 16 the ratio between TKE production Pr
and the absolute value of dissipation rate |ε| is plotted for Reδ between 671 and 1315 for
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Figure 14. TKE budget for Reδ = 1315. Terms are normalized using δ/U3
o . Also plotted are the time variation

of the ratio between the integral of production and the integral of the dissipation rate IPr/Iε , the normalized
bed-shear stress τb/τbmax and the normalized TKE integral Ik/Ikmax .

various ωt values. It can be observed that the ratio Pr/|ε| does approach 1.0 (marked with
an orange dashed line in figure 16) in regions where a logarithmic profile exists. This is
the near-equilibrium behaviour described above. As Reδ increases, the region and part of
the period for which local quasi-equilibrium exists increases. This is in agreement with the
experimental observations of Mier et al. (2021), who observed that as Reδ increases the
logarithmic profile of the mean velocity profile becomes valid in a more extended region
and for a more extended part of the period.

Finally, a last confirmation regarding the quasi- or near-equilibrium behaviour is
attempted by comparing the results of the present analysis with those of the canonical
developing, unidirectional boundary layer. For this purpose, the recent dataset by Wu
et al. (2017) was used to compare the OBL simulations of the current study. Wu et al.
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Figure 15. TKE budget for Reδ = 1315. Terms are normalized using ν/u4∗. Also plotted are the time variation
of the ratio between the integral of production and the integral of dissipation rate IPr/Iε , the normalized
bed-shear stress τb/τbmax and the normalized TKE integral Ik/Ikmax .

(2017) simulated a developing boundary layer for 80 < Reθ < 3000 and there are a lot of
similarities between the structure of the flow (TS and developing BL) in the examined
range and their data. In their work, they evaluated the accuracy of their results and the
establishment of equilibrium conditions by comparing the normalized dissipation rate
ε+ = ε/(u4∗/ν) with the following estimation for the equilibrium conditions by Tennekes
& Lumley (1972) and Balint, Wallace & Vukoslavčević (1991):

ε+ = ε

(u4∗/ν)
= 1

κy+ , (3.9)

where κ = 0.41. As Reθ values increase, their results converge to the prediction of (3.9).
For example their results for Reθ = 150, 199, 334, 670 and 1000 are plotted in figure 17.
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Figure 16. TKE production to absolute dissipation rate ratio Pr/|ε| for the examined flows.

The boundary layer grows and the near-wall dissipation rate values start growing until
eventually the dissipation rate profiles converge to the prediction for Reθ = 670 after the
characteristic overshoot at Reθ = 334.

Figure 17 shows the results of the dissipation rate profile at the time instance when the
profile is closest to the equilibrium profiles for Reδ 819. Figure 17 shows that this final
stage is still far from the equilibrium results by Wu et al. (2017), but still, as the DNS
results for ε+ get closer to the prediction by (3.9), bed-shear stress starts exhibiting the
characteristic secondary peak during the deceleration phase, which is in agreement with
the observed behaviour by Mier et al. (2021). The Reθ value at the moment when second
peak exists is 347. A movie in the supplementary material available at https://doi.org/10.
1017/jfm.2021.827 shows the variation of dissipation rate profiles over the period for Reδ

819 (movie 1). Although Reθ continues growing, the dissipation rate profile departs from
the equilibrium profiles under the effect of the pressure gradient. The case in figure 17
corresponds to the bed-shear stress phase lag case. This late transition that takes place
during the deceleration phase, is not actually complete in the sense that neither the slope
κ and the intersect As velocity logarithmic profiles reach the equilibrium values (0.41
and 5.1 respectively), nor does the dissipation rate profiles reach those of the equilibrium
conditions. This incomplete and late transition is also observed for Reδ = 763, which is the
threshold Reδ value for a phase lag to exist. However, the ε+ profiles and the logarithmic
velocity slope and intersect do get closer to the asymptotic values presented here as the
Reynolds number increases.

At higher Reδ , the ε+ profiles start to match those of the equilibrium condition by Wu
et al. (2017) and the predictions by (3.9). Figures 18 and 19 show the profiles in the range
of the period that matches the equilibrium data (the variation of the profiles over time can
be found in movies 2 and 3). At the same time, the slope and intersect of the logarithmic
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Figure 17. Normalized ε+ = ε/(u4∗/ν) for Reδ = 819.
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Figure 18. Normalized ε+ = ε/(u4∗/ν) for Reδ = 1036.

profile start to match their equilibrium values (figure 12) and the shape factor H and G
values become ∼1.4 and ∼7.4, respectively. For Reδ = 1036 this happens for the part
of the period between ωt = 85π/180 and 11π/18. This range increases to ωt = 7π/18
and 11π/18 for Reδ = 1315, which is also consistent with the diagnostic parameters of
figures 12 and 16.

In other words, a logarithmic velocity profile may be observed, when the ratio of Pr/|ε|
becomes ∼1, and other diagnostic parameters examined here, such as the shape factors
H and G get values similar to the fully turbulent regime values. However, the slope and
intersect of these logarithms will not be those of the equilibrium profile until Reδ∼1000.
As shown in the dissipation profiles of figure for 17, this is explained due the fact that
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Figure 19. Normalized ε+ = ε/(u4∗/ν) for Reδ = 1315.

the transition remains incomplete, in the narrow sense of dissipation profiles that do not
match those of the equilibrium conditions and could not be predicted by (3.9). Flows in
this range (600 < Reδ < 1000) do not develop quickly enough to complete the transition
before the flow starts being affected by the deceleration/adverse pressure gradient. When
Reδ is larger than approximately ∼1000, the equilibrium slope and intersect are achieved
and OBL flows start mimicking the behaviour of the fully developed ZPGBL after the
completion of the retransition process. For these flows transition starts earlier during the
period which allow its completion to happen.

4. Conclusions

DNSs were conducted for oscillatory flow conditions over a flat smooth wall in the
transitionally turbulent regime. The range of the examined Reδ values was the same as
in the experimental study by Mier et al. (2021). In such a range of Reδ , experimental
and numerical observations in the literature show inconsistencies regarding the phase
difference Δφ between the instance of the period when the maximum in bed-shear stress
occurs with respect to the instance when the free-stream velocity maximum occurs.
Analyses of the mean flow structure and TKE budgets were also conducted and the
near-equilibrium state of an unsteady OBL flow was defined. The key results of the
numerical and theoretical analyses presented here are summarized below:

(i) The present analysis confirms the large-scale experimental observations by Mier
et al. (2021) who observed that a phase lag between the bed-shear stress and free-stream
velocity maxima exists for intermittently turbulent OBL flows within the range of 763 <

Reδ < 1000; thus, a modification of the widely used ‘phase lead’ diagram found in the
literature (e.g. Jensen et al. 1989) and in many coastal engineering handbooks (e.g. Fredsøe
& Deigaard 1992) is required. Figure 6 summarizes data of the present work together with
experimental and DNS results found in the literature and can be used to estimate the phase
difference Δφ between the bed-shear stress and the free-stream velocity maxima. The
typical phase lead of 0.79 radians (45◦) is observed until Reδ∼550. After that, the phase
lead decreases until it reaches a value of ∼0.61 rads (∼35◦) for Reδ < 750. For Reδ∼750,
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Figure 20. Comparison of the results for the small (case 763A), medium (case 763B) and large domain (case
763C).

a phase lag (Δφ < 0) of 0.46 rads (26.5◦) occurs. For higher Reδ the phase lag becomes
smaller until it becomes zero at approximately Reδ = 1000; Δφ has positive values up
to approximately ∼π/18 (∼10◦) for Reδ = 1450. Finally, as Reδ increases further, Δφ

decreases again following the theoretical solution of Fredsøe (1984) (agreement seems
excellent for Reδ ≥ 3000).

(ii) The present analysis concludes that the presence of a phase lag between the
bed-shear stress and free-stream velocity maxima is the result of a late transition to a stage
that mimics the characteristics of quasi-equilibrium conditions during the deceleration
phase. However, this transition remains incomplete as neither the ensemble-average
velocity profile (slope and intersect) nor the diagnostics for the quasi-equilibrium
condition, namely the shape factor H and the defect shape factor G, reach their equilibrium
values. Nevertheless, in these parts of the period, the TKE production to dissipation ratio
Pr/ε becomes ∼1, which would seem as a necessary but not sufficient condition for a
logarithmic profile to exist in OBL flows.

(iii) Finally, DNSs performed for Reδ = 671 confirmed the sensitivity of flow behaviour
to background disturbances. Specifically, two different initialization techniques were
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Figure 21. Comparison of the Reynolds stress results for the small (case 763A), medium (case 763B) and
large domain (case 763C).

applied: one by using a 2.5 % disturbance following the approach by Ozdemir et al. (2014)
and one by initializing the simulation using a fully turbulent field. In the first case, the
flow turned laminar after a couple of periods. On the other hand, when the flow was
initialized using a fully turbulent field, self-sustained turbulence was maintained. This
confirms the findings by Ozdemir et al. (2014), who observed a crisis near the critical
Reynolds number for intermittent turbulent OBL flows. This observation is also reasonably
close to the predictions based on the stability analysis by Blennerhassett & Bassom (2002),
who propose a critical Reynolds number of ∼709 for the transition.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.827.
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Figure 22. Grid convergence of mean velocity profile for case 1316B for polynomial orders 6, 7 and 8.
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Appendix A. Domain/grid dependencies and statistics convergence

In this paragraph the comparison of the mean flow characteristics for the three examined
domains is presented in figures 20 and 21. The analysis showed no significant variations
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Figure 23. Convergence of TKE budgets: typical results for Reδ = 1315. Continuous lines represent results
averaged over 5 periods. Symbols show results averaged over 10 periods and exploiting the symmetry between
ωt and ωt + π (i.e. 20 realizations).

of the results for Reδ = 763, which was the most sensitive case that required the longest
domain to become developed. In figure 22, the mean velocity profiles for three different
polynomial orders, sixth to eighth, are presented. It is shown that there is practically no
difference in the results as we increase or decrease the resolution. This is to be expected
given the resolution reported in table 1. Finally, preliminary simulations using 5 periods
in domain B were compared against the results from the final number of periods that was
summarized in table 1. In the latter, the symmetry between ωt and ωt was also used to
enhance the flow statistics. A typical comparison for the TKE statistics over 5 and 10
periods (20 realizations) is shown in figure 23. No significant difference was observed
(error typically less than 1.5 %–3.0 %) when additional periods were considered for both
the TKE characteristics and the bed-shear stress for all the examined cases. This may be
expected given the significantly large area over which the spatial averaging is applied.
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Appendix B. Friction coefficient fw and phase difference Δφ

In table 2, the numerical results for the friction coefficient fw and the phase difference
results Δφ in degrees are plotted. It is shown that no significant difference exists between
the predictions of friction coefficient for the different domains, while the maximum
difference for Δφ was 0.05 radians (3◦), which was considered adequate to make sure
that the outcome of the present work is not sensitive to these small differences. In addition
to the numerical results, the experimental observations by Mier et al. (2021) are included
in table 2. In general, a good agreement between the behaviour of the experimental and
numerical results is observed despite the small differences in the absolute values of fw.
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