
ON CONNECTIONS OF CARTAN 

SHÔSHICHI KOBAYASHI 

Introduction. Consider a differentiable manifold M and the tangent 
bundle T{M) over Af, the structure group of which is usually the general 
linear group G'. Let P ' be the principal fibre bundle associated with T(M). 
Consider the fibre F of T(M) as an affine space, then we have acting on F 
the affine transformation group G, which contains G' as the isotropic subgroup. 
Following the idea of Klein, it is more natural to take G as the structure group 
of the bundle T{M). Let P be the principal fibre bundle associated to T(M) 
with group G. 

In the classical theory of affine connections, there are two points of view. 
The one is due to Levi-Civita, who considered each tangent space of M as a 
vector space and explained a connection as a law of parallel displacement of 
vectors along curves. From the point of view of the theory of connections in 
fibre bundles, a connection in the sense of Levi-Civita is a connection in the 
principal fibre bundle P1 with group G'. The other point of view is due to E. 
Cartan. Following him, each tangent space of M is an affine space on which the 
affine transformation group G acts transitively, and an affine connection is a 
law of development of tangent spaces along curves; it is a connection in P. 

The idea of Cartan was rigorously established by Ehresmann (3) as follows. 
Consider a fibre bundle B satisfying the conditions of soudure (see §2); the 
fibre F is homeomorphic to a homogeneous space G/G' and the structure group 
G of B can be reduced to G'. As in the case of tangent bundle, we obtain two 
principal fibre bundles P and P' with group G and Gf respectively and Pf is 
contained in P . A connection in P is called a connection of Cartan, if it satisfies 
the following condition : the differential form co defining the connection gives an 
absolute parallelism on P1. The importance of this condition was shown in 
previous papers (4; 5). 

I t is known that there is a correspondence between affine connections in the 
sense of Cartan and those in the sense of Levi-Civita; there is a canonical 
one-to-one correspondence between the set of connections in P and the set 
of connections in Pf (7). 

The purpose of the present paper is to show that there exists a one-to-one 
correspondence between the set of Cartan connections in P and the set of 
infinitesimal connections in P ' , if the homogeneous space F = G/Gf is weakly 
reductive (see §2). We shall show also that in such a case the torsion forms can 
be defined. The last section will be devoted to the application to invariant 
connections. 
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1. Tangent vectors. The manifolds and the mappings considered in 
this paper are all of class C°°. For the definition of tangent vector and the 
differential of a mapping, the reader is referred to Chevalley's book (2). 

Let M be a manifold. We denote by T(M) the set of all tangent vectors to M. 
For any two manifolds M and M', we have a natural isomorphism 

T(M X M') = T(M) X T(M'). 

Let G be a Lie group and <t>: G X G —> G be the mapping defining group 
operation : 

0(5, s') = s-s', s,s' Ç G. 

Consider the differential mapping1 5$: T(G X G) —» P(G). P(G X G) being 
identified with P(G) X T(G), 60 can be considered as a mapping of T{G) X P(G) 
onto T{G) and defines a group operation in T(G). The Lie group P(G), 
obtained in this way, is called the tangent group to G. We have a natural 
imbedding of G into T(G) and G is considered as a subgroup of P(G). The set 
of all tangent vectors to G at the unit, which we shall denote by Pe(G), is a 
normal subgroup of T(G) and will be identified with the Lie algebra of G. 

Suppose G acts, as a transformation group, on a manifold P on the right and 
let ip: P X G —> P be the mapping defining the transformation law. Then, the 
differential mapping 

ty: T(P) X T(G) -» T(P) 

defines T(G) as a transformation group on T(P) acting on the right. If P is a 
principal fibre bundle over M with group G and with projection 7r, then P(P) 
is a principal fibre bundle over T(M) with group P(G) and with projection 
Ô7T. 

2. Soudure. Let B be a fibre bundle over base manifold Af, with fibre F 
and with Lie structure group G. B is sowdé (3) to M, if the following conditions 
are satisfied : 

(s.l) G acts on F transitively: then F can be identified with the homogeneous 
space G/G', where G' is the isotropic group at a point 0 of F. 

(s.2) dim F = dim M. 
(s.3) The structure group G of the bundle B can be reduced to G': in other 

words, 5 admits a cross-section, which we shall denote by a. When B is con­
sidered as the fibre bundle with structure group Gr, it will be denoted by 
B'. 

(s.4) Two fibre bundles T(M) and TF(B) over M, with group GL(n, R) 
(where n = dim M), are equivalent, where T(M) is the space of all tangent 
vectors to M and TF(B) the space of all tangent vectors to Fx at o-(x), x 
running through M. 

Let P (resp. P ' ) be the principal fibre bundle associated to B (resp. B'). 

^heval ley denotes the differential of <f> by d(f>. 
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The structure group and the fibre of P (resp. P') are G (resp. Gf). P' can be 
considered as a submanifold of P . 

Let g, g' be the Lie algebras of G and G' respectively. Take a vector subspace 
f of g such that 
(2.1) S = 9' + f, 8 ' A f = H . 

The tangent space T0(F) to F at o can be identified with f ; let p be the natural 
projection of G onto F = G/G', then 8p maps Te(G) onto T0(F), and since 
Te(G) and g are identified, ô£ maps f onto T0(F) isomorphically. 

Each element 5 of G' induces a linear transformation of T0(F)1 which we shall 
denote by Ls. If f satisfies 
(2.2) fldW-fÇf s e GA, 

then L s corresponds to ad(s), when we identify T0(F) with f. 
Now we shall consruct a T0(F)-valued linear differential form 0 on P' satisfy­

ing the following conditions: 
(0.1) If û £ P(P') and 0(?Z) = 0, then Ô7r(û)is the zero vector, where w is the 

projection of P' onto ikf. 

(0.2) 6 (Us) = L7^(«) tf € r ( P ' ) , 5 6 G'. 
(0.3) d(us) = 0 u G P ' , s e T(G'). 

Let U be a tangent vector to P ' at w. The projection IT: P' —> M" induces the 
projection Ô7r: P(P') —> T(M), and ÔTT(IZ) is a vector tangent to M at TT(U). 

As the bundle 5 is soudé to ikf, the vector ÔT(U) can be identified with a vector 
tangent to Fx at o-(x), where x = T(U). We shall denote by û* this vector 
tangent to Fx at o-(x). The element u Ç P ' is considered as a mapping of the 
standard fibre P onto Fx such that w(#) = o-(x), where 0 is the point of F 
which defined the isotropic group G'. The map u induces the differential map 
ou of T(F) onto T(FX). The inverse image ôw_1(^*) of w* Ç P(Pr) by ou is a 
vector tangent to F at 0, which we denote by 6{u). Clearly 0 is a linear differen­
tial form o n ? ' . If 6{u) = 0, then û* is the zero vector; consequently ÔT(Û) is 
also the zero vector, which proves the property (0.1). 

Now we shall verify (0.2). 
We see that Us is a tangent vector to P ' at us. As ÔT(Û) = ôw(ûs), we have 

ù* = (ûs)*. 
Then 

S (ûs) = ô(ws)-1 •(£$)* = ô(«s)_1-tZ* = ôs^-ôu"1^*) = ôs^diû) = L'^iû). 

Finally we shall prove (0.3). For any u 6 P' and s G P(G'), ôx(ws) is the zero 
vector. From the definition of 0, it is clear that 0 (us) = 0. 

Suppose our fibre bundle satisfies only the conditions (s.l)-(s.3). We shall 
prove that, if there exists a T0(F)-valued linear differential form 0 on P ' , 
which possesses the properties (0.1)-(0.3), then the bundle B satisfies also the 
condition (s.4). 

Let x be a tangent vector to M at x and û be a tangent vector to P' at u 
such that 

8T(U) = x. 
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Then ir(u) = x. As 6(u) is an element of T0(F) and u is a map of F onto F* 
such that u{6) = o-(x), the image ôu(6(û)) of 0(w) by the differential of u is a 
tangent vector to Fx at <r(x). Now we shall show that ôu(6(û)) depends only on 
x and is independent of the choice of û such that bir(u) = x. If û' is a tangent 
vector to P at the same point u such that Ô7r(û') = x, from the property (0.3), 
0(û' — u) = 0; hence 

0(0') = 0(û), ôu(6(û')) = ôu(d(û)). 

If û' = ûs for some 5 £ G', then M' is tangent to Pr at ws and 

6(û') = L~le{û). 

Hence 
b(us)6(û') = Su-ôS'L^eÇû) = bu-e(û). 

This completes the proof, because, for any v! Ç T(Pf) such that 

ÔTT(Û') = ôir(tZ), 

there is an element s £ G' such that û's is tangent at the same point as u 
and 

ôw(û's) = ÔTT('Û). 

If the vector subspace f of g satisfies (2.1) and (2.2), it can be identified with 
T0(F). Therefore 0 is considered as an f-valued linear differential form and the 
property (0.2) is replaced by 

(0.2') 0(fis) = s-VWs û e T(P'), s e G'. 

A homogeneous space F — GIG' is called weakly reductive (8), if there is a 
vector subspace f of g satisfying (2.1) and (2.2). 

THEOREM 1. A fibre bundle B satisfying the condition (s.l)-(s.3) is soudé to 
M, if and only if there exists a T0{F)-valued linear differential form 6 on Pf 

possessing the properties (0.1)-(0.3). If the homogeneous space F = G/G' is weakly 
reductive then 0 is considered as an \-valued linear differential form and the 
property (0.2) is replaced by (0.2'). 

Remarks on weakly reductive homogeneous spaces. In either of the 
following cases, the homogeneous space F is weakly reductive: 

(1) G' is compact, 
(2) G' is semi-simple and connected, 
(3) G' is discrete. 
If F is an arfine space (resp. Euclidean space) and G is the affine transforma­

tion group (resp. the group of motion) of F, then F is weakly reductive. 
If F = G/G' is weakly reductive, then there exists an affine connection 

on F invariant by G (8). Therefore the linear isotropic group Gf is isomorphic 
to the isotropic group G. If F is a real projective space and G is the projective 
transformation group of F, then F = G/Gr is not weakly reductive. 
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3. Connections of Cartan. We shall use the same notations as in §2. 
An infinitesimal connection in P is defined by a g-valued linear differential 

form w o n ? with 

(c.l) (a(us) = 5_1s u Ç P , s G TS(G), 

(c.2) co(u<0 = 5-^(^)5 u 6 P(P) , s e G-

The meaning of s -1s and s~1œ(u)s is explained in §1. 
Let co be the restriction of the form w o n ? ' . Then co is also a Q-valued linear 

differential form such that 

(c.l) a>(us) = s~ls u e P ' , se TS(G'), 

(c.2) co(ûs) = 5-^(^)5 u e P(P ' ) , s 6 G'. 

The form co does not give a connection in P ' , because it is not g'-valued. 
It is clear that, if co is a g-valued linear differential form on Pf satisfying the 
conditions (c.l) and (c.2), then it is the restriction of a unique differential 
form co on P satisfying the conditions (c.l) and (c.2). 

An infinitesimal connection in P defined by co is called a connection of Cartan 
(3), if the restricted form co satisfies the following condition: 

(c.3) If û Ç T(Pr) and co(tZ) = 0, then û is the zero vector. This implies that 
co defines an absolute parallelism on P'. 

Suppose the homogeneous space F = G/G' is weakly reductive, and let co' 
be a g'-valued linear differential form on P r , which defines an infinitesimal 
connection in Pf. The form co' satisfies the same conditions (c.l) and (c.2) as 
the form co; the difference is that the one is Q'-valued and the other is g-valued. 
Let 0 be the f-valued linear differential form on P' in Theorem 1. We shall 
show that the sum 6 + co' satisfies the conditions (c.l)-(c.3). Put 

(3.1) co = 6 + co'. 

Then 

(3.2) co(tts) = 6(us) + œ'(us) u £ P'} s € Tt(G'). 

From (0.3), we obtain 

(3.3) œ(us) = œ'(us) u Ç P1', s € TS(G'). 

As co' is a form of connection in P ' , we have 

(3.4) ta'(us) = s-% 

which proves that co satisfies (c.l). 
We have 

(3.5) œ(ûs) = 6(ûs) + co'(ûs) û G P(P ' ) , 5 e G'. 

Since co' is a form of connection in P ' , we have 

(3.6) œ'(ûs) = s-W(û)s û e T(P')t s e G'. 
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From (0.2') and (3.6), it follows that 

(3.7) œ(ûs) = s~lœ(û)s û e T(P'), s Ç G'. 

Suppose 
(3.8) <a(iï) = 0, 

which implies 

(3.9) e(u) = 0, co'(û) = 0. 

The first means that ôir(iï) is the zero vector, or that the vector û is vertical 
in the sense of Ambrose (1), and the latter implies that the vector û is hori­
zontal (1) with respect to the connection in P' defined by co'. Therefore û is the 
zero vector. 

We have proved the following 

LEMMA 1. Suppose F = GIG' is weakly reductive. If «' is a §'-valued linear 
differential form on Pr defining a connection in Pr and 0 is an \-valued linear 
differential form on Pf satisfying the conditions (0.1), (0.1')» (0-3), then the form 
co = 0 + œ' defines a connection of Car tan in P; that is, co is the restriction of 
a form û on P defining a connection of Car tan in P. 

Now, suppose that œ is a form on P' satisfying the conditions (c.l)-(c.3). 
Let 0(resp. «') be the f (resp. g') component of co: 

(3.10) co = 0 + co', 

(3.ii) e{û) e f, «'(a) eg ' ne T(P'). 

We shall prove that 0 satisfies the conditions (0.1), (0.2'), (0.3) and that a/ 
defines a connection in Pf. 

Suppose 
(3.12) 6{u) = 0. 

Then 
(3.13) œ(û) = a/(w) £ g'. 

Take an element s G Te(G
f) such that 

(3.14) s = - co(fl). 

(Te(G
f) was identified with the Lie algebra g' of G''.) Then2 

(3.15) œ(ûs) = œ(û) + s = 0. 

From (c.3), it follows that us is the zero vector; hence 

(3.16) ôw(û) = ÔT(ÛS) = 0, 

which proves that 0 satisfies (0.1). 

2The conditions (c.l) and (c.2) are equivalent to the following single condition: 
<o(ûs) — 5_1 s + s~l Ù)(Û)S, because co(ùs) — w(us) -\- <a(ûs). Putting s — e, we obtain (3.15). 
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Since œ(us) = s_1s is contained in g', 6 (us) vanishes for any u € P' and 
S Ç TS(G')\ hence 

(3.17) «(*§) = «'(«*) u e P ' , s e r,(G'). 
Therefore 0 satisfies (0.3) and co' satisfies (c.l). We have 

(3.18) œ(ûs) = s"1 {0(H) + œ'(û))s = 5-V(û)5 + 5-V(fl)5 û e T(P'), s G G'. 

As the homogeneous space F is weakly reductive, s-10(w)s is contained in f. 
Comparing (3.18) with the following equality 

(3.19) œ(ûs) = 6 (ûs) + œ'(ûs), 

we obtain 
(3.20) 6(ûs) = s"l6(û)st œ'(ûs) = 5-V(û)5. 

Therefore 0 satisfies (6.2') and a/ satisfies (c.2). 

LEMMA 2. 7/ a ^-valued linear differential form œ on P' satisfies the conditions 
(c.l)-(c.3), then œ is the direct sum of an ^-valued form 0 satisfying (0.1), (0.2'), 
(0.3) and a form œ' defining an infinitesimal connection in P'. 

Theorem 1 justifies the following definition: An f-valued linear differential 
form 0 is called & form of "soudure," if 0 satisfies the conditions (0.1)-(0.3). 

THEOREM 2. Suppose F — G/G' is weakly reductive. Then, to every pair of 
a soudure of B and a connection in P', there corresponds a unique connection of 
Car tan in P. Conversely, to each connection of Car tan in P, there corresponds a 
unique pair of a soudure of B and a connection in P'. If we denote by 0, co', œ 
a form of soudure, a form of connection in Pf, a form (restricted on Pf) of Cartan 
connection in P respectively, then the correspondence is given by œ = 0 + co'. 

The Theorem follows immediately from Lemmas 1 and 2. 

4. Structure equations. Let co be a form on P defining a connection of 
Cartan in P. Then we have 

(4.1) dœ = - i[û, œ] + Û, 

where Ô is the curvature form (1; 3). 
Consider the restricted form co on P ' . Then we have 

(4.2) dœ = - i[w, co] + 12, 

where 12 is the restriction of Û on P'. 
Assuming the homogeneous space F = G/G' is weakly reductive, we sub­

stitute co = 0 + co' in (4.2) and we obtain 

(4.3) dO + dœ' = - |([0, co'] + [co', 0] + [co', co'] + [0, 0]) + 12. 

We decompose [0, 0] and 12 into two components as follows: 

[0, 0] = [0, 6] + [0, 0] , , 12 = 12. + 12 , , 
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where, for any w, «' € T(P') tangent at the same point, 

[0(H), 0(«')]f € f, [*(«), 0(«')]g, 6 8' 

Qf(w,«') € f, 0 , («,« ' ) € 8'. 

Then we obtain from (4.3) the following equalities: 

(4.4) de = - §([9, «'] + [«', 0] + le, *]f) + a f . 

(4.5) tfa,' = - *([«', a'] + [0, 0] ) + 12 . 
y y 

Putting 

(4.6) 0 = O f - h[0,0] 9 

we call 9 the torsion form of the connection of Cartan. As the curvature form 
12' of the connection in P' defined by a/ is given by 

(4.7) dœf = - £[«', a/] + 8', 

we obtain from (4.5) the following equality. 

(4.8) 0' = 0 , - i f t 0] , . 
y y 

Now we obtain the following 

THEOREM 3. Let 

0 = Q - m * ] f 

be the torsion form and Q' the curvature form of the connection in P' defined by 
oof. Then we have 

d0= - i([0,co'] + [co',0]) + 9, 

n' = o , - i([ML,). 
y y 

(1) If the homogeneous space F = G'/G' satisfies furthermore the condition 

[f. f] Ç 8', 

then we have 

9 = û Qf = 0 , - M M ] . 

(2) If the homogeneous space F = G/G' satisfies the stronger condition 

[f, f] = o, 

then we have 
9 = o 12' = Û , . 

Remarks. A homogeneous space F is called symmetric, if it satisfies the 
assumption of (1) in Theorem 3. On such a space F, there exists (8) an affine 
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symmetric connection invariant under G. If F is an affine space and G is the 
affine transformation group, then F satisfies the assumption of (2) in Theorem 
3. In this case, a connection in P' is called a linear connection (because the 
structure group G' is the general linear group). If F is an affine space and B 
is the tangent bundle T(M), then there is a canonical soudure in B. If we take 
always this canonical soudure, then Theorem 2 says that, to each linear 
connection in P ' , there corresponds a unique connection of Cartan in P , 
which will be called an affine connection. Part (2) of Theorem 3 implies that the 
restriction on P ' of the curvature form of an affine connection is the sum of 
the torsion form and the curvature form of the corresponding linear connection 
(which is usually called the curvature form of the affine connection). 

I t will not be useless to point out that the holonomy group of the linear 
connection corresponding to an affine connection is usually called the homo­
geneous holonomy group of the affine connection. If the torsion form of an 
affine connection vanishes, then the form Q,z vanishes also ((2) of Theorem 3). 
But this does not imply that the form Ûc> /-component of the curvature form 
of the affine connection (of which 0* is the restriction on Pf) vanishes. That is 
why the holonomy group of an affine connection without torsion contains 
the translation part (7). And we shall see easily that, if the non-homogeneous 
holonomy group coincides with the homogeneous holonomy group, then our 
affine connection is flat. 

5. Invariant connections of Cartan. Consider a homogeneous space 
F = G/G'. G is considered as a principal fibre bundle over the base manifold 
F y with structure group G' and with the natural projection (9) 

ir:G-^F = G/G'. 

Let P be the fibre bundle with fibre G (on which G' acts on the left )associated 
to the principal fibre bundle G described above. P is defined as follows. We 
shall say two elements (si, s2) and (s3, s4) of G X G are equivalent if there is an 
element s' of G' such that 

(5.1) sis' = s3, s'-1-s2 = s^ 

P is the set of these equivalence classes with the natural structure of fibre 
bundle; the projection of P onto the base manifold F is induced from the 
mapping oi G X G onto F: 

(5 .2) (si , s2) - » T T ( S I ) , 

where ir is the natural projection of G onto F. The operation of G on G X G 
on the right given by 

(5.3) (su S2) s = (si, s2s) 

induces the operation of G on P on the right. In this way, P can be considered 
as a principal fibre bundle with group G. 
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The injection of G into G X G such that 5 —> (s, e), where e is the unit of G, 
defines the injection of G into P . The submanifold G of P is stable under the 
operation of G' on the right; that is, if u € P belongs to the submanifold G, 
then us belongs to G for any s Ç Gf. 

LEMMA 3. The princpal fibre bundle P is trivial; P is the direct product of 
the base space F and the structure group G. 

Proof. Define a mapping j of G X G onto F X G as follows: 

(5.4) j(su $2) = ( ir($i) , $is2). 

Then j induces a mapping j° of P onto F X G, which commutes obviously 
with the operation of G on the right, proving the Lemma. 

As P is trivial, the fibre bundle B with fibre F associated to the principal 
fibre bundle P is also trivial : 

(5.5) B = FX F. 

LEMMA 4. The fibre bundle B with fibre F associated to P is soudé (3) to the 
base manifold F. 

Proof, The conditions (s.l) and (s.2) of §1 are apparently satisfied. We take 
the cross-section a defined as follows: 

(5.6) F 3 x -> (x, x) <E F X F = B. 

The identification of T(F) with TF(B) is given by 

(5.7) T(F) 3 ^ f e l ) € TF(B). 

If we reduce the structure group G of P to G', we obtain the principal fibre 
bundle G, from which we started. 

The fibre bundle G corresponds to the fibre bundle P' in §2. Therefore 
we denote by P' the fibre bundle G. 

A connection of Cartan in P is given by a Q-valued linear differential form 
co on Pf( = G) satisfying the conditions (c.l)-(c.3). As P! is a group space G, 
G acts on P' on the left as well as on the right. We shall define a left invariant 
connection of Cartan; that is, we shall define a g-valued form œ on P' such that 

(5.8) œ(sû) = <a(û) û e T{P'), s Ç G. 

I t is clear that such a form œ is unique and must be defined by 

(5.9) w(us) = s u e P', s £ Te(G). 

In this case the structure equation of E. Cartan reduces to the equation of 
Maurer-Cartan : 

(5.10) do) — — J[co, to]. 
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THEOREM 4. There is a unique left invariant connection of Car tan in P . 
/ / is given by a g-valued form œ on P'( = G) defined as follows: 

oo(us) = s u 6 P ' , s 6 Te{G). 

The curvature form of the connection vanishes on P ' , hence on P , too. 

Proof. From (5.10), it follows that the curvature form vanishes on P'. 
Let Û be the curvature form. Then we have 

(5.11) Ù(ûs, û's) = s-ifKû, û')s û, û' € TU(P), se G. 

Since Û vanishes on P ' , it follows easily from (5.11) that Û vanishes on P . 
Suppose the homogeneous space F = G/Gf is weakly reductive. Let 

(5.12) co - 6 + <o' 

be the decomposition of the form œ into an f-valued form 6 and into a g'-valued 
form a/. The g'-valued form a/ defines a connection in the principal fibre 
bundle P ; ( = G) with group G'. Let 9 be the torsion form of the connection of 
Cartan defined by a> and Q' the curvature form of the connection in P' defined 
by v. From Theorems 3 and 4, it follows that 

(5.13) 0 = - * [ M ] f , 

(5.14) 12'= - « M L , . 
y 

THEOREM 5. Let œ be the ^-valued form on P'( — G) defining the invariant 
connection of Cartan in P. Suppose the homogeneous space F = G/Gf is weakly 
reductive and let œ — 6 + co' be the decomposition corresponding to a decomposition 
of the Lie algebra g satisfying (2.2). Then 

(1) The torsion form of the connection of Cartan defined by œ is given by 

0 = - * [ M ] f . 

(2) The curvature form of the connection in Pf defined by œ' is given by 

a' = - it*, o] , • 

(3) The torsion form vanishes, if and only if the homogeneous space F is sym­
metric; that is, 

[f, f] Q 9'-

(4) The restricted holonomy group of the connection defined by œ' is an invariant 
subgroup of the connected component of the unit of G'. And the Lie algebra of the 
holonomy group is the linear closure of 

UfuJ*],', fuft € f } . 

Proof. We have only to prove (3) and (4). From (6.1) it follows that, for 
a n y / i , / 2 and u £ P', there are «i, M2 € TU(P') such that 

(5.15) $(ûi) = / i , »(«») = / , . 
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Therefore, in order that the homogeneous space F be symmetric, it is necessary 
that the torsion form vanishes. It is evident that, if F is symmetric, the torsion 
form vanishes. 

Now we shall prove (4). Take an arbitrary point Uo in P' and let P° be the 
set of all points in Pr which can be joined to u0 by horizontal curves (1) (with 
respect to the connection defined by co'). In other words, we reduce the structure 
group of Pf to the holonomy group of the connection defined by co', and we 
obtain the principal fibre bundle P° whose structure group is the holonomy 
group. Then the Lie algebra of the holonomy group is the linear closure of (1). 

(5.16) {Û'(ûi,ûO; 
(P°), u running through P°}f 

which is equal to 
(5.17) {[0(«i),0(«2)] , ; ûuû2 e TU(P°)\. 

Since, for any fu f2 € f and u € P°, there are ûi, Û2 G TU(P°) satisfying 
(5.15), the set (5.17) is equal to the set 

(5.18) llfufx].; / i , / , € f}. 

Using the Jacobi's identity, we see easily that the linear closure of the set 
(5.15) is an ideal of the Lie algebra g' of G'. This completes the proof of (4). 

Remark. The results in this section are closely related to those of Nomizu 
on invariant affine connections (8). The relation between them will be discussed 
in another paper. 
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