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1. Introduction

Throughout, R always denotes a semiprime ring. A right ideal ρ of R is said to be dense
if ρR is a dense submodule of RR. That is, given x, y ∈ R with y �= 0, there exists r ∈ R

such that xr ∈ ρ and yr �= 0. The maximal right ring of quotients (or the right Utumi
quotient ring used in [8]) of R can be characterized as a ring U satisfying the following
axioms.

(1) R is a subring of U .

(2) For each a ∈ U , there exists a dense right ideal ρ of R such that aρ ⊆ R.

(3) If a ∈ U and aρ = 0 for some dense right ideal ρ of R, then a = 0.

(4) For any dense right ideal ρ of R and for any right R-module homomorphism φ :
ρR → RR, there exists a ∈ U such that φ(x) = ax for all x ∈ ρ.

The maximal symmetric ring of quotients Us of R is then defined as

Us = {x ∈ U | λx ⊆ R for some dense left ideal λ of R}.

Then U and Us are still semiprime rings and have the same centre, denoted by C, which
is called the extended centroid of R. For these basic properties we refer to [2]. The lifting
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properties of generalized polynomial identities (or GPIs for brevity) have been studied
by Beidar [1] and by Chuang [3]. We mention the two main results here.

Theorem 1.1 (Beidar). Let R be a semiprime ring. Then R and U satisfy the same
GPIs with coefficients in U .

Theorem 1.2 (Chuang). Let R be a prime ring. Then R and each dense right ideal
of R satisfy the same GPIs with coefficients in U .

In [8], the first-named author gave another viewpoint on the two theorems above. We
characterize the GPIs satisfied by two right ideals ρ1 and ρ2 of a semiprime ring R by
checking left annihilators of ρ1 and ρ2. For a subset A of R we denote by �R(A) the left
annihilator of A in R, that is, �R(A) = {x ∈ R | xA = 0}. Similarly, we define the right
annihilator rR(A) of A in R. Applying [8, Main Theorem] and Theorem 1.1 we have the
following immediate consequence.

Theorem 1.3. Let R be a semiprime ring with two right ideals ρ1 and ρ2. Then
�R(ρ1) = �R(ρ2) if and only if ρ1 and ρ2 satisfy the same GPIs with coefficients in Us.

This theorem says that to test whether the two right ideals ρ1 and ρ2 satisfy the same
GPIs with coefficients in Us, it suffices to check only the simplest type aX with a ∈ Us. In
further study along this line, the first-named author [9] considered the lifting properties
of differential identities (DIs) on right ideals with zero left annihilators. The structure
theory of differential identities has been established by Kharchenko in [6, 7]. To state
these results precisely, let us recall some notation. An additive map d : A → U , where A

is a subring of U , is called a derivation if (xy)d = xdy + xyd for all x, y ∈ A. We denote
by Der(U) the set of all derivations of U . For d ∈ Der(U) and x ∈ U , we define xdβ = xdβ

for β ∈ C. It follows that Der(U) forms a right C-module. Let D be the C-submodule of
Der(U) defined by

D = {δ ∈ Der(U) | Iδ ⊆ R for some dense ideal I, depending on δ, of R}.

In fact, every derivation d : I → R, where I is a dense ideal of R, can be uniquely
extended to a derivation of U such that Ud

s ⊆ Us. Thus d ∈ D in this case. By a derivation
word we mean an additive map ∆ from U into itself assuming the form ∆ = δ1δ2 · · · δt,
where each δi ∈ D. If ∆ is empty, we define x∆ = x for x ∈ U . A differential polynomial
means a generalized polynomial with coefficients in U and with non-commuting variables
Xi which are acted on by derivation words. Thus every differential polynomial can be
written in the form φ(X∆j

i ), where φ(Zij) is a generalized polynomial over U in distinct
indeterminates Zij , and the ∆j are derivation words. A differential polynomial φ(X∆j

i )
is called a differential identity (DI) for a subset T of U if φ(X∆j

i ) assumes 0 for any
assignment of values from T to its indeterminates Xi. The first-named author proved the
following theorem (see [9, Theorem 6]).

Theorem 1.4. Let R be a semiprime ring and let ρ be a right ideal of R with zero
left annihilator. Then R and ρ satisfy the same DIs with coefficients in Us.
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The first-named author also raised a natural generalization of Theorem 1.4 (see [9,
p. 807]). Let ρ1 and ρ2 be two right ideals of a semiprime ring R with �R(ρ1) = �R(ρ2).
Do ρ1 and ρ2 satisfy the same DIs with coefficients in Us? The purpose of this paper is
to give an answer in the affirmative. Our main theorem is as follows.

Theorem 1.5. Let R be a semiprime ring with two right ideals ρ1 and ρ2. Then
�R(ρ1) = �R(ρ2) if and only if ρ1 and ρ2 satisfy the same DIs with coefficients in Us.

Theorem 1.5 implies that, to test whether the two right ideals ρ1 and ρ2 satisfy the
same DIs with coefficients in Us, it suffices to check only the simplest type aX with
a ∈ Us. Also, Theorem 1.4 is an immediate consequence of Theorem 1.5. Indeed, if ρ is a
right ideal of R with �R(ρ) = 0, then �R(ρ) = 0 = �R(R). Thus, by Theorem 1.5, R and
ρ satisfy the same DIs with coefficients in Us, as asserted.

2. The prime case

The aim of this section is to prove the prime case of Theorem 1.5. We denote by Q the
symmetric Martindale quotient ring of R, that is

Q = {x ∈ U | Ix + xI ⊆ R for some dense ideal I of R}.

We note that Us = Q if R is a prime ring with non-zero socle soc(R). A derivation d ∈ D

is called X-inner if d is an inner derivation induced by an element of Q. Otherwise, it is
called X-outer. We set Dint to be the C-submodule of Der(U) consisting of all X-inner
derivations. Then the following hold.

(1) For δ, d ∈ D we have that [δ, d] ∈ D and δp ∈ D if charR = p is a prime integer.

(2) Dint ⊆ D ⊆ Der(Q).

(3) If δ ∈ D is U -inner, then δ must be X-inner.

Recall the following basic identities due to Kharchenko [6, p. 155].

(B1) (XY )δ = XδY + XY δ for δ ∈ D.

(B2) (X + Y )δ = Xδ + Y δ for δ ∈ D.

(B3) Xδ = Xa − aX if δ is the inner derivation induced by a ∈ Q.

(B4) X [d,δ] = (Xd)δ − (Xδ)d for d, δ ∈ D.

(B5) Xδp

= (· · · ((Xδ)δ) · · · )δ (p-times) for δ ∈ D and charR = p > 0. If charR = 0,
then this identity assumes the form X = X.

(B6) Xdα+δβ = αXd + βXδ for d, δ ∈ D and α, β ∈ C.
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Let R always be a prime ring from now on. Then C is a field. We choose a fixed basis
M0 for Dint and augment it to a basis M for D over C. Fix a total order ‘>’ in the set
M such that µ0 > µ for µ0 ∈ M0 and µ ∈ M \ M0, and then extend this order to the
set of all derivation words by assuming that a longer word is greater than a shorter one
and that words of the same length are ordered lexicographically. A regular word means
a derivation word of the form ∆ = δs1

1 δs2
2 · · · δsm

m possessing the following properties:

(W1) δi ∈ M \ M0 for 1 � i � m;

(W2) δ1 < δ2 < · · · < δm; and

(W3) si < p for 1 � i � m, if charR = p > 0.

As pointed out in [6, 7], each differential identity can be transformed, via the basic
identities (B1)–(B6), into a form φ(X∆j

i ) such that

(R1) φ(Zij) is a generalized polynomial with coefficients in U in non-commuting inde-
terminates Zij ; and

(R2) the ∆j are distinct regular words.

A differential polynomial is called reduced if it assumes the form φ(X∆j

i ) satisfying (R1)
and (R2). Kharchenko actually proved the following powerful result [7, Theorem 2].

Theorem 2.1 (Kharchenko’s Theorem). Let R be a prime ring. If φ(X∆j

i ) is a
reduced DI (with coefficients in U) for a non-zero ideal of R, then φ(Zij) is a GPI for R.

Since every differential polynomial can be transformed into a reduced differential poly-
nomial via (B1)–(B6) and ρR ⊆ ρ ⊆ ρC ⊆ ρU , applying Theorems 2.1, 1.1 and 1.2 we
have the following corollary.

Corollary 2.2. Let R be a prime ring with extended centroid C and let ρ be a right
ideal of R. Then ρU , ρC and ρ satisfy the same DIs with coefficients in U .

Corollary 2.3. Let R be a prime ring with I a non-zero ideal of R. Then I and U

satisfy the same DIs with coefficients in U .

Let B be a set of C-independent elements of Us and let ∆1, ∆2, . . . , ∆t be distinct reg-
ular words. A B-monomial in X∆i means a monomial of the form u0Y1u1Y2 · · ·Ynun,
where ui ∈ B and Yi ∈ {X∆1 , X∆2 , . . . , X∆t} for each i. Here, each uiYi+1 is
called a submonomial appeared in this monomial. Thus for each non-zero φ ∈ Us ∗C

C{X∆1 , X∆2 , . . . , X∆t}, the free product of the C-algebra Us and the free C-algebra
C{X∆1 , X∆2 , . . . , X∆t}, there exists a B such that φ is a C-linear combination of
B-monomials in X∆i . Also, B is said to be C-independent modulo �Us(ρ), where ρ

is a right ideal of R, if B satisfies the following condition: if β1, . . . , β� ∈ C satisfy
(β1b1 + · · · + β�b�)ρ = 0, where these bi are distinct elements in B, then βi = 0 for all i.
We begin our proof with the following result [8, Lemma 3].
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Lemma 2.4. Let ρ be a non-zero right ideal of R. Suppose that a1, a2, . . . , at ∈ Us are
C-independent modulo �Us(ρ). Then there exists an element u ∈ ρ such that a1u, . . . , atu

are C-independent unless R is a PI-ring.

We write Us = �Us(ρ) ⊕ Wρ as C-spaces and fix a basis Bρ for Wρ. Thus Bρ is C-
independent modulo �Us(ρ).

Lemma 2.5. Let ρ be a right ideal of R and let ∆ be a non-empty regular word.
If a ∈ �Us(ρ), then there exist finitely many regular words Gn < Gn−1 < · · · < G1 < ∆

such that

ax∆ =
n∑

i=1

( mi∑
j=1

βijbij

)
xGi (2.1)

for all x ∈ rR(�R(ρ)), where, for each i, the set {bij | j = 1, . . . , mi} is C-independent in
Bρ, and βij ∈ C.

Proof. Since a ∈ �Us(ρ), we have aρ = 0 and hence ax = 0 for all x ∈ rR(�R(ρ)). Let
x ∈ rR(�R(ρ)). Then

0 = (ax)∆ = ax∆ +
∑
i>1

aEixFi ,

where these (Ei, Fi) run over all pairs of subwords of ∆ with E1 = ∅, F1 = ∆. Note that
aEi ∈ Us since Us

Ei ⊆ Us. By the fact that Us = �Us(ρ) ⊕ BρC, we can write

ax∆ =
∑
i>1

∑
j

µijcijx
Fi +

∑
i>1

cix
Fi ,

where cij ∈ Bρ, ci ∈ �Us(ρ) and µij ∈ C. Since ci ∈ �Us(ρ) and Fi < ∆ for i > 1, we can
repeat the same argument on cix

Fi and get our conclusion by the inductive hypothesis.
This proves the lemma. �

We are now in a position to prove the following key lemma, which reduces Theorem 1.5
to the prime GPI case.

Lemma 2.6. Let φ(X∆i) be a reduced DI for a right ideal ρ of R. Then either R is
a GPI-ring or φ(X∆i) is a reduced DI for rR(�R(ρ)).

Proof. Choose B′
ρ to be a C-basis for �Us(ρ). Since Us = �Us(ρ) ⊕ BρC = B′

ρC ⊕ BρC,
we can write

φ(X∆i) = φ0(X∆i) + φ1(X∆i),

where φ0(X∆i) is a C-linear combination of Bρ-monomials in X∆i and where each
monomial of φ1(X∆i) has coefficients in Bρ ∪ B′

ρ and has at least a coefficient in B′
ρ.

Applying (2.1) to all possible submonomials aX∆i , where a ∈ �Us(ρ), of φ1(X∆i), we can
transform φ(X∆i) to a differential polynomial ψ(XΓj ), where ψ(XΓj ) is a C-linear combi-
nation of Bρ-monomials in XΓj or Bρ-monomials in XΓj with their last right coefficients
in B′

ρ, where these Γj are distinct regular words. That is,

ψ(XΓj ) = ψ0(XΓj ) + ψ1(XΓj ),
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where ψ0(XΓj ) is a C-linear combination of Bρ-monomials in XΓj and each monomial
of ψ1(XΓj ) has the form u0Y1u1Y2 · · ·Ynun, where ui ∈ Bρ for each 1 � i � n − 1 and
un ∈ B′

ρ and Yi ∈ {XΓ1 , XΓ2 , . . . } for each i. We may assume that Γj �= ∅ for some j.
Otherwise, we are done by Theorem 1.3.

Case 1. Suppose that ψ(Zj) is zero as a generalized polynomial in indeterminates Zj .
Then, in particular, ψ(xΓj ) = 0 for all x ∈ rR(�R(ρ)). Applying (2.1) to reverse the pro-
cess from ψ(XΓj ) to φ(X∆i), we conclude that φ(X∆i) is a DI for rR(�R(ρ)), as asserted.

Case 2. Suppose that ψ(Zj) is not zero as a generalized polynomial in indeter-
minates Zj . We claim that R is a prime GPI-ring. Suppose not. In particular, R is
not a PI-ring. We list all coefficients appearing in ψ(Zj) as b1, b2, . . . , bm ∈ Bρ and
b′
1, b

′
2, . . . , b

′
m′ ∈ B′

ρ. Then these elements bs are C-independent modulo �Us(ρ). By
Lemma 2.4, there exists an element u ∈ ρ such that b1u, . . . , bmu are C-independent.
Since ψ(XΓj ) is a DI for ρ, ψ((uX)Γj ) is a DI for R. Note that

bs(uX)Γj = (bsu)XΓj +
∑

l

bsu
AjlXBjl , (2.2)

where the (Ajl, Bjl) are pairs of subwords of Γj with Bjl < Γj . Thus, by (2.2), we can
write

ψ((uX)Γj ) = g(XΓj ) + h(XΓj , XDk), (2.3)

where g(XΓj ) is the differential polynomial obtained from ψ(XΓj ) by replacing all coef-
ficients bs by bsu and where each Dk is a subword of some Γj and does not appear
in {Γ1, Γ2, . . . }. Applying Kharchenko’s Theorem to (2.3), g(Xj) + h(Xj , Zk) is a GPI
for R. This GPI is indeed non-trivial since the largest monomial (ordered by considering
these Γj appearing in this monomial plus their weights and the C-independence of these
bsu and b′

s′) of g(XΓj ) cannot be cancelled by the terms in h(XΓj , XDk), a contradiction.
Thus R is a prime GPI-ring, proving the lemma. �

With Lemma 2.6 in hand we turn our attention to the prime GPI case. The key to
this case is to study the continuity of derivations in certain endomorphism rings under
the finite topology. We need to recall some notation from [5, p. 27]. Let Γ be a ring and
let Γ M1 and Γ M2 be left Γ -modules. For S ⊆ HomΓ (M1, M2), we let

S⊥ = {m ∈ M1 | ms = 0 ∀s ∈ S},

and for N ⊆ M1, we let

N⊥ = {g ∈ HomΓ (M1, M2) | ng = 0 ∀n ∈ N}.

First we quote the following result [5, Theorem 1].

Theorem 2.7. Let M1 and M2 be left vector spaces over a division ring Γ , let A be a
subring of End(Γ M2) and let (B,+, 0) be an additive subgroup of HomΓ (M1, M2) such
that BA ⊆ B. Suppose that (i) (M2)A is irreducible and (ii) Γ = End((M2)A). Then
(B⊥)⊥ = cl(B), the closure of B in the finite topology of HomΓ (M1, M2).
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We now apply the theorem to our case. Let R be a prime ring with non-zero
socle soc(R). We choose a minimal idempotent e ∈ R and let D = eRe and V = eR.
By the Density Theorem [4, Theorem 2.1.2], and considering right multiplication, we
can regard R as a dense subring in End(DV ) under its finite topology TR. For a finite-
dimensional D-subspace W of DV , we define W⊥ = {f ∈ End(DV ) | wf = 0 ∀w ∈ W}.
We recall that TR has these W⊥ + g, where g ∈ End(DV ), as its subbasis. Since soc(R) =
ReR, eRq ⊆ eR for q ∈ Q. Thus V forms a right Q-module and D = End(VQ). So Q is
also embedded in End(DV ). We will make these assumptions in Theorems 2.8 and 2.9

Theorem 2.8. Let ρ be a right ideal of R. Then cl(ρ) ∩ R = rR(�R(ρ)).

Proof. Since ρR ⊆ ρ and D = End(VR), by Theorem 2.7 we have (ρ⊥)⊥ = cl(ρ) in
End(DV ). We first notice that

ρ⊥ = {er ∈ V | erρ = 0} = eR ∩ �R(ρ).

Also, y ∈ cl(ρ) ∩ R = (ρ⊥)⊥ ∩ R if and only if (eR ∩ �R(ρ))y = 0. Thus it suffices to
prove that if y ∈ R, then (eR ∩ �R(ρ))y = 0 if and only if y ∈ rR(�R(ρ)). The ‘if’ part is
trivial. Let y ∈ R be such that (eR∩ �R(ρ))y = 0. Then, for u ∈ �R(ρ), eRu ∈ eR∩ �R(ρ)
and so eRuy = 0, implying that uy = 0 by the primeness of R. So �R(ρ)y = 0 and hence
y ∈ rR(�R(ρ)), proving the theorem. �

Theorem 2.9. Suppose that d : A → Q is a derivation, where A is a subring of R

containing the socle of R. Then d is a continuous map.

Proof. Let DL be a finite-dimensional D-subspace of DV . It suffices to find a finite-
dimensional D-subspace W of DV such that (W⊥ ∩ A)d ⊆ L⊥. We write L = Du1 ⊕
· · · ⊕ Dus, where ui ∈ V , and let W = L +

∑s
i=1 Deud

i .
Let a ∈ W⊥ ∩ A, then uia = 0 = eud

i a. Since ui ∈ eR ⊆ soc(R) ⊆ A, we have
(uia)d = 0 and so ud

i a + uia
d = 0. Thus uia

d = −ud
i a and so uia

d = euia
d = −eud

i a = 0.
This implies that ad ∈ L⊥. The theorem is thus proved. �

As an immediate consequence of Theorem 2.9, we have the following corollary.

Corollary 2.10. Suppose that d : I → Q is a derivation, where I is an ideal of R.
Then d is a continuous map.

We are now ready to prove the main result in this section.

Theorem 2.11. Let R be a prime ring with two right ideals ρ1 and ρ2. Then �R(ρ1) =
�R(ρ2) if and only if ρ1 and ρ2 satisfy the same DIs with coefficients in Us.

Proof. The ‘if’ part is trivial. We prove the ‘only if’ part. Suppose that φ(X∆j

i ) is
a DI for a right ideal ρ1 of R. Since �R(ρ1) = �R(ρ2), we have rR(�R(ρ1)) = rR(�R(ρ2))
and ρ2 ⊆ rR(�R(ρ2)). Thus it suffices to prove that φ(X∆j

i ) is a DI for rR(�R(ρ1)). For
simplicity of notation, we set ρ = ρ1. Since every DI can be transformed into a reduced
DI via (B1)–(B6), we may assume that φ(X∆j

i ) is a reduced DI for ρ. Moreover, by
assigning X2, X3, . . . to fixed elements in ρ we may assume that φ only involves one
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indeterminate X with coefficients in Us. Write φ = φ(X∆j ), where the ∆1, . . . , ∆t are all
distinct regular words occurring in φ.

In view of Lemma 2.6, either R is a GPI-ring or φ(X∆j ) is a reduced DI for rR(�R(ρ)).
Thus it suffices to consider the case in which R is a prime GPI-ring. By Martindale’s
Theorem [10, Theorem 3], RC is a primitive ring with a minimal right ideal eRC, where
e is a minimal idempotent in RC. We let D = eRCe and V = eRC, a left vector space
over the division ring D. Denote by H the socle of RC. By the Density Theorem [4,
Theorem 2.1.2], RC is canonically embedded in End(DV ) as a dense subring. Let d ∈ D.
Then, by definition, there exists a non-zero ideal I of R such that Id ⊆ R. It is clear that
H ⊆ IC and H = H2. Thus we always have Hd ⊆ H. Also, Us is canonically embedded
in End(DV ). Theorem 2.9 says that d : H → H is a continuous map. This means that
the map x ∈ H �→ φ(x∆j ) ∈ End(DV ) defines a continuous map from H into End(DV ).
Since ρH ⊆ ρRC ⊆ ρC, applying Corollary 2.2 we have φ(x∆j ) = 0 for all x ∈ ρH. By the
continuity of the map x ∈ H �→ φ(x∆j ) ∈ End(DV ) and Theorem 2.8, we have φ(x∆j ) = 0
for all x ∈ rH(�H(ρH)).

Let a ∈ rR(�R(ρ)). Then �R(ρ)a = 0 and so �RC(ρH)a = 0. In particular, �H(ρH)a = 0.
Thus aH ⊆ rH(�H(ρH)). Hence, rR(�R(ρ))H ⊆ rH(�H(ρH)) follows. Thus φ(x∆j ) = 0
for all x ∈ rR(�R(ρ))H. Since H and U satisfy the same DIs by Corollary 2.3, so do
rR(�R(ρ))H and rR(�R(ρ))U . In particular, φ(x∆j ) = 0 for all x ∈ rR(�R(ρ)), proving
the theorem. �

3. Proof of the Main Theorem

Let R be a semiprime ring. Recall that a subset T ⊆ U is called orthogonally complete
if 0 ∈ T and, given any set of orthogonal idempotents {eω | ω ∈ Ω} ⊆ C and any subset
{xω | ω ∈ Ω} ⊆ T , there exists x ∈ T such that eωx = eωxω for all ω ∈ Ω. For any subset
K ⊆ U , denote by K̂ the orthogonal completion of K in U which is defined as the
intersection of all orthogonally complete subsets of U containing K. Note that K̂ itself
is an orthogonally complete subset of U . We now come to the proof of Theorem 1.5.
Since the method of extending Theorem 2.11 to the semiprime case is almost routine
by applying the theory of orthogonal completions for semiprime rings [2, Chapter 3], we
only sketch its proof.

Proof of Theorem 1.5. The ‘if’ part is trivial. We prove the ‘only if’ part. Suppose
that �R(ρ1) = �R(ρ2), where ρ1 and ρ2 are right ideals of R. Suppose that φ(X∆j

i ) (with
coefficients in Us) is a DI for ρ1. Then, applying the same argument as that of [8,
Lemma 6(i)] (with DIs instead of GPIs), we see that φ(X∆j

i ) is still a DI for ρ̂1. Let P

be a maximal ideal of C. Then the following hold:

(i) PU is a prime ideal of U ;

(ii) (Us + PU)/PU is contained in the maximal symmetric ring of quotients of the
prime ring (R̂ + PU)/PU ;

(iii) �(R̂+PU)/PU ((ρ̂1 + PU)/PU) = �(R̂+PU)/PU ((ρ̂2 + PU)/PU); and
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(iv) each δ ∈ D naturally induces a derivation δ̄ of U/PU such that δ(Ī) ⊆ (R̂ +
PU)/PU for some non-zero ideal Ī of (R̂ + PU)/PU .

We remark that (i) is referred to in [2, Theorem 3.2.7]. For (ii), see [2, Theorem 3.2.15],
and fact (iii) can be derived from the fact that �R(ρ1) = �R(ρ2), Finally, fact (iv) is clear.
Using these facts we can reduce the theorem to the prime case and hence φ(x∆j

i ) ∈ PU for
all xi ∈ ρ̂2. Applying the fact that

⋂
P PU = 0, where the P run over all maximal ideals

of C, we see that φ(X∆j

i ) is a DI for ρ̂2 and, therefore, for ρ2. This proves Theorem 1.5. �

References

1. K. I. Beidar, Rings with generalized identities, III, Vestnik Moskov. Univ. Ser. I 33
(1978), 66–73.

2. K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized
identities (Marcel Dekker, 1996).

3. C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Am. Math. Soc.
103 (1988), 723–728.

4. I. N. Herstein, Noncommutative rings, Carus Mathematics Monograph, vol. 15 (The
Mathematical Association of America, Providence, RI, 1968).

5. N. Jacobson, Structure of rings, American Mathematical Society Colloquium Publica-
tions, vol. 37, 2nd edn (American Mathematical Society, Providence, RI, 1964).

6. V. K. Kharchenko, Differential identities of prime rings, Alg. Logika 17 (1978), 220–238
(in Russian) (English transl.: Alg. Logic 17 (1978), 154–168).

7. V. K. Kharchenko, Differential identities of semiprime rings, Alg. Logika 18 (1979),
86–119 (in Russian) (English transl.: Alg. Logic 18 (1979), 58–80).

8. T.-K. Lee, Left annihilators characterized by GPIs, Trans. Am. Math. Soc. 347 (1995),
3159–3165.

9. T.-K. Lee, Differential identities of Lie ideals or large right ideals in prime rings, Commun.
Alg. 27 (1999), 793–810.

10. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Alg.
12 (1969), 576–584.

https://doi.org/10.1017/S0013091503000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000087

