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Abstract

We introduce a new mean and compare it to the standard arithmetic, geometric and harmonic means. In
fact we identify a generic way of constructing means from existing ones.
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1. Introduction

The notions of arithmetic, geometric and harmonic means (of positive real numbers)
can be traced back to Pythagoras himself. Some of the greatest mathematicians in
history worked on establishing an order for these means. Augustin Louis Cauchy
(1789–1857) established the inequality of arithmetic and geometric means [2, p. 457].
Nowadays, this inequality is simply derived from an application of Jensen’s inequality.
Many variations of the notion of a mean have since been introduced. The quadratic
mean and more generally power means,

M p(x1, . . . , xn) = p

√√√√1
n

n∑
i=1

x p
i ,

are examples of such variations. Indeed, M−1, M0
= limp→0 M p, M1 and M2 are

respectively the harmonic, geometric, arithmetic and quadratic means. Using Jensen’s
inequality, we immediately get that, for p < q ,

Mq(x1, . . . , xn)
q

=
1
n

n∑
i=1

xq
i =

1
n

n∑
i=1

(x p
i )q/p

≥

(
1
n

n∑
i=1

x p
i

)q/p

= M p(x1, . . . , xn)
q ,
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thus establishing a general inequality for means,

M p(x1, . . . , xn) ≤ Mq(x1, . . . , xn).

The power mean is a continuous and symmetric function of (x1, . . . , xn). Further,
for any p ∈ R and λ > 0, M p(λx1, . . . , λxn) = λM p(x1, . . . , xn) and M p(x, . . . , x)

= x .
A further generalization is obtained by replacing the power function by an arbitrary

continuous strictly monotone function, f ,

M f (x1, . . . , xn) = f −1
(

1
n

n∑
i=1

f (xi )

)
.

Such a mean may not satisfy the homogeneity property, M f (λx1, . . . , λxn)

= λM f (x1, . . . , xn). However, it retains the fact that it is a continuous and symmetric
function of (x1, . . . , xn) with the property that M f (x, . . . , x) = x . It is these three
basic characteristics that Aumann retains in his definition of a mean (see [1]).

DEFINITION 1. A mean is a function M(x1, . . . , xn) (or rather a family of functions
indexed by n ≥ 1) that is continuous, symmetrical—that is, for any permutation τ ,
M(xτ(1), . . . , xτ(n)) = M(x1, . . . , xn)—and satisfies the property M(x, . . . , x) = x .

REMARK 2. As we do not attempt to relate the means of sequences of different sizes,
our definition does not impose any ‘projective’ property. It does not exclude the
possibility of a ‘mixture of means’. For example, the family of functions made up
of arithmetic means, for n odd, and geometric means, for n even, still qualifies as a
mean.

In this paper we introduce a generic way of constructing new means from existing
ones. These means are genuinely different in the sense that they do not fall in the
general scheme of generalized means or even generalized weighted means (where the
equal weighting 1/n is replaced by arbitrary weights). The mapping used to construct
these means is then studied and shown to be one-to-one. We also look at the particular
case of the harmonic h̄-mean and obtain a comparison result with the arithmetic mean.

While the arithmetic mean is defined for any sequence of real numbers, the
geometric mean, G(x1, . . . , xn) = n

√
x1 · · · xn = Mln(x1, . . . , xn), requires all values

to be strictly positive. The same restriction removes many unnecessary complications
(dealing with 1/0 and 1/∞) in the case of the harmonic mean (see (3)). To avoid
having to constantly change the space on which the means are defined, we shall only
consider means of strictly positive real numbers.

2. The h̄-mean

First we introduce the following notation. For a given positive integer n, N denotes
the set {1, . . . , n} and K the set of all nonempty subsets of N . For a given sequence
{x1, . . . , xn} and K ∈ K, we denote the subsequence {xk, k ∈ K }, x[K ]. Finally h̄(n)

denotes the harmonic number of n, h̄(n) =
∑n

k=1(1/k).
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DEFINITION 3. Let M be a mean. We call h̄-mean of M the function

HM (x1, . . . , xn) =
1

h̄(n)

∑
K∈K

(−1)|K |+1

|K |
M(x[K ]),

where |K | is the cardinal of K .

PROPOSITION 4. Let M be a mean. Its h̄-mean is a mean; that is HM is continuous,
symmetrical and satisfies the property HM (x, . . . , x) = x. Furthermore, if M is
homogeneous, M(λx1, . . . , λxn) = λM(x1, . . . , xn), then so isHM .

PROOF. The continuity, symmetry and homogeneity are obvious. Now, since, for an
identical sequence, x1 = · · · = xn = x , M(x[K ]) = x , for any K ∈ K,

HM (x, . . . , x) =
1

h̄(n)

∑
K∈K

(−1)|K |+1

|K |
x = x

1
h̄(n)

n∑
k=1

(−1)k+1

k

(
n

k

)
= x .

The last equality follows from a well-known result and is given here for convenience
only:

h̄(n) =

∫ 1

0

1 − xn

1 − x
dx

=

∫ 1

0

1 − (1 − x)n

x
dx =

n∑
k=1

(
n

k

)
(−1)k+1

∫ 1

0
xk−1 dx

=

n∑
k=1

(−1)k+1

k

(
n

k

)
. 2

PROPOSITION 5. The arithmetic h̄-mean is simply the arithmetic mean. That is, if A
is the arithmetic mean, A(x1, . . . , xn) = (1/n)

∑n
k=1 xk , thenHA = A.

PROOF. Observe that∑
K∈K,|K |=k

A(x[K ]) =
1
k

(
n − 1
k − 1

) n∑
i=1

xi =

(
n

k

)
A(x1, . . . , xn).

The result immediately follows:

HA(x, . . . , x) =
1

h̄(n)

∑
K∈K

(−1)|K |+1

|K |
A(x[K ])

= A(x1, . . . , xn)
1

h̄(n)

n∑
k=1

(−1)k+1

k

(
n

k

)
= A(x1, . . . , xn). 2
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PROPOSITION 6. If HM1 =HM2 , then M1 = M2; that is, the mapping M →HM is
one-to-one on the space of means. Furthermore, M ′

=HM if and only if

M(x1, . . . , xn) =

∑
K∈K

(−1)|K |+1 pn,|K |M
′(x[K ]), (1)

where pn,l is obtained recursively as follows:

p1,1 = 1, pn,n = nh̄(n) and, for l < n, pn,l = (−1)nn
n−1∑
k=l

(−1)k

k
pk,l

(
n − l

n − k

)
.

PROOF. We proceed by induction on the size of the sequence, n. Since M1(x)

=HM1(x) =HM2(x) = M2(x), we see that M1 and M2 coincide on single value
sequences. Assume that M1 and M2 coincide for all sequences of size less than or
equal to n. Then the requirement that

HM1(x1, . . . , xn, y) =HM2(x1, . . . , xn, y)

becomes

1
h̄(n + 1)

(
y +

∑
K∈K

(−1)|K |+1

|K |

(
M1(x[K ]) −

|K |

|K | + 1
M1(x[K ], y)

))
=

1
h̄(n + 1)

(
y +

∑
K∈K

(−1)|K |+1

|K |

(
M2(x[K ]) −

|K |

|K | + 1
M2(x[K ], y)

))
.

The first result is obtained by observing that, under the induction assumption, for
any subset K , M1(x[K ]) = M2(x[K ]) and, for any proper subset K , M1(x[K ], y)

= M2(x[K ], y). Indeed, after simplification, one ends up with

M1(x1, . . . , xn, y) = M2(x1, . . . , xn, y).

To prove the second statement, we show that applying the mappingH to the right-hand
side of (1), we recover M ′. To begin with, let M ′′(x1, . . . , xn) denote the right-hand
side of (1). Then

HM ′′(x1, . . . , xn) =
1

h̄(n)

∑
K∈K

(−1)|K |+1

|K |

∑
L⊂K ,L 6=∅

(−1)|L|+1 p|K |,|L|M
′(x[L])

=
1

h̄(n)

∑
L∈K

(−1)|L|+1
( ∑

L⊂K⊂N

(−1)|K |+1

|K |
p|K |,|L|

)
M ′(x[L])

=
1

h̄(n)

∑
L∈K

(−1)|L|+1
( n∑

k=|L|

(−1)k+1

k
pk,|L|

(
n − |L|

n − k

))
M ′(x[L]).

(2)

Next, let qn,l =
∑n

k=l ((−1)k+1/k)pk,l
(n−l

n−k

)
. We show that qn,l = 0 for l < n and

qn,n = (−1)n+1h̄(n). Again, we proceed by induction on n. First, q1,1 = p1,1 = 1.
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Then, assuming that the property is true up to n − 1, for l ≤ n − 1,

qn,l =

n∑
k=l

(−1)k+1

k
pk,l

(
n − l

n − k

)

=
(−1)n+1

n
pn,l +

n−1∑
k=l

(−1)k+1

k
pk,l

(
n − l

n − k

)

=
(−1)n+1

n
(−1)nn

n−1∑
k=l

(−1)k

k
pk,l

(
n − l

n − k

)
+

n−1∑
k=l

(−1)k+1

k
pk,l

(
n − l

n − k

)
= 0.

Finally,

qn,n =
(−1)n+1

n
pn,n =

(−1)n+1

n
nh̄(n) = (−1)n+1h̄(n).

It follows that (2) reduces to

HM ′′(x1, . . . , xn) =
1

h̄(n)
(−1)n+1qn,n M ′(x[N ])

=
1

h̄(n)
(−1)n+1(−1)n+1h̄(n)M ′(x[N ])

= M ′(x1, . . . , xn). 2

3. The harmonic h̄-mean

In this section, we look at the specific case ofHH where H is the harmonic mean

H(x1, . . . , xn) =
n∑n

k=1(1/xk)
. (3)

For n = 2,

HH (x1, x2) =
2
3

(
x1 + x2 −

x1x2

x1 + x2

)
=

2(x2
1 + x1x2 + x2

2)

3(x1 + x2)
.

This mean is shown in [4] to exceed the arithmetic, geometric and harmonic means.
In fact the author unifies all of these means, and many others, under one family

Fα(x1, x2) =

∫ x2
x1

tα dt∫ x2
x1

tα−1 dt
,

observes that F−2 is the harmonic mean, F−1/2 is the geometric mean, F1/2
is the Heron mean (x1 +

√
x1x2 + x2)/3, F1 is the arithmetic mean, F2(x1, x2)

=HH (x1, x2), and establishes that Fα increases with α.
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DEFINITION 7. The harmonic h̄-mean is the function

HH (x1, . . . , xn) =
1

h̄(n)

∑
K∈K

(−1)|K |+1

|K |
H(x[K ]) =

1
h̄(n)

∑
K∈K

(−1)|K |+1∑
k∈K (1/xk)

.

THEOREM 8. The harmonic h̄-mean is greater than or equal to the arithmetic mean
(and therefore greater than or equal to any of the geometric or harmonic means); that
is, for any sequence {x1, . . . , xn},

H(x1, . . . , xn) ≤ G(x1, . . . , xn) ≤ A(x1, . . . , xn) ≤HH (x1, . . . , xn).

The proof of this result immediately follows from an application of
[3, Proposition 5] to the case of exponential random variables. For completeness,
we include all steps of the proof.

PROOF. The double inequality H ≤ G ≤ A is well known. We only prove the last
inequality.

Because the arithmetic mean is greater than the geometric mean, for any sequence
{u1, . . . , un} ∈ [0, 1],

1 − u1u2 · · · un ≥
1
n

n∑
i=1

(1 − un
i ).

This implies that, for any sequence {F1, . . . , Fn} of distribution functions on [0, +∞),

1
n

n∑
i=1

∫
∞

0
[1 − Fi (u)n

] du ≤

∫
∞

0
[1 − F1(u)F2(u) · · · Fn(u)] du. (4)

In particular, let Fi (u) = 1 − e−u/xi , u ≥ 0 (exponential distribution with mean xi ).
Then∫

∞

0
[1 − Fn

i (u)] du =

∫
∞

0
[1 − (1 − e−u/xi )n

] du = xi

∫ 1

0

1 − vn

1 − v
dv = xi h̄(n)

and
1
n

n∑
i=1

∫
∞

0
[1 − Fi (u)n

] du = h̄(n)A(x1, . . . , xn).

Furthermore, the left-hand side of (4) yields∫
∞

0
[1 − F1(u)F2(u) · · · Fn(u)] du

=

∫
∞

0

[
1 −

n∏
i=1

(1 − e−u/xi )

]
du

=

∫
∞

0

[
1 −

(
1 +

∑
K∈K

(−1)|K |e−
∑

k∈K u/xk

)]
du

= −

∑
K∈K

(−1)|K |

∫
∞

0
e−

∑
k∈K u/xk du = −

∑
K∈K

(−1)|K |
1∑

k∈K (1/xk)
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=

∑
K∈K

(−1)|K |+1

|K |

|K |∑
k∈K (1/xk)

=

∑
K∈K

(−1)|K |+1

|K |
H(x[K ])

= h̄(n)HH (x1, . . . , xn).

The result immediately follows by application of (4). 2

4. A monotonicity conjecture

What can be said about other h̄-means? In particular, how do the arithmetic,
geometric and harmonic h̄-means compare? And how do they compare to the
arithmetic, geometric and harmonic means? Unfortunately, Theorem 8 aside, we do
not have complete answers to these questions. Tedious calculations can provide a hint
in the case of sequences of two and three values where

H ≤ G ≤ A =HA ≤HG ≤HH .

CONJECTURE 9. If M ≤ M ′ thenHM ≥HM ′ .

As usual, by M ≤ M ′ we mean, for any sequence {x1, . . . , xn}, M(x1, . . . , xn)

≤ M ′(x1, . . . , xn).
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