
P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

The Nutrition Society Summer Meeting 2014 was held at the University of Glasgow on 14–17 July 2014

Conference on ‘Carbohydrates in health: friends or foes’
Postgraduate symposium

Potential anti-obesogenic properties of non-digestible carbohydrates:
specific focus on resistant dextrin

Mark R. Hobden1*, Laetitia Guérin-Deremaux2, Ian Rowland1, Glenn R. Gibson1 and
Orla B. Kennedy1

1The University of Reading, Reading RG6 6AP, Berkshire, UK
2Roquette, Lestrem, France

Alterations in the composition and metabolic activity of the gut microbiota appear to con-
tribute to the development of obesity and associated metabolic diseases. However, the extent
of this relationship remains unknown. Modulating the gut microbiota with non-digestible
carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic path-
ways including changes to appetite regulation, glucose and lipid metabolism and inflamma-
tion. The NDC vary in physicochemical structure and this may govern their physical
properties and fermentation by specific gut bacterial populations. Much research in this
area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligo-
saccharides); however, there is increasing interest in the metabolic effects of other NDC,
such as resistant dextrin. Data presented in this review provide evidence from mechanistic
and intervention studies that certain fermentable NDC, including resistant dextrin, are
able to modulate the gut microbiota and may alter metabolic process associated with obes-
ity, including appetite regulation, energy and lipid metabolism and inflammation. To
confirm these effects and elucidate the responsible mechanisms, further well-controlled
human intervention studies are required to investigate the impact of NDC on the compo-
sition and function of the gut microbiota and at the same time determine concomitant effects
on host metabolism and physiology.

Obesity: Prebiotics: Resistant dextrin: Metabolism: Non-digestible carbohydrates

Obesity

Worldwide, the prevalence of overweight (BMI 25–29·9
kg/m2) and obese (BMI >30·0 kg/m2) individuals has
increased from 857 million in 1980 to 2·1 billion in
2013(1). In the UK population, it is estimated that 26 %
of boys, 25 % of girls, 67 % of men and 57 % of
women are currently overweight or obese(1). Charac-
terised by the accumulation of excess body fat, over-
weight and obesity are associated with a chronic
low-grade systemic inflammation and other adverse
metabolic effects. Consequently, the risk of pathologies
including CVD, type 2 diabetes mellitus, chronic obstruc-
tive pulmonary disease, colon cancer, breast cancer,

osteoarthritis, liver and gall bladder disease and repro-
ductive dysfunction, are increased(2). Overweight and
obesity are also thought to increase the risk of common
cognitive issues, such as anxiety and depression(3).

Population-based interventions to reduce the preva-
lence of overweight and obesity are now implemented
as part of wider public health strategies in the majority
of developed countries worldwide. In the UK, the De-
partment of Health aims to achieve, by 2020, a sustained
downward trend in the level of excess weight in children
and a downward trend in the level of excess weight aver-
aged across all adults(4). Such interventions focus primar-
ily on encouraging healthier food choices and increasing
physical activity; however, they must compete with the
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obesogenic environment in which most human subjects
now live, with energy-dense foods and drinks being easily
accessible and sedentary lifestyles commonplace(5). Over
the past few decades, there has been increasing interest in
the potential weight management properties of func-
tional foods and food ingredients, and specifically their
ability to affect host metabolism and eating beha-
viours(6–10). Evidence indicates that certain types of non-
digestible carbohydrate (NDC) are able to selectively
modulate the microbial inhabitants of the gastrointesti-
nal tract (known as the gut microbiota) and may provide
benefits for the prevention and treatment of obesity and
associated diseases(11,12).

Gut microbiota and host metabolism

The gut microbiota comprises at least 1014 bacteria and
more than 1000 different species and is the most densely
populated bacterial ecosystem in the human body(13).
This complex bacterial community resides primarily in
the large intestine, an organ supportive of bacterial
growth, involving slow transit speeds, anaerobic

conditions, abundance of nutrients and a more neutral
pH compared with that found in the upper regions of
the gastrointestinal tract(14). The gut microbiota plays a
pivotal role in host physiology and metabolism, affecting
localised and systemic processes and facilitating cross-
talk between major organs of the human body(12).
Importantly, many metabolic parameters influenced by
the gut microbiota are fundamental processes in the de-
velopment of obesity and associated diseases, such as en-
ergy extraction from the diet, appetite regulation, glucose
and lipid metabolism and inflammation (Fig. 1). The gut
microbiota is also involved in the development and regu-
lation of the immune system(15), synthesis of vitamins
B(16), K(17) and folate(18), host absorption of minerals(19),
and metabolism of bile acids(20) and foreign chemical
compounds (xenobiotics)(21).

Dietary NDC escape digestion in the upper gastroin-
testinal tract and are available as substrates for fermen-
tation by the gut microbiota. The main products of this
fermentation process are SCFA, principally acetate, bu-
tyrate and propionate, which contribute energetic value
to the host that may account for up to 10 % of overall en-
ergy intake depending on the amount of NDC consumed

Fig. 1. (Colour online) The gut microbiota influences various regulatory processes associated with obesity
through a multitude of metabolic pathways. SCFA may alter appetite regulation via the activation of free-fatty
acid receptors 2 and 3 (FFAR2 and FFAR3) and release of glucagon-like peptide 1 (GLP-1), peptide YY (PYY)
and leptin. *GLP-1 and PYY also impact on glucose homeostasis. Acetate may also influence appetite
through a central homeostatic mechanism. SCFA act via cyclic AMP (cAMP) and FFAR3-dependent
mechanisms to alter intestinal gluconeogenesis and subsequent host energy signalling. SCFA affect fatty acid
oxidation in various tissues through increased AMP-activated protein kinase activity. Suppression of
fasting-induced adipocyte factor (FIAF) may increase hepatic lipogenesis and lipoprotein lipase activity in
adipocytes. Lipopolysaccharide (LPS) endotoxin release into the circulation increases pro-inflammatory
cytokine secretion and resultant inflammation in adipocytes.
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in the diet and the composition of the gut microbiota(22).
Further to their role in extracting energy from the diet,
SCFA are also important signalling molecules and
exert many of their effects through activation of
G-protein-couple receptors, free-fatty acid receptors 2
and 3 (FFAR2 and FFAR3), respectively, which are
present in endocrine L cells, immune cells and adipo-
cytes(23). FFAR2 is equally sensitive to propionate, bu-
tyrate and acetate, whereas FFAR3 is sensitive in the
order propionate≥ butyrate > acetate(24,25). Activation
of FFAR2 on endocrine L cells by butyrate and propi-
onate has been shown to induce the release of anorexi-
genic (appetite regulatory) hormones, glucagon-like
peptide-1 (GLP-1) and peptide YY (PYY)(26,27). Recent
data suggest that SCFA-stimulated release of anorexi-
genic hormones in the colonic mucosa is not dependent
on FFAR3 activation(28); however, activation of
FFAR3 on adipocytes may stimulate the release of lep-
tin, another anorexigenic hormone(29). A mechanistic in-
vestigation has shown that acetate may also suppress
appetite, not through the activation of FFAR, but rather
by crossing the blood–brain barrier and acting via a cen-
tral homeostatic mechanism(30). The findings of a recent
study in mice have also highlighted the importance of bu-
tyrate and propionate in modulating intestinal gluconeo-
genesis, specifically intestinal gluconeogenesis gene
expression, which has subsequent effects on glucose con-
trol and insulin sensitivity(31). Butyrate and propionate
appear to activate intestinal gluconeogenesis gene ex-
pression via separate mechanisms, with butyrate acting
through a cyclic AMP-dependent mechanism, whereas
propionate acts via a gut–brain neural circuit involving
FFAR3. Importantly, in this study it was also shown
that metabolic effects on glucose homeostasis were ab-
sent in mice deficient for intestinal gluconeogenesis.
Together, these data highlight the importance of SCFA
in the biochemical signalling between the gut and the
brain (gut–brain axis)(32).

SCFA produced by the gut microbiota are also cap-
able of elevating fatty acid oxidation in liver, muscle
and brown adipose tissue through increases in AMP-
activated protein kinase activity(33–35). Furthermore,
SCFA stimulated secretion of PYY and GLP-1, together
with increases in hepatic AMP-activated protein kinase
phosphorylation and activity, are thought to play an im-
portant role in glucose metabolism(36). Gut microbial
suppression of fasting-induced adipocyte factor may
also act to increase hepatic lipogenesis and lipoprotein li-
pase activity in adipocytes, thus promoting adiposity(37).
The composition and metabolic activity of the gut micro-
biota also impact on local and systemic inflammation.
Changes in gut barrier integrity(38), chylomicron for-
mation(39) and alkaline phosphatase activity(40), all ap-
pear to contribute to lipopolysaccharide endotoxin
release into the circulation, a condition known as meta-
bolic endotoxemia(41). Importantly, increases in lipo-
polysaccharide plasma concentrations promote the
secretion of pro-inflammatory cytokines and inflamma-
tion in adipose tissue, which may contribute to the devel-
opment of metabolic disorders and obesity(41). For
reviews on the interactions between the gut microbiota

and host metabolism, see Nicholson et al.(11) and
Geurts et al.(42).

The composition and metabolic activity of the gut
microbiota are influenced by a range of host character-
istics, including genetic background(43), age(44), sex(45),
diet(46), physical activity levels(47), medication usage(48),
gastrointestinal surgery(49), geographical location(45)

and delivery mode at birth(50). Shifts in the composition
of the gut microbiota have been, perhaps rather simplis-
tically, categorised as either towards a state of ‘dysbiosis’,
in which bacterial genera/species with potentially harm-
ful or pathogenic effects predominate over those with
positive properties, or towards a state of ‘normobiosis’,
in which the opposite is true(14). Obesity and associated
metabolic diseases are associated with changes in the
composition of the gut microbiota that may reflect a
state of ‘dysbiosis’ and thus contribute to the pathogen-
esis of the condition(51,52).

Gut microbiota in lean v. obese individuals

Studies in rodents and human subjects provide evidence
that obesity and diet-induced weight-gain are associated
with an altered gut microbial composition at a range of
taxonomic levels. The taxonomic classification is a hier-
archal system used to classify living organisms, such as
bacteria. Here compositional changes at higher levels
(phylum) and lower levels (genus and species) will be dis-
cussed. The first evidence that obesity was associated
with compositional shifts in the gut microbiota came
from a study in mice, in which genetic obese (ob/ob)
mice were found to have fewer Bacteroidetes and more
Firmicutes than their lean counterparts(53). However,
findings of subsequent studies in this area have been in-
conclusive, particularly in the case of Bacteroidetes.
Although obesity-related reductions in Bacteroidetes
have been observed in some studies(52,54,55), another
study found no difference(56) and in two studies numbers
were elevated in obese compared with lean human sub-
jects(57,58). The majority of data suggest that Firmicutes
are increased in obese v. lean individuals(54,58). An in-
crease in this phylum is supported by evidence that
SCFA production is increased, and thus the capacity to
extract energy from the diet is enhanced, in obese
individuals(51).

An abundance of Bifidobacterium spp. has been shown
to be inversely correlated with obesity and increases in
body weight(59). In a recent study it was found that
obese women have significantly fewer Bifidobacterium
spp. and significantly more Enterobacteriaceae, Staphylo-
coccus and Escherichia coli than normal weight
women(60). Importantly, Bifidobacterium spp. are asso-
ciated with improved mucosal barrier function and
reduced metabolic endotoxemia in mice and rats(61,62).
Obesity and diet-induced weight gain are also associated
with reductions in Clostridium cluster XIVa(63),
Roseburia spp.(63,64), Faecalbacterium prauntitzii(65) and
Akkersmansia mucciniphilia(60,66). Faecalbacterium praus-
nitzii, A. mucciniphilia and Roseburia spp. are of particu-
lar interest in the context of obesity. F. prausnitzii and
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Roseburia spp. are two main contributors to butyrate
production in the large intestine(67). F. prausnitzii has
also been shown to exert anti-inflammatory effects in a
mouse model of inflammation(68). A. muciniphila is im-
portant for its role in mucin degradation and production
of propionate and acetate(69). This bacterium has also
been shown to modulate expression of intestinal epi-
thelial genes involved in establishing homeostasis in
basal metabolism(70). In addition to changes in the rela-
tive abundance of specific bacterial groups, obesity is
also associated with changes in diversity of the gut micro-
biota. A study which utilised 16S rRNA gene surveying
in thirty-one monozygotic twin pairs and twenty-three
dizygotic twins found that obese twins had reduced phy-
logenic microbial diversity compared with their lean sib-
ling(52). Changes in the composition and diversity of the
gut microbiota may be attributed to changes in host
bodyweight and also differences in dietary intake.
Accordingly, it is difficult to differentiate as to whether
the changes to the microbiota are due to adiposity, as a
result of dietary intake (such as high-fat intake) or a com-
bination of the two. Furthermore, there is presently a
lack of evidence to imply a causal relationship between
the gut microbiota and obesity. Nevertheless, studies in
mice provide some evidence that changes in the gut
microbiota may contribute towards reduced host weight
and adiposity(49). Germ-free mice (mice raised under ster-
ile conditions without any microbes of their own) admi-
nistered with gut microbial samples from an obese
human twin, gained significantly more body fat than
those receiving the microbiota from a lean human twin,
irrespective that all mice followed a standardised diet.
Analysis of the faecal samples found metabolic changes
similar to those found in obese human subjects, including
an increase in branched-chain fatty acid production(71).

Furthermore, evidence that fermentable NDC improve
weight management in rodents and human subjects pro-
vides further support that compositional changes in the
gut microbiota may contribute to the development of
obesity(64,66,72–77).

Physicochemical structure of non-digestible
carbohydrates

Non-digestible oligosaccharides and non-digestible poly-
saccharides are two types of NDC. Oligosaccharides
contain a small number (two to about ten) of monosac-
charide units, connected by glycosidic linkages, whereas
polysaccharides contain more than ten monosaccharide
units(78). Accordingly, the molecular weight of polysac-
charides is much higher than that of oligosaccharides(79).
Non-digestible oligosaccharides include inulin-type fruc-
tans, which are found naturally in small quantities in
certain foods, such as Jerusalem artichoke, chicory
root, banana, leeks, garlic, agave and onions(80).
Non-digestible polysaccharides include dietary fibre and
resistant starch, which are consumed in much higher
amounts in the diet(81). Further to differences in mono-
saccharide unit length, NDC vary considerably in other
aspects of physicochemical structure, including type of
monosaccharide unit and the position and type of lin-
kages (Table 1). The physicochemical structure of the
carbohydrate determines its physical (viscosity and solu-
bility) and fermentable properties in the large intestine.
The exact mechanisms by which gut bacteria break
down carbohydrates are not known; however the process
is dependent on bacterial enzymes that demonstrate spe-
cificity to structural configurations and the position and
type of linkages(82).

Table 1. Physicochemical structures of various fermentable non-digestible carbohydrates (NDC) of interest for obesity and associated diseases

NDC
Source(s) and production
method Unit length Structure (type of units in bold) Reference(s)

Inulin Jerusalem artichoke, chicory
root, banana, leeks, garlic,
agave and onions

2–60 β(2�1) linked fructose and terminal
glucose

van Loo et al.(80) and
Paeschke & Aimutis(108)

FOS/
oligofructose

Hydrolysed chicory root extract
or enzymatic synthesis from
sucrose

3–9 β(2�1) linked fructose and terminal
glucose

Paeschke & Aimutis(108)

GOS/TOS Enzymatic synthesis from
lactose

2–8 Varies between manufacturers:
Galactose linked by β (1�4), and/or
β (1�6), and/or β (1�3)

Paeschke & Aimutis(108)

Resistant
dextrin

Dextrinisation and
repolymerisation of maize or
wheat starch

12–25 Glucose linked by α and β (1�2),
(1�3), (1�4), (1�6)

Le-franc-Millot et al.(109)

Chitin-glucan Extracted from the cell wall of
fungi

N/A Poly N-acetyl-D- glucosamine and β
(1,3)-D-glucan

Neyrinck et al.(64)

Arabinoxylans Grain-based materials, most
often wheat or maize

Depends on the
source

β(1�4) linked xylose and side chains
of arabinose

Paeschke & Aimutis(108)

and Izydorczyk &
Dexter,(110)

AXOS Hydrolysed arabinoxylan Up to 60; dependent
on production
conditions

Oligosaccharides from arabinoxylan
(see earlier)

Paeschke & Aimutis(108)

and Swennen et al.(111)

FOS, fructo-oligosaccharides; GOS, galacto-oligosaccharides; TOS, trans-galacto-oligosaccharides; AXOS, arabinoxylan-oligosaccharides.
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Gut bacterial fermentation of non-digestible
carbohydrates

Inulin, fructo-oligosaccharides (FOS) and galacto-
oligosaccharides are NDC with established prebiotic
effects and can be defined as ‘selectively fermented diet-
ary ingredients that result in specific changes in the
composition and/or activity of the gastrointestinal micro-
biota, thus conferring benefit(s) upon host health’(83).
Favourable effects on gut microbial ecology include
increased numbers of beneficial bacteria, reduced num-
bers of pathogenic bacteria (e.g. E. coli, Staphylococcus
aureus, Campylobacter jejuni, Clostridium difficile and
Clostridium perfringens), reductions in intestinal pH
(promoting a more favourable environment for microbial
growth), increased production of metabolic end-products
(SCFA) and altered bacterial enzyme concentrations(84).
Much research in this area has focused on the ability of
NDC to stimulate the proliferation of Bifidobacterium
spp. and Lactobacillus spp.(85). Although inulin, FOS
and galacto-oligosaccharides have all been shown to in-
crease the abundance of Bifidobacterium spp. in in vitro
gut model systems and human studies, there is increasing
interest in NDC that are able to increase the proliferation
of other bacterial genera, including Eubacterium,
Faecalibacterium and Roseburia(14). FOS, resistant dex-
trin and arabinoxylan-oligosaccharides (AXOS) have
shown the ability to increase these bacterial groups and
further studies are required to determine whether other
NDC also target these bacterial groups. In a recent
study the administration of a resistant dextrin produced
from wheat starch (14 g/d) to an in vitro gut model sys-
tem was found to elevate levels of C. cluster XIVa and
Roseburia spp., with a concomitant increase in butyrate
production after 18 d(86). Chitin-glucan, a soluble fibre
extracted from the cell walls of fungi, has also been
shown to increase the abundance of C. cluster XIVa
and Roseburia spp., in mice fed a high-fat diet(63).
Furthermore, the intake of wheat arabinoxylans has
been found to significantly increase levels of Roseburia
spp., together with increases in Bifidobacterium spp.
and Bacteroides/Prevotella in diet-induced obese
mice(64). However, it should be noted that AXOS,
which are obtained by enzymatic treatment of arabinox-
ylans, have been shown in an in vitro model to exert op-
posing effects, with a significant reduction in Roseburia
spp. and butyrate production, but a significant increase
in propionate production(87). Additional in vitro and in
vivo studies are required to investigate the effects of re-
sistant dextrin, AXOS and chitin-glucan, on the gut
microbiota.

Presently, there is a gap in our understanding of how
the physicochemical structure of carbohydrates impacts
on gut microbial fermentation. Ultimately, the aim
should be to construct a detailed framework of evidence
for the different structural properties on gut bacterial fer-
mentation. This will allow for better targeting of specific
gut microbial populations in selected regions of the large
intestine, i.e. proximal or distal regions. Nevertheless, a
number of studies are beginning to provide evidence for
the fermentation characteristics of different structural

configurations. In vitro studies have shown that molecu-
lar weight and the monosaccharide unit chain length af-
fect fermentation by the gut microbiota. An in vitro study
on wheat arabinoxylans found that low molecular mass
NDC, with short monosaccharide unit chain length,
were more selectively fermented by Bifidobacterium spp.
and Lactobacillus spp.(88). Moreover, longer chain
NDC appear to be more slowly fermented than shorter
chain NDC and therefore reach more distal regions of
the colon(87,89). To date, the majority of research has
focused on selectivity of Bifidobacterium spp. and
Lactobacillus spp., and therefore more work is required
to determine the selectivity of other bacterial groups to
NDC with differing molecular weight and monosacchar-
ide chain length. The type of linkages in the NDC also
appears to affect the rate of fermentation. NDC with
more 1�6 linkages relative to 1�4 linkages are more
slowly fermented in the gastrointestinal tract(90).
Accordingly, NDC with a high number of 1�4 linkages
and large monosaccharide chain lengths, such as resistant
dextrin, long chain AXOS/arabinoxylans and long-chain
inulin, may be more slowly fermented and reach more
distal regions of the gastrointestinal tract for bacterial
fermentation, whereas FOS for example may be fermen-
ted primarily in proximal regions of the gastrointestinal
tract. Rate of fermentation is an important consideration
as this may impact on gas production and onset of side
effects associated with high intakes of fructans, such as
bloating and digestive discomfort(91). Resistant dextrin,
which may be more slowly fermented, is well tolerated
in human subjects, even at high doses of up to 45 g/d(92).

Anti-obesogenic properties of non-digestible
carbohydrates

The first studies to examine the potential anti-obesogenic
properties of NDC were conducted in rodents(66,93).
While animal studies give some mechanistic insight into
the potential benefits of NDC, it should be noted that
the gut microbiota of mice and rats is very different
from the gut microbiota of human subjects. The majority
of intervention studies to date have investigated the ef-
fects of inulin-type fructans, including oligofructose
and FOS. Kellow et al.(94) have recently published a com-
prehensive systematic review on the metabolic benefits of
inulin, oligofructose, FOS or galacto-oligosaccharides in
human subjects; however, the present review excluded
other NDC that are fermentable by the gut microbiota
but are yet to be confirmed as prebiotics. Here, data
are presented from studies on the aforementioned
NDC, but also from studies that have investigated the ef-
fects of other NDC that are not formally classified as pre-
biotics but may also exert favourable compositional and
metabolic effects on the gut microbiota, including arabi-
noxylans, AXOS, chitin-glucan and resistant dextrin.
Non-fermentable NDC were excluded from the present
review in order to only provide data on NDC that may
exert metabolic and physiological effects primarily via
modulation of the gut microbiota.
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A number of rodent studies have observed reductions
in bodyweight and adiposity following long-term con-
sumption of fructans(66,72). In a recent study, oligo-
fructose, with or without probiotic Bifidobacterium
animalis, was given to adult diet-induced obese
Sprague-Dawley rats(73). Oligofructose, but not
Bifidobacterium animalis, significantly increased the
abundance of Bifidobacterium spp. and Lactobacillus
spp. in the gut microbiota. Furthermore, improvements
in body composition (reduced weight gain and fat
mass) were found after the oligofructose intervention
only. Glucose profiles were beneficially altered by the in-
take of both oligofructose and Bifidobacterium animalis.
In another study, mice were fed a control diet, high-fat
diet or a high-fat diet with wheat arabinoxylans(64).
The intake of wheat arabinoxylans was found to have
various metabolic and physiological benefits, including
decreased high-fat diet-induced adiposity, body weight
gain, serum and hepatic cholesterol accumulation and in-
sulin resistance. To date, only a limited number of studies
have investigated the effects of NDC on weight manage-
ment in human subjects, and there is very little known on
the concomitant effects of NDC on gut microbial com-
position and body composition. A small number of stu-
dies have shown that long-term intake of fructans may
result in small, but significant, reductions in body weight
and adiposity(74,75). Changes in body weight and adi-
posity were not observed in a recent study; however
this could be due to a shorter treatment duration(95).
One study in obese women found that the intake of
yacon syrup, a food naturally rich in fructans, signifi-
cantly increased weight loss over a 120-d period(76).
However, it should be noted that all volunteers on this
study were actively trying to lose weight. Resistant dex-
trin has also been demonstrated to have weight loss
properties. In a study by Guérin-Deremaux et al.(77),
the daily intake of 34 g resistant dextrin for 12 weeks
was found to significantly reduce body weight and per-
centage body fat in overweight Chinese men.

The intake of fructans in rodent studies has been
shown to increase blood concentrations of GLP-1 and
PYY, and reduce concentrations of orexigenic hormone
ghrelin(75,96,97). Moreover, the intake of fructans has
been found to activate neural receptors in the brain asso-
ciated with food intake(72). In a recent murine study, the
intake of galacto-oligosaccharides was also found to in-
crease circulating GLP-1 and PYY concentrations.
Furthermore, reductions in dietary energy intake and fat-
pad weight were observed(98). In a number of human stu-
dies, intake of fructans has been shown to concomitantly
increase satiety and alter anorexigenic hormone
profiles(95,99,100). However, not all studies have observed
changes in satiety after the intake of fructans(75,101,102).
This is especially true in acute/short-term studies, in
which the intervention phase is most likely insufficient
in length for the gut microbiota to adapt to the increased
fructan intake. The daily intake of either 14, 18 or 24 g
resistant dextrin over a period of 9 weeks, has been
found to increase satiety and reduce energy intake in a
group of overweight males(103). Importantly, the magni-
tudes of the responses were dose dependent, highlighting

the importance of dose escalation studies when investi-
gating the effects of NDC. In another study, the intake
of 50 g resistant dextrin at breakfast was shown to de-
crease circulating levels of ghrelin throughout the rest
of the day(96). Although a number of studies have
shown changes in circulating hormones, the mechanistic
basis for this is still to be confirmed. Many of the authors
propose a mechanism dependent on SCFA production;
however, for this to be determined, future studies should
investigate the effects of NDC on gut microbial compo-
sition, metabolic output (SCFA), circulating hormone
profiles and measures of satiety. An important consider-
ation when interpreting results from intervention studies
is that of the viscosity of the NDC being investigated.
Importantly, viscous NDC may affect host metabolism
via mechanisms independent of changes to the gut micro-
biota. Specifically, the intake of highly viscous food
ingredients increases stomach distension and delays gas-
tric emptying, thus inducing the release PYY, GLP-1
and cholecystokinin. Release of these anorexogenic hor-
mones contributes to the activation of the ileal brake
feedback mechanism, subsequently leading to a re-
duction in hunger and food intake(104).

A number of studies have also shown that NDC have
the potential to affect inflammation and glucose metab-
olism. A recent human intervention study found that
the intake of inulin by obese women increased faecal
numbers of Bifidobacterium spp., and significantly
reduced plasma concentrations of lipopolysacchar-
ide(105). In another recent study, the intake of
trans-galacto-oligosaccharides was also found to increase
the abundance of faecal Bifidobacterium spp. and had a
beneficial effect on fasted blood measures of insulin
and cholesterol(106). In mice, the intake of wheat arabo-
nixylans was shown to decrease serum measures of
serum and hepatic cholesterol accumulation and insulin
resistance(64). In obese rats, the intake of oligofructose
was found to improve glycaemia and reduce insulin
levels(73). Furthermore, in another human study the
daily intake of 34 g resistant dextrin for 12 weeks was
shown to improve insulin resistance and determinants
of metabolic syndrome in a group of overweight
men(107). This included reductions in blood glucose and
insulin, increases in HDL cholesterol and reductions in
total cholesterol and LDL cholesterol.

Conclusion

Data presented in this review provide preliminary evi-
dence that various fermentable NDC, including resistant
dextrin, may alter metabolic processes associated with
obesity, including appetite regulation, energy and lipid
metabolism and inflammation. To confirm these effects
and elucidate the responsible mechanisms, there is a
need for well-controlled human intervention studies to
investigate the impact of NDC on the composition and
function of the gut microbiota and determine concomi-
tant effects on host metabolism and physiology.
Furthermore, mechanistic studies are required to deter-
mine the influence of carbohydrate physicochemical
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structure on the fermentation and metabolic activity of
gut bacterial populations. Ultimately, the aim should
be to establish a detailed framework of evidence for bac-
terial fermentation by a range of NDC, as this will enable
more effective targeting of specific gut bacterial popula-
tions associated with obesity and metabolic diseases.
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