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Abstract

Let G be a graph of order n, and let k ≥ 1 be an integer. Let h : E(G)→ [0, 1] be a function. If
∑

e3x h(e) = k
holds for any x ∈ V(G), then we call G[Fh] a fractional k-factor of G with indicator function h where
Fh = {e ∈ E(G) : h(e) > 0}. A graph G is called a fractional (k, m)-deleted graph if for every e ∈ E(H),
there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0, where H is any
subgraph of G with m edges. The minimum degree of a vertex in G is denoted by δ(G). For X ⊆ V(G),
NG(X) =

⋃
x∈X NG(x). The binding number of G is defined by

bind(G) = min
{
|NG(X)|
|X|

: ∅ , X ⊂ V(G), NG(X) , V(G)
}
.

In this paper, it is proved that if

n ≥ 4k − 6 +
2m

k − 1
, bind(G) >

(2k − 1)(n − 1)
kn − 2m

and δ(G) ≥ 1 +
(k − 1)n + 2m

2k − 1
,

then G is a fractional (k, m)-deleted graph. Furthermore, it is shown that this result is best possible in
some sense.

2010 Mathematics subject classification: primary 05C70.

Keywords and phrases: graph, fractional k-factor, fractional (k, m)-deleted graph, binding number,
minimum degree.

1. Introduction

Many physical structures can conveniently be modelled by networks. Examples
include a communication network with the nodes and links modelling cities and
communication channels, respectively, or a railroad network with nodes and links
representing railroad stations and railways between two stations, respectively. Factors
and factorizations in networks are very useful in combinatorial design, network design,
circuit layout, and so on. It is well known that a network can be represented by a graph.
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Vertices and edges of the graph correspond to nodes and links between the nodes,
respectively. Henceforth we use the term graph instead of network.

We investigate the fractional factor problem in graphs, which can be considered as
a relaxation of the well-known cardinality matching problem. The fractional factor
problem has wide-ranging applications in areas such as network design, scheduling
and combinatorial polyhedra. For instance, in a communication network, if we allow
several large data packets to be sent to various destinations through several channels,
the efficiency of the network will be improved if we allow the large data packets to be
partitioned into small parcels. The feasible assignment of data packets can be seen as a
fractional flow problem, and it becomes a fractional matching problem when the desti-
nations and sources of a network are disjoint (that is, the underlying graph is bipartite).

We consider only finite undirected graphs without loops or multiple edges. Let G
be a graph. We use V(G) and E(G) to denote its vertex set and edge set, respectively.
For x ∈ V(G), we denote by dG(x) the degree of x in G, and by NG(x) the set of vertices
adjacent to x in G. For any subset X of V(G), we write NG(X) for

⋃
x∈X NG(x). We use

G[X] to denote the subgraph of G induced by X, and G − X = G[V(G) \ X]. A vertex
set X ⊆ V(G) is called independent if G[X] has no edges. The minimum degree of a
vertex in G is denoted by δ(G). The binding number bind(G) of G is defined by

bind(G) = min
{
|NG(X)|
|X|

: ∅ , X ⊂ V(G), NG(X) , V(G)
}
.

We refer the reader to [1] for standard graph-theoretic terms not defined in this paper.
Let k ≥ 1 be an integer. Then a spanning subgraph F of G is called a k-factor

if dF(x) = k for each x ∈ V(G). Let h : E(G)→ [0, 1] be a function. If
∑

e3x h(e) = k
holds for any x ∈ V(G), then we call G[Fh] a fractional k-factor of G with indicator
function h where Fh = {e ∈ E(G) : h(e) > 0}. A graph G is called a fractional (k, m)-
deleted graph if for every e ∈ E(H), there exists a fractional k-factor G[Fh] of G with
indicator function h such that h(e) = 0, where H is any subgraph of G with m edges. A
fractional (k, m)-deleted graph is simply called a fractional k-deleted graph if m = 1.

Many authors have investigated factors of graphs [2–4, 6, 9, 13]. Liu and Zhang [5]
gave a toughness condition for a graph to have a fractional k-factor. Yu et al. [7]
obtained a degree condition for graphs to have fractional k-factors. Zhou [11] obtained
a minimum degree and independence number condition for a graph to have a fractional
k-factor. Zhou [10, 12] showed two sufficient conditions for graphs to be fractional
(k, m)-deleted graphs. In this paper, we study fractional (k, m)-deleted graphs and
obtain a binding number and minimum degree condition for a graph to be a fractional
(k, m)-deleted graph. The main result is the following theorem.

T 1.1. Let k ≥ 1 and m ≥ 0 be integers, and let G be a graph of order n with
n ≥ 4k − 6 + 2m/(k − 1). If G satisfies

bind(G) >
(2k − 1)(n − 1)

kn − 2m
and δ(G) ≥ 1 +

(k − 1)n + 2m
2k − 1

,

then G is a fractional (k, m)-deleted graph.
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If m = 0 in Theorem 1.1, then we obtain the following corollary.

C 1.2. Let k ≥ 1 be an integer, and let G be a graph of order n with n ≥ 4k − 6.
If G satisfies

bind(G) >
(2k − 1)(n − 1)

kn
and δ(G) ≥ 1 +

(k − 1)n
2k − 1

,

then G has a fractional k-factor.

Obviously,

1 +
k − 1

k
=

(2k − 1)(n − 1)
k(n − 1)

>
(2k − 1)(n − 1)

kn
.

Thus, from Corollary 1.2 we get the following corollary.

C 1.3 [8]. Let k ≥ 1 be an integer, and let G be a graph of order n with
n ≥ 4k − 4. If G satisfies

bind(G) ≥ 1 +
k − 1

k
and δ(G) ≥ 1 +

(k − 1)n
2k − 1

,

then G has a fractional k-factor.

If m = 1 in Theorem 1.1, then we obtain the following corollary.

C 1.4. Let k ≥ 1 be an integer, and let G be a graph of order n with n ≥
4k − 6 + 2/(k − 1). If G satisfies

bind(G) >
(2k − 1)(n − 1)

kn − 2
and δ(G) ≥ 1 +

(k − 1)n + 2
2k − 1

,

then G is a fractional k-deleted graph.

If k ≥ 2, then we have

1 +
k − 1

k
=

(2k − 1)(n − 1)
k(n − 1)

>
(2k − 1)(n − 1)

kn − 2
.

Thus, by Corollary 1.4 we get the following corollary.

C 1.5 [8]. Let k ≥ 2 be an integer, and let G be a graph of order n with
n ≥ 4k − 3. If G satisfies

bind(G) > 1 +
k − 1

k
and δ(G) ≥ 1 +

(k − 1)n + 2
2k − 1

,

then G is a fractional k-deleted graph.
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2. The proof of Theorem 1.1

Let G be a graph. For all disjoint subsets S and T of V(G), define

δG(S , T ) = k|S | +
∑
x∈T

(dG−S (x) − k).

The proof of Theorem 1.1 depends on the following lemma.

L 2.1 Zhou [10]. Let k ≥ 1 and m ≥ 0 be two integers, and let G be a graph and
H a subgraph of G with m edges. Then G is a fractional (k, m)-deleted graph if and
only if

δG(S , T ) ≥
∑
x∈T

(dH(x) − eH(x, S ))

for all disjoint subsets S and T of V(G).

P  T 1.1. Suppose that G satisfies the assumption of Theorem 1.1, but is
not a fractional (k, m)-deleted graph. Then by Lemma 2.1 there exist disjoint subsets
S and T of V(G) such that

δG(S , T ) ≤
∑
x∈T

(dH(x) − eH(x, S )) − 1, (2.1)

where H is some subgraph of G with m edges. Since |E(H)| = m, we obtain∑
x∈T (dH(x) − eH(x, S )) ≤ 2m. Thus, from (2.1) we have

δG(S , T ) ≤ 2m − 1. (2.2)

We choose subsets S and T such that |T | is minimum. Clearly, T , ∅ by (2.1). �

We next show that dG−S (x) ≤ k − 1 for any x ∈ T . This follows since, if dG−S (x) ≥ k
for some x ∈ T , then the subsets S and T \ {x} satisfy (2.2), contradicting the choice
of S and T . Now define h = min{dG−S (x) : x ∈ T }. From the above and the definition
of h,

0 ≤ h ≤ k − 1

and

δ(G) ≤ h + |S |. (2.3)

In the following, the proof splits into two cases by the value of h.

Case 1. h = 0.

Let t be the number of vertices x in T such that dG−S (x) = 0, and let Y = V(G) \ S .
Since h = 0, we have NG(Y) , V(G). Obviously, Y , ∅ since T , ∅. Hence, by the
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definition of bind(G), we obtain

|NG(Y)|
|Y |

≥ bind(G). (2.4)

Note that |NG(Y)| ≤ n − t. Combining this with (2.4) and the condition of Theorem 1.1,
we get

n − t ≥ |NG(Y)| ≥ bind(G)|Y | >
(2k − 1)(n − 1)

kn − 2m
(n − |S |),

which implies that

(2k − 1)(n − 1)|S | > (2k − 1)(n − 1)n − (n − t)(kn − 2m). (2.5)

Note that t ≥ 1. Using |S | + |T | ≤ n, n ≥ 4k − 6 + 2m/(k − 1) and (2.5), we obtain

(n − 1)δG(S , T ) = (n − 1)
(
k|S | +

∑
x∈T

(dG−S (x) − k)
)

≥ (n − 1)(k|S | + (1 − k)|T | − t)

≥ (n − 1)(k|S | − (k − 1)(n − |S |) − t)

= (n − 1)((2k − 1)|S | − (k − 1)n − t)

= (2k − 1)(n − 1)|S | − (k − 1)(n − 1)n − (n − 1)t

> (2k − 1)(n − 1)n − (n − t)(kn − 2m) − (k − 1)(n − 1)n − (n − 1)t

= −kn + 2mn + ((k − 1)n − 2m + 1)t

≥ −kn + 2mn + (k − 1)n − 2m + 1

= (n − 1)(2m − 1),

that is,
δG(S , T ) > 2m − 1,

which contradicts (2.2).

Case 2. 1 ≤ h ≤ k − 1.

According to (2.3) and the condition of Theorem 1.1,

|S | ≥ δ(G) − h ≥
(k − 1)n + 2m

2k − 1
+ 1 − h,

that is,
(2k − 1)|S | ≥ (k − 1)n + 2m − (2k − 1)(h − 1). (2.6)

In view of (2.2), (2.6) and |S | + |T | ≤ n, we obtain

0 ≥ (2k − 1)(δG(S , T ) − 2m + 1)

= (2k − 1)
(
k|S | +

∑
x∈T

(dG−S (x) − k) − 2m + 1
)

≥ (2k − 1)(k|S | − (k − h)|T | − 2m + 1)
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≥ (2k − 1)(k|S | − (k − h)(n − |S |) − 2m + 1)

= (2k − 1)((2k − h)|S | − (k − h)n − 2m + 1)

≥ (2k − h)((k − 1)n + 2m − (2k − 1)(h − 1)) − (2k − 1)((k − h)n + 2m − 1)

= (kn − (2k − 1)(2k − h) − 2m)(h − 1) + 2k − 1,

that is,
0 ≥ (kn − (2k − 1)(2k − h) − 2m)(h − 1) + 2k − 1. (2.7)

Subcase 2.1. h = 1.

Using (2.7),
0 ≥ 2k − 1 > 0.

This is a contradiction.

Subcase 2.2. 2 ≤ h ≤ k − 1.

From (2.7), 2 ≤ h ≤ k − 1 and n ≥ 4k − 6 + 2m/(k − 1), we get

0 ≥ (kn − (2k − 1)(2k − h) − 2m)(h − 1) + 2k − 1

≥ (kn − (2k − 1)(2k − 2) − 2m)(h − 1) + 2k − 1

≥

( 2m
k − 1

− 2
)
(h − 1) + 2k − 1,

that is,

0 ≥
( 2m
k − 1

− 2
)
(h − 1) + 2k − 1. (2.8)

Subcase 2.2.1. m ≥ k − 1.

In this case, by 2 ≤ h ≤ k − 1 and (2.8), we obtain

0 ≥
( 2m
k − 1

− 2
)
(h − 1) + 2k − 1 ≥ 2k − 1 > 0,

which is a contradiction.

Subcase 2.2.2. 0 ≤ m ≤ k − 2.

In this case, using 2 ≤ h ≤ k − 1 and (2.8), we have

0 ≥
( 2m
k − 1

− 2
)
(h − 1) + 2k − 1

≥ −2(h − 1) + 2k − 1 ≥ −2(k − 2) + 2k − 1 = 3 > 0,

also a contradiction.
From all the cases above, we deduce contradictions. Hence, G is a fractional (k, m)-

deleted graph. This completes the proof of Theorem 1.1.
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R. Let us show that the conditions

bind(G) >
(2k − 1)(n − 1)

kn − 2m
and δ(G) ≥ 1 +

(k − 1)n + 2m
2k − 1

in Theorem 1.1 cannot be replaced by

bind(G) ≥
(2k − 1)(n − 1)

kn − 2m
and δ(G) ≥

(k − 1)n + 2m
2k − 1

.

Let k and m be nonnegative integers such that k ≥ 2 is odd. Now we construct a graph
G = Kt ∨ (K1 ∪ (lK2)), where t = (k − 1)(2k − 1) + 2m and l = (k(2k − 1) + 2m − 1)/2.
We write n = t + 2l + 1 = (2k − 1)2 + 4m. Let Y = V(K1 ∪ (lK2)); then |NG(Y)| = n − 1.
In view of the definition of bind(G),

bind(G) =
|NG(Y)|
|Y |

=
n − 1
2l + 1

=
(2k − 1)(n − 1)

kn − 2m
.

Furthermore,

δ(G) = t =
(k − 1)n + 2m

2k − 1
.

Let S = V(Kt), T = V(K1 ∪ (lK2)) and H be any subgraph of G[T ] with m edges. Then
|S | = t, |T | = 2l + 1 and

∑
x∈T (dH(x) − eH(x, S )) = 2m. Thus,

δG(S , T ) = k|S | +
∑
x∈T

(dG−S (x) − k)

= k|S | + |T | − 1 − k|T | = k|S | − (k − 1)|T | − 1

= kt − (k − 1)(2l + 1) − 1

= k((k − 1)(2k − 1) + 2m) − (k − 1)(k(2k − 1) + 2m) − 1

= 2m − 1 < 2m =
∑
x∈T

(dH(x) − eH(x, S )).

By Lemma 2.1, G is not a fractional (k, m)-deleted graph. In the above sense, the result
of Theorem 1.1 is best possible.
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