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Cooperative Localisation (CL) technology is required in some situations for Multiple
Unmanned Underwater Vehicle (MUUVs) missions. During the CL process, the Relative
Localisation Information (RLI) of the master UUV is transmitted to slave UUVs via acoustic
communication. In the underwater environment, the RLI is subject to a random time delay.
Considering the time delay characteristic of the RLI during the acoustic communication, a
Moving Horizon Estimation (MHE) method with a Delayed Extended Kalman Filter
(DEKF)-based arrival cost update law is presented in this paper to obtain an accurate and
reliable estimation of present location. Additionally, an effective computation method for
the MHE method is employed, in which the “Lower Upper” (LU) factorization is used to
compute the solution of the Karush-Kuhn-Tucker (KKT) system. At the end of this paper,
simulation results are presented to prove the superiority and practicality of the proposed
MHE algorithm.
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1. INTRODUCTION. With the development of oceanology, more and more
complex underwater missions are demanded in both military operations and civil
applications, in which it is difficult for a single Unmanned Underwater Vessel
(UUV) to satisfy the mission demands, thus pushing the development of Multiple
UUVs (MUUVs) technology. One of the challenges in the MUUV field is precise
localisation for long-range travel in an unknown environment.
The traditional method for the localisation of MUUVs in an unknown environment

is inertial navigation (Grenon et al., 2005), however a high precision Inertial
Navigation System (INS) is very expensive and its localisation error grows with
time. To save cost and improve localisation accuracy, it is necessary to introduce a
Master-Slave cooperative navigation framework in which structure the master UUV
is equipped with an acoustic modem and high precision INS, and each slave UUV is
equipped with an acoustic modem and low precision INS for Dead-Reckoning
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(DR). The Cooperative Localisation (CL) of MUUVs means that each slave UUV in
the group receives Relative Localisation Information (RLI) from the master UUV by
acoustic communication to improve their individual position estimations. According
to the earlier work on this subject (Bahr et al., 2009a; Papadopoulos et al., 2010),
the RLI during cooperative navigation usually includes the master UUV location
information and the relative range between UUVs.
CL techniques have been applied to indoor and outdoor robots (Nerurkar et al.,

2009; Huang et al., 2011). Roumeliotis and Bekey (2002) compared the advantages
and disadvantages of the following three algorithms: individual DR, normal CL
with continuous RLI exchange and master-slave CL with intermittent RLI exchange
for localisation of three moving robots. A centralised Kalman filter estimator
that can produce the uniform accuracy for every member of the robot group was
introduced in Mourikis and Roumeliotis (2006).
Compared to mobile robots, there were fewer CL techniques for application in

MUUVs until now. As shown in Fallon et al. (2010), communication delay is the
hardest challenge for the CL ofMUUVs because of the poor underwater environment.
All types of preceding CL techniques for robots estimate the location at the present
time based on a prior estimate and present relative measurement (Yang et al., 2008).
However, in the MUUV case, the relative measurements which were transmitted
through the communication channels cannot arrive at the target vehicles on time, so
the delayed measurements may cause a loss in estimation efficiency, even the diver-
gence of the estimation from the true values (Capitan et al., 2009).
Baccou et al. (2001) designed the observation equation of CL with communication

delay by the acoustic round-trip time method; they supposed that the master UUV
navigated with a good dead reckoning and it could surface for relocation by GPS
measurement, and each UUV of the group could determine its own absolute
position with RLI exchange. Bahr et al. (2009b) analysed the disadvantages of radio
communication between UUVs and introduced the method to synchronize data trans-
mission for CLwith the use of Pulse Per Second (PPS) signal. The recent experiment on
the development of a synchronous-clock acoustic localisation system that was suitable
for the CL of MUUVs was reported in Walls and Eustice (2011). A Delayed Extended
Kalman Filter (DEKF), which is designed to deal with the CL problem with acoustic
communication delay, is presented in Yao et al. (2009).
In practice, the master UUV’s RLI is sampled at each sampling time, and then

routed through a multi-hop network to slave UUVs. As a consequence, the RLI
arrives at the slave UUV with non-deterministic delay, and in this paper, we
assume that there are no measurements lost in the acoustic communication channel
because of multi-path propagation technology (Climent et al., 2012). Early work on
the delay system has shown that the measurement delay could be reduced by
network coding (Ahlswede et al., 2000), distributed signal processing (Ye et al.,
2009), data compression (Twycross and Aickelin, 2010), and packet routing protocols
(Akyildiz et al., 2007), but not completely avoided due to the inherently unreliable
nature of acoustic communication. Previous research has focused on solving the com-
munication delay problem with the use of the varied optimal state estimation methods.
Schenato (2008) has analysed the performance of estimators subject to random packet
delay; he has designed the two alternative optimal estimators based on finite memory
buffers and constant gains. At the end of the paper, he proved the necessary and suf-
ficient conditions for the existence of stable estimators. Liang et al. (2010) proposed a
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Linear Minimum Variance (LMV) filter using the orthogonality principle to deal with
the linear packet delay system with stochastic parameters. The method that uses the
latest present measurements to replace the current data which did not arrive at the
slave UUV site is discussed in Xue et al. (2012), in this algorithm, the arrival
process of RLI is considered as an independent and Bernoulli distributed white se-
quence taking values of 0 and 1.
Moving horizon estimation (MHE) obtains a state estimation by using a moving,

limited horizon of measurements. This reduces the sensitivity of the estimator to the
effect of random delayed measurements (Liu et al., 2013). The basic strategy of MHE
is to reformulate the estimation problem as a quadratic program, which is computed
by minimizing a cost function that is a trade-off between process noise, measurement
noise, and the estimate covariance of the states in the horizon. Early work on the appli-
cation ofMHE for linear systemswas done by Farina et al. (2010) andKühl et al. (2011).
Rao et al. (2003) analysed the relationship between the full information estimation and
fixed size moving horizon approximation, and summarised the effect of the measure-
ments that arrived before the sliding estimation window with the definition of the cost
function. AMHEmethod for control systems with multiple packet delays in communi-
cation channels has been studied in Rao et al. (2001). This work reformulates the cost
function with two nonnegative weight parameters to balance the effect of one-step
state prediction at thebeginning of the sliding horizon and the distances of the estimation
measurements from the observations. What is more, most of the early studies assumed
that the system noises have Gaussian distribution with mean zero. This has ignored
the fact that the assumed properties of the Gaussian white noises are rarely met in prac-
tical CL operations, and thatMHE can obtain the error between the real practical noise
and the ideal Gaussian white noise with the state and measurement equations.
The formation and solution of the KKT system is the most expensive step in MHE

algorithms. The strategies to solve the KKT system are shown in Zavala et al. (2007)
and Huang et al. (2010). A popular strategy consisting of a forward Riccati decompo-
sition that exploits the natural forward structure of the full KKT matrix is introduced
in Zavala et al. (2008). In order to reduce the computation time during the reality ap-
plication, we will exploit the band-diagonal structure of the KKT matrix and de-
composition the matrix by “Lower Upper” (LU) factorization.
The remainder of the paper is organized as follows. Section 2 describes the problem

formulation and the DEKF is also introduced. The MHE strategy proposed for the
state estimation with time delay is introduced in Section 3 based on the decomposition
of the KKT system by LU factorization that is realized by Riccati-based recursion. A
test example is carried out to demonstrate the effectiveness of the proposed algorithms
in Section 4. Then, in Section 5, the conclusion is given.

2. PROBLEM FORMULATION. The MUUV CL model without communi-
cation time delay is stated as a discrete time-varying dynamic process with stochastic
characteristics as follows:

Xkþ1 ¼ f Xk;wkð Þ
Zk ¼ HkXk þ vk

ð1Þ

where k∈ℕ= {1, 2,⋯}denotes the discrete sample time,Xk∈ℝn,wk∈W⊂ℝu,Zk∈ℝm,
vk∈V⊂ℝm are the state, process noise, measurement, measurement noise at time k,
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respectively, andQk, Rk are the covariance of wk, vk. Furthermore, the sets W, Vare poly-
hedral and convex with 0∈W, 0∈V, andHk∈ℝm × n is the known time-varyingmatrix at
time k.
The measurements from the sensors of the master UUV for CL are time-stamped,

encapsulated into packets, and then transmitted to the slave UUV with random delay.
In the initial period, the UUVs can get the global clock synchronization by Pulse Per
Second (PPS) signal of GPS when they are on the surface. In case the RLI arrives out
of order, time-stamping is necessary to reorder packets by global clock at the slave
UUV site. Thus we can assume that all the sensor measurements delivered to the
slave UUV are stored in a buffer in transmitting order. And the arrival process can
be recognized via a random variable that just takes values of 0 and 1 as follows:

μtk ¼
1 if measurement Zk arrived at the

slaver UUV before or at time t t � k
0 otherwise

8<: ð2Þ

From the definition,we can get that ∀h ∈ N; ðμtk ¼ 1Þ ) ðμtþk
k ¼ 1Þ, whichmeans that

if the measurement Zk is present at time k, then it will be present for all future times. This
paper studies the state estimation for CL of MUUVs in the scenario where there are no
measurements lost in the acoustic communication channel with the use of multi-path
propagation technology. So that communication delay Δk can be defined as follows:

Δk ¼ γk � k; γk ¼ min t μtk ¼ 1
��� �� � ð3Þ

where γk means at which time that Zk arrives at the slave UUV, since the communication
delay is random, probablyZk is present andZn (n < k, n∈ℕ) is not present at time t. Also it
is possible that between two sampling times no RLI, or multiple measurements have
arrived (see Figure 1). If we define a constant variable N∈ℕ+ as follows:

N ¼ max Δkjk ∈ Nþ� � ð4Þ

Figure 1. The arriving sequence and storage of the RLI at the slave UUV site, where N represents
the maximum delay. Shaded blue squares represent the successfully arrived RLI at UUV. The cursor
indicates current time.
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Variable N means that the measurement Zk arrives at the slave UUV within N sample
times of present time, and N is the biggest communication delay step. In this case, at
time t (t≥N) we can use a buffer of limit length N to store measurements which are
sent from time (t−N+ 1) to time t (see Figure 1, t=N). Notice that at the beginning
(N−1) sampling periods, some slots of the buffer stored nothing (see Figure 1, t=N−1).
If measurement Zk (k∈ (t−N,t)) has not yet arrived at time t, we assume that a zero

is stored in the k-slot of the buffer. So the value stored in the k-slot of the buffer at time
t can be written as follows:

eZt
k ¼ μtkZk k ∈ t�N þ 1; t½ � ð5Þ

Then the MUUV CL model with communication delay at time t can be stated as
follows:

Xt
kþ1 ¼ f X t

k;wk
� �

k ∈ t�N þ 1; t½ � ð6ÞeZt
k ¼ μtk HkXt

k þ vk
� � ¼ Ct

kX
t
k þ vtk k ∈ t�N þ 1; t½ � ð7Þ

where the observation matrix is Ct
k ¼ μtkHk, and random variable vtk ¼ μtkvk is

uncorrelated, zero-mean white noise with covariance Rt
k ¼ μtkRk. For any fixed t

and N, the CL model can be seen as a linear time-varying system with respect to time
step k. Our goal is to compute the optimal estimation X

^ t
t ≜ E½XtjeZt

k;X0;P0�. With the

normal time-varying Kalman method, it is necessary to compute X̂ t
t , P

t
t starting from

k = 1 to take advantage of the new measurements which arrived at present time step t
as follows:

Pt
1j0 ¼ P0; X̂ t

0 ¼ X0 ð8Þ
Pt
k ¼ ðI � Kt

kHkÞPt
kjk�1 ð9Þ

Kt
k ¼ Pt

kjk�1Hk
TμtkðHkPt

kjk�1Hk
T þ RkÞ�1 ð10Þ

Pt
kþ1jk ¼ Qk þ AkPt

kjk�1A
T
k � AkPt

kjk�1μ
t
kHk

T

×ðHkPt
kjk�1Hk

T þ RkÞ�1HkPt
kjk�1A

T
k

ð11Þ

X̂ t
k ¼ Ak�1X̂ t

k�1 þ Kt
kμ

t
kð~Z

t
k �HkX̂ t

kjk�1Þ ð12Þ

Figure 2. The iterative computation of DEKF for X̂ t
t , P

t
t. It is not necessary to compute X̂ t

t , P
t
t at

every time step t starting from k = 1, since X̂ t�1
t�N and Pt�1

t�N computed at the previous time step t−1
can be used.
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where 1≤ k≤ t, considering the fact that ∀t≥N, μtt�N ¼ μt�1
t�N ¼ 1, so X̂ t

t�N ¼ X̂ t�1
t�N and

Pt
t�N ¼ Pt�1

t�N hold under the same conditions. In this case, X̂ t
t ,P

t
t canbe computed itera-

tively starting from k = t−N (see Figure 2).
The optimal estimator X̂ t

t can be computed iteratively using a buffer of finite length
N, where X̂ t

k is given by Equations (8) to (12) for t−N ≤ k≤ t and X̂ t
t�N ¼ X̂ t�1

t�N , where
X̂ t�1

t�N is computed at time step k = t−1. As shown in Liu et al. (2013), methods based on
Kalman filtering may become suboptimal or even unstable when dealing with the
random delay. This motivated the development of moving horizon estimation
(MHE) schemes that can guarantee the observer convergence and stability in the
time delay system.

3. MOVINGHORIZON ESTIMATIONMETHOD. Moving horizon estimation
is based on the idea of getting a state estimate by using a moving, limited horizon of
measurements. Recall from Section 2, we can denote the length of the horizon with the
variableN, and all successfully received observations have a delay step less thanN time
steps. In this paper, the form of MHE is

min
Xt

k

� �t
k¼t�Nþ1; wkf gt�1

k¼t�Nþ1

Pt
k¼t�Nþ1

vtk
TRt

k
�1vtk þ

Pt�1

k¼t�Nþ1
wT
k Q

�1
k wkþ

Xt
t�Nþ1 � X̂ t

t�Nþ1

� �T
Pt
t�Nþ1

�1 Xt
t�Nþ1 � X̂ t

t�Nþ1

� �
0B@

1CA :

ð13Þ
This cost function is subjected to Equation (6) and (7). Equation (6) describes the state
propagation in discrete time and Equation (7) is the observation equation of
the system. Xt

k

� �t
k¼t�Nþ1 are the states to be estimated in the moving horizon, the

other unknown variables in the cost function are the variables that denote the
process noise wkf gt�1

k¼t�Nþ1. The noise at time instant k = t is not included in the cost
function because the system state Xt

t is unrelated to wt. The third term in the cost func-
tion is the arrival cost, which was used to summarise the effect of the measurements not

included in the estimation window like eZt
k

n ot�N

k¼1
, where X̂ t

t�Nþ1 is the DEKF state es-

timation at the beginning of the horizon, with covariance Pt
t�Nþ1. The output of the

MHE is Xt
k

� �t
k¼t�Nþ1: the estimated state vector of the total horizon. In this paper,

it is assumed that no inequality constraints are present. This leads to a weighted non-
linear-least-squares problem, in which the weights are the inverse of the covariance
matrices.

vt
T

k R
t�1
k vtk ¼ vtk

�� ��2
Rt

k
�1 ; wT

k Q
�1
k wk ¼ wkk k2Q�1

k
ð14Þ

Xt
t�Nþ1 � X̂ t

t�Nþ1

� �T
Pt �1
t�Nþ1 Xt

t�Nþ1 � X̂ t
t�Nþ1

� �¼ Xt
t�Nþ1 � X̂ t

t�Nþ1

�� ��2
Pt
t�Nþ1

�1 ð15Þ

If we define the state error as the difference between previous state estimation and the
real state sequence ΔXt

k ¼ Xt
k � �Xt

k, and the process noise error as the difference
between the real noise and the ideal Gaussian white noise Δwk ¼ wk � �wk,
the MHE method can be reformulated by minimizing a cost function which is a
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trade-off between state error, process noise error and the estimate covariance of the
states at the initial time instant of the horizon as follows

min
ΔXt

k

� �t
k¼t�Nþ1; Δwkf gt�1

k¼t�Nþ1

Pt
k¼t�Nþ1

~Z
t
k � h �Xt

k þ ΔXt
k; �wk þ Δwk

� 	��� ���2
Rt

k
�1

þ Pt�1

k¼t�Nþ1
�wk þ Δwkk k2Q�1

k

þ �Xt
t�Nþ1 þ ΔXt

t�Nþ1 � X̂ t
t�Nþ1

�� ��2
Pt
t�Nþ1

�1

0BBBBBB@

1CCCCCCA
ð16Þ

For notational convenience we will from now on rename the state and measurement

function as f �Xt
k; �wk

� 	
¼ f tk, h �Xt

k; �wk

� 	
¼ htk, we obtain the first order Taylor expan-

sions of state and observation equations as:

Xt
kþ1 ¼ f X t

k;wk
� � ¼ f �Xt

k; �wk

� 	
þ ∂f

∂ �Xt
k

ΔXt
k þ ∂f

∂�wk
Δwk

¼ f tk þ AkΔXt
k þ GkΔwk ð17Þ

~Z
t
k ¼ h Xt

k;wk
� �þ vtk ¼ h �Xt

k; �wk

� 	
þ ∂h

∂ �Xt
k

ΔXt
k þ

∂h
∂�wk

Δwk þ vtk

¼ htk þ BkΔXt
k þ JkΔwk þ vtk ð18Þ

where Ak, Gk, Bk, Jk are the parameter matrices of state and observation equations,
respectively. In each recursion, the state propagation functions f tk and the measure-

ment function htk are linearized near the previous state estimation �Xt
k and the ideal

Gaussian process noise �wk. For convenience, in the remainder of this paper, the time
indices are redefined so that the measurement horizon always starts with index 1
and ends with index N without loss of generality. Time index 1 denotes the beginning
of the horizon at time t−N+ 1, and time indexN always denotes the current time t. The
MHE problem is here stated as follows:

min

ΔXN
j

n oN

j¼1
; Δwj
� �N�1

j¼1

PN�1

j¼1

~Z
N
j � hNj � BjΔXN

j � JjΔwj

��� ���2
RN

j
�1

þ ~Z
N
N �HN

N
�XN
N �HN

NΔX
N
N

��� ���2
RN
N
�1

þ PN�1

j¼1
�wj þ Δwj

�� ��2
Q�1

j
þ �XN

1 þ ΔXN
1 � X̂N

1

��� ���2
PN
1
�1

0BBBBBBBB@

1CCCCCCCCA
ð19Þ

Subject to

f tk þ AkΔXt
k þ GkΔwk � X̂ t

kþ1 � ΔXt
kþ1 ¼ 0 ð20Þ
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If we define the unknown variable vector as y ¼ ðΔXNT

1 ;ΔwT
1 ; � � � � � �ΔXN T

N�1 ;

ΔwT
N�1;ΔX

NT

N ÞT , the MHE problem described in Equation (19) can be transformed
into a Quadratic programming (QP) problem as:

min
y

1
2
yTGyþ gTy


 �
such that ΓTy ¼ Υ

ð21Þ

where G is a positive symmetric matrix, then Equation (21) is a strict convex QP and
has a unique global solution. According to the KKT condition presented in Sun and
Yuan (2006), a vector of Lagrange multipliers is introduced for solving the equality-
constrained QP problem as:

∇f y�ð Þ¼ λ �∇c y�ð Þ
ΓTy¼Υ

ð22Þ

wherey* is the globalminimizer,λ is theLagrangemultiplier, f yð Þ¼ 1
2
yTGyþgTy;cðyÞ=

Υ−ΓTy,∇means the gradient of functions.With the expressionof∇f(y*),∇c(y*), theKKT
system in Equation (22) can be written in the matrix form:

G �Γ
�ΓT 0

� 

y�

λ

� 

¼ � g

Υ

� 

ð23Þ

Let us rewrite thematrix equation asM ξ= r for short, and in order to get the sparse band
structure of M matrix, we reorder the unknown variable vector of KKT system as
follows:

yT; λT
� �T ¼ ΔτT1; � � � � � � ;ΔτTN�1;ΔX

N
N
T
; �λ

T
1 ; � � � � � � ; �λ

T
N�1

h iT
ξ ¼ ΔτT1 ;

�λ
T
1 ;Δτ

T
2 ;

�λ
T
2 ; � � � � � �ΔτTN�1;

�λ
T
N�1;ΔX

N
N
T

h iT ð24Þ

where Δτj ¼ ΔXN
j
T
;Δwj

T
� 	

; �λj ¼ λj � en, λ ¼ ðλ1; � � � � � � ; λN�1; λNÞT is the vector of

Lagrange multipliers, en= (1, ⋯⋯, 1)T with 2N dimensions. The KKT matrix and
residual vector are defined as:

M ¼

T1 �UT
1 0

�U1 0 E
0 ET T2 �UT

2

. .
.

TN�1 �UT
N�1 0

�UN�1 0 In×n
0 ITn×n TN

26666666664

37777777775
;

r ¼

rτ1
rλ1
rτ2
..
.

rτN�1

rλN�1

rτN

26666666664

37777777775
ð25Þ
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where rτj denotes the dual residual associated with Δτj , rλj denotes the primal residual
associated with �λj, and we define:

T1 ¼
2 BT

1 R
�1
1 B1 þ PN

1
�1

� 	
�2BT

1 J1

�2JT
1 B1 2 JT

1 R
�1
1 J1 þQ�1

1

� �
24 35;

rτ1 ¼
BT
1 R

�1
1

~Z
N
1 � hN1

� 	
� PN

1
�1 �XN

1 � X̂N
1

� 	
JT
1 R

�1
1

~Z
N
1 � f N1

� 	
�Q�1

1 �w1

24 35

Tj ¼
2BT

j R
�1
j Bj �2BT

j Jj

�2JT
j Bj 2 JT

j R
�1
j Jj þQ�1

j

� 	24 35; rτj ¼
BT
j R

�1
j

~Z
N
j � hNj

� 	
JT
j R

�1
j

~Z
N
j � hNj

� 	
�Q�1

j �wj

24 35
TN ¼ 2HT

NR
�1
N HN

� �
; rτN ¼ HT

NR
�1
N

~Z
N
N �HN �XN

N

� 	h i
Uk ¼ Ak Gk½ � ; E ¼ In× n 0n× n½ � ; rλj ¼ f Nj � �XN

j

h i
: ð26Þ

In order to reduce the computation time of solving the KKT system, with the further
exploitation of sparse band structure in the KKT matrix M, we decompose the KKT
matrix byLU factorization, and thenuse the direct forward-backwardRiccati recursion al-
gorithmto solve theKKTsystembasedon the structureofLandUmatrix.WedefineLand
U as:

L¼

Q
1 0 0

�U1 S1 0

0 ET Q
2 0

. .
. Q

N�1 0 0

�UN�1 SN�1 0

0 ITn×n
Q

N

26666666666664

37777777777775
;

U ¼

I2n×2n �Q�1
1 UT

1 0 0

0 In×n S�1
1 E 0

0 0 I2n×2n �Q�1
2 UT

2

. .
.

I2n×2n �Q�1
N�1U

T
N�1 0

In×n S�1
N�1In×n
In×n

26666666666664

37777777777775
ð27Þ

To solve theKKTsystem, thematricesL andU do not need to be constructed. Instead the
factorsΠj,Sjare computed anddirectly applied to the residual vector.The solutionvector ξ
of primal and dual variables can be obtained after a forward solve Lξ′= r followed by a
backward solveUξ= ξ′. The real-time computation algorithm is presented asAlgorithm1.
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Algorithm 1: Real-time iteration of MHE

0, Input: the previous state estimation over the entire estimation horizon �XN
j

n oN

j¼1
,

the parameter matrices of state and observation equationsAk,Gk, Bk, Jk. DEKF state
estimation at the beginning of the horizon X̂N

1 , and covariance Pt
t�Nþ1. Update the

arrive cost function as: arrive cost ¼ XN
1 � X̂N

1

� �T
PN�1
1 XN

1 � X̂N
1

� �
.

1, Forward Riccati recursion solves Lξ′ = r with the factors Πj,Sj in matrices L and
U at the beginning of the moving horizon:

Π1 ¼ T1 ¼
2 BT

1 R
�1
1 B1 þ PN

1
�1

� 	
�2BT

1 J1

�2JT
1 B1 2 JT

1 R
�1
1 J1 þQ�1

1

� �
24 35

S1 ¼ �U1Π
�1
1 UT

1

Δτ01 ¼ Π�1
1 rτ1

λ01 ¼ S�1
1 rλ1 þU1Δτ

0
1ð Þ

FOR j = 2 to N−1 DO
Update the matrices as Lj ¼

�S�1
j�1 0

0 2Q�1
j

" #
, Dj ¼ Bj 0

0 Jj

� 

Ck ¼ 2

R�1
j �In× n

�In× n R�1
j

" #
And then compute the factors Πj,Sj as:

Π j ¼ Lj þDT
j C

�1
j Dj

Π�1
j ¼ Lj þDT

j C
�1
j Dj

� 	�1
¼ L�1

j � L�1
j DT

j Cj þDjL�1
j DT

j

� 	
DjL�1

j

Sk ¼ �UkΠ
�1
k UT

k

Solve the equation Lξ′ = r as:

Δτ0j ¼ Π�1
j rτj � ETλ0 j�1
� �

λ0j ¼ S�1
j rλj þUjΔτ

0
j

� �
end;

the final time step: ΠN ¼ TN � S�1
N�1, ΔX

0N
N ¼ Π�1

N�1 rτN � λ0N�1
� �

;
2, Backward Riccati recursion solves Uξ= ξ′ with the factors Πij,Sj and Δτ0j ; λ0j:

The first time step: ΔXN
N ¼ ΔX 0N

N
FOR j =N to 1 DO

�λj ¼ λ0j � S�1
j EΔτ jþ1

Δτj ¼ Δτ0j þ Π�1
j UT

j
�λj

End;
3, obtain the state estimation of the horizon:XN

j ¼ ΔXN
j þ �XN

j , and the real process

noise is wj ¼ Δwj þ �wj, then involve this state estimation and noise in �XNþ1
jþ1 ¼

∂f
∂XN

j
XN

j þ ∂f
∂wj

wj ð1< j <NÞ to obtain the state estimation of the new

horizon �XNþ1
j

n oNþ1

j¼2
.
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4. COOPERATION LOCALISATION OF MUUVS. In the localisation system,
the master UUV is equipped with a high precision INS to obtain its own accurate lo-
cation, and employs a WHOI micro-modem to yield a One-Way Travel Time (OWTT)
range measurement between itself and the slave UUV as detailed in Freitag et al.
(2005). The location information of the master UUV and the relative range makes
up of the master UUV’s RLI. At each sample time, the RLI is transmitted to the
slave UUVs through an acoustic communication channel. Due to the complex under-
water environment, RLI communications delay is random and inevitable. At the same
time, the slave UUVs fuse the successfully received RLI and measurements by on
board sensors to improve its individual localisation accuracy.
In this paper, we define the navigation frame (x, y, z) as a local-level frame with

three axes pointing east, north and up respectively. As the depth of UUV can be accu-
rately measuredwith the on board depth sensors, so the 3D problem is converted into a
2D problem. If we assume that the RLI is transmitted from the master UUV at time
step k and received by the slave UUV at time step t, according to Section 2, we know
that t−k≤N. The nonlinear dynamics system of the slave UUVs can be described as
follows:

xtþ1 ¼ xt þ vt � δt � sinθt
ytþ1 ¼ yt þ vt � δt � cosθt
θtþ1 ¼ θt þ y � ωt � δt

ð28Þ

where xt+1, xt, yt+1, yt is the east and north components of the slave UUV location at
time t, t−1, respectively. θ, v, ω are the heading angle, linear and rotational velocity of
vehicle and δt is the period time of sampling. As shown in Equation (28), the location
of the slave UUVupdates with the output of the DRalgorithm at each sample time.We
define the state of system as Xt

k ¼ xt; yt; θtð ÞT and the input utk ¼ vt;ωtð ÞT, the state
propagation equation is:

Xtþ1
k ¼ f X t

k;wt
� � ¼ AtXt

k þ Gtwt ð29Þ

At ¼ ∂f
∂Xt

k
¼

1 0 vt � δt � cosθt
0 1 �vt � δt � sinθt
0 0 1

24 35;Gt ¼ ∂f
∂utk

¼
δt � sinθt 0
δt � cosθt 0

0 δt

24 35 ð30Þ

If we define the measurements of the system as:

~Z
t
k ¼ μtkZk ¼ μtk

xMk
yMk
rk

24 35þ vtk ¼ μtk

xMk
yMkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xMk � xk
� �2 þ yMk � yk

� �2q
264

375þ vtk ð31Þ

where xMk , yMk are the east and north components of the master UUV localisation in-

formation at time k. Note that the relative range rk in ~Z
t
k is a function with the location

of the slave UUV at time k, however Xt
k consists of the location at time t, rk is uncor-

related with the current state Xt
k. In order to fuse the delayed measurement ~Z

t
k; some

transformations are given to obtain the observation equation. Iterate using the
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equation Xtþ1
k ¼ AtXt

k þ Gtwt, the relationship between Xt
k and Xk

k can be
obtained as:

Xt
k ¼

Yt
j¼k

Aj

 !
Xk

k þ g wkþ1; � � � � � � ;wt�1ð Þ þ Gkwk ð32Þ

The observation equation is given as:

~Z
t
k ¼ h Xt

k;wk
� �þ vtk ¼ BkXt

k þ Jkwk þ vtk ð33Þ

where the parameter matrices are defined as:

Bk ¼ ∂h
∂Xk

k

∂Xk
k

∂Xt
k
;Jk ¼ ∂h

∂Xk
k

∂Xk
k

∂wk
;

∂z
∂Xk

k

¼
0 0 0
0 0 0

� xMk � xk
� �

rk

� yMk � yk
� �

rk
0

2664
3775; ∂Xk

k

∂Xt
k

¼
Yt
j¼k

Aj

 !�1

;
∂Xk

k

∂wk
¼ �

Yt
j¼k

Aj

 !�1

Gk

ð34Þ
Based on the special structure of matrix Aj, we can get the following equations:

Yt
j¼k

Aj ¼
I2×2

Pt
j¼k

Lj

0 1

24 35; Yt
j¼k

Aj

 !�1

¼ I2×2 �Pt
j¼k

Lj

0 1

24 35; Lj

¼ vj � δt � cosθj
�vj � δt � sinθj
� 


ð35Þ

The algorithm described above has been tested using the simulator of two UUVs, one
is the master UUVand the other is the slave UUV.We show in the scanning mission the
utility and the performance of our method. It is clear that the communication delay
between UUVs includes two parts such as Δ = ΔT + r/V, where ΔTmeans the inherent
process time of the WHOI micro-modem, r is the relative range,V is the transmission
velocity of acoustic information, r/V is the travel time of communication packets.
According to the practice experiments data in Bahr et al. (2009a), the constant part
ΔT = 6 s, and the dynamic part r/V≤ 2 s because UUVs are close to others in a scan-
ning mission. The sample time is 1 s, so the length of MHE estimation horizon is N=
8. In this simulation, the master UUV is equipped with a high precision INS, with
equivalent localisation errors σxM= 5 m, σyM = 5 m. The slave UUVs are equipped
with low precision sensors, with parameters σv= 0·2 m/s, σω= 100 /h and the relative
range of measurement error is σr= 0·5 m.
First of all, the UUVs obtain their initial position by GPS measurement and get the

global clock synchronization by PPS signal of GPS when they are on the surface. After
the initialization, theMHEmethod directly provides the estimated position of the slave
UUV underwater. In order to show the advantage of MHE, we compared the slave
UUV localisation errors of DR, EKF, DEKF and MHE method as shown in
Figures 3 to 6.
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The two UUVs start from the same location and move within the same area during
the cooperative scanning missions. The real trajectories followed by these UUVs are
shown in Figure 3. Firstly we examine the case where there is no RLI exchange
between UUVs. The slave UUV reckons its location independently by appropriately
integrating its linear and rotational velocity which was measured by the on board
low precision sensors. The trajectory by DR is shown in Figure 4, the localisation
error of DR grows continuously without bound in motion. The recorded error at the
end of this trial was 88 m over a travelled distance of approximately 3200 m.
Next the case of UUVs exchanging RLI and performing CL continuously is exam-

ined. The trajectory is shown in Figure 5 and the MHE algorithm can obtain a good

Figure 3. The real trajectories of the master and slave UUVs.

Figure 4. The real and DR trajectories of slave UUV.
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performance when dealing with the inevitable communication delay in the CL process;
the maximum localisation errors are less than 10 m for the slave UUV.
Finally, we compared the localisation errors of DR, normal EKF, DEKF intro-

duced in Section 2 and MHE introduced in Section 3, as shown in Figure 6. The lo-
cation estimation by normal EKF has a significant bias from the true value, and the
maximum error is almost 50 m, thus EKF is unsuitable for this scenario. Though
the negative effect of communication delay can be reduced using DEKF, the localis-
ation errors are unstable. This is caused by two factors: (1) the Kalman frame filters
estimate the present state based on one-step prediction, so the results are sensitive to

Figure 5. The real and MHE trajectories of slave UUV.

Figure 6. The localisation errors of slave UUV by DR, EKF, DEKF, MHE algorithm.
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random measurements delay, and (2) DEKF assumes system noises to be in a
Gaussian White distribution. For underwater acoustic channels, this is most certainly
not the case. The MHE algorithm in this paper computes the present state estimation
based on a batch of the latest arrived measurements, which can reduce the sensitivity of
the estimator to the random delayed RLI, and provide a high degree of robustness
in the presence of communication multiple packet delay. Additionally, MHE can esti-
mate the errors between real practical noise and ideal Gaussian white noise as
proposed earlier, which improves the localisation accuracy as shown in Figure 6.
In Figures 7 and 8, the east and north errors of the position estimated by the MHE

method are plotted and compared against the ±3σ values of the position estimates’ co-
variance. The dashed black lines represent the values associated with the covariance
computed by the MHE. In these plots, the ±3σ enveloping lines define a confidence
region that closely describes the magnitude of the localisation errors, the east recorded
error at the end of this trial is −0·5 m, the maximum expected error is almost 8·9 m,
while the north error at the end of this trial is 1 m, the maximum expected error
is almost −20 m for the same distance, so the substantial improvement in localisation
accuracy, achievedwhen the slave UUV is recording and processing RLI with MHE, is
illustrated.
In practice, navigation algorithms always demand strict real-time performance. As

mentioned in Zavala et al. (2008), the computation complexity of the forward
Riccati decomposition strategy for the KKT system scales as O(N(nx + nw)

3). In this
paper, with the further exploitation of sparse band structure in the KKT matrix M,
we use the direct forward-backward Riccati recursion strategy to solve the KKT
system, and the computation complexity of this algorithm is roughly O(N(nx + nw)

2).
In order to illustrate the real-time performance of MHE method, we run the C code
on a 2·13 GHz Core2-Duo processor computer with 4 GB of RAM memory, we
recorded the computation time of each time step and drew the scatter diagram as
shown in Figure 9. From those experiments, we can see that at each time step, the

Figure 7. The East localisation errors of CL by MHE algorithm.
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real computation time of the MHE algorithm is less than 1·7 ms, while the compu-
tation time of the DEKF and EKF algorithms are less than 0·6 ms. The computation
time for the MHE is approximately three times higher than that of the EKF. So the
MHE algorithm that was introduced in this paper can obtain a good real-time
performance and be used in reality.

Figure 9. The computation time in seconds for each time step with MHE, DEKF, EKF algorithm.

Figure 8. The North localisation errors of CL by MHE algorithm.
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5. CONCLUSION. In this paper, an MHE estimator is designed to deal with co-
operative localisation with communication delay, which optimally combines infor-
mation from both real-time sensors and delayed channels. In contrast to land-based
mobile robots, due to the complex underwater environment, time delay during acoustic
communication among the UUVs is inevitable. Therefore, taking into account the
characteristic of the communication delay during CL, we propose a new MHE algor-
ithm with DEKF-based arrive cost updating to solve the problem. In order to reduce
the complexity of MHE, a type of Riccati recursion algorithm based on LU factoriza-
tion is employed to solve the KKT system. Simulation results show that the algorithm
can perform effectively in a scenario with communication delay. Considering the ro-
bustness, the algorithm proposed will present a significant practicality in cooperative
localisation of MUUVs.
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