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HARDY AND MIYACHI THEOREMS FOR
HEISENBERG MOTION GROUPS

ALI BAKLOUTI and SUNDARAM THANGAVELU

Abstract. Let G = Hn oK be the Heisenberg motion group, where K = U(n)

acts on the Heisenberg group Hn = Cn × R by automorphisms. We formulate

and prove two analogues of Hardy’s theorem on G. An analogue of Miyachi’s

theorem for G is also formulated and proved. This allows us to generalize and

prove an analogue of the Cowling–Price uncertainty principle and prove the

sharpness of the constant 1/4 in all the settings.

§1. Introduction

A classical theorem of Hardy proved in 1933 in the case of the real line,

says that an integrable function f and its Fourier transform f̂ cannot both

have arbitrary Gaussian decay unless f is identically zero. More precisely,

if both f(x)eα‖x‖
2

and f̂(ξ)eβ‖ξ‖
2

are in L∞(Rn) for some α, β > 0 then the

following conclusions hold:

(1) f = 0 whenever αβ > 1/4.

(2) The function f is a constant multiple of e−α‖x‖
2

when αβ = 1/4.

(3) When αβ < 1/4, there are infinitely many linearly independent func-

tions satisfying both conditions.

Here the Fourier transform f̂ is defined by

f̂(y) = (2π)−n/2
∫
Rn
f(x) exp(−i〈x, y〉) dx

and ‖x‖= 〈x, x〉1/2 is the Euclidean norm. Actually, the bound 1
4 is sharp

and the strong Gaussian decay of f and f̂ is only required with respect to a

one-dimensional subgroup of Rn. For a detailed proof of Hardy’s theorem,
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2 A. BAKLOUTI AND S. THANGAVELU

see [7]. Hardy’s theorem initially proved for the Euclidean Fourier transform

has been extended to several setups including the Heisenberg group and

many other various classes of nonabelian connected Lie groups ([3, 4, 6,

12–14, 16, 17] and [19]). Specifically, analogues of Hardy’s theorem have

been proved for motion groups ([6] and [16]). In case of a Lie group G,

the Euclidean norms on Rn and on R̂n have to be replaced by certain norm

functions onG and the Hilbert–Schmidt norm of the operator-valued Fourier

transform on the unitary dual Ĝ of G, respectively depending upon the

parameters involved in the problem in question.

In this context, we mention that in [10], Sarkar and Thangavelu gave

an analogue of Hardy’s theorem for the Euclidean motion group Mn :=

SO(n) nRn by means of the heat kernel. Indeed, denoting by ∆n the

standard Laplacian on Rn and by

pnt (x) = (4πt)−
n
2 e−

1
4t
‖x‖2

the associated heat kernel, they proved the following result.

Theorem 1.1. Let f ∈ L1(Mn) satisfy the following conditions:

(1) |f(k, x)|6 C(1 + ‖x‖)Npns (x), (k, x) ∈Mn.

(2) ‖πr,σ(f)‖HS 6 C(1 + r)Ne−tr
2

(r, σ) ∈ R∗+ × ̂SO(n− 1).

Then f = 0 whenever s < t. When s= t, f can be expressed as a finite

linear combination of functions of the form

Pm,j(x)(−∆n+2m)
j−m

2 pn+2m
t (x)gm,j(k)

where Pm,j are solid harmonics of degree m and gm,j are certain bounded

functions in L2(SO(n)).

A weaker version of the last theorem for the case s < t is known from the

work of Sundari (cf. [16]). For arbitrary compact extensionMK :=K nRn of

Rn, the following analogue of Hardy’s uncertainty principle was also recently

proved (cf. [2]).

Theorem 1.2. Let q ∈ N, α and β be positive real numbers and let f be

a measurable function on MK satisfying the following decay conditions:

(i) |f(k, x)|6 ϕ(k)(1 + ‖x‖2)qe−α‖x‖2 for all x ∈ Rn and k ∈K, where

ϕ ∈ L2(K),
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(ii) ‖π`,σ(f)‖HS 6 ψ`(σ)(1 + ‖`‖2)qe−β‖`‖2, for all ` ∈ Rn and all σ ∈ K̂`,

with ‖ψ`‖l2(K̂`) 6 C for some positive constant C independent of `.

Then the following conclusions hold:

(1) f = 0 almost everywhere whenever αβ > 1/4.

(2) If αβ < 1/4, then there are infinitely many linearly independent func-

tions satisfying both conditions (i) and (ii).

(3) When αβ = 1/4, the function f is of the form f(k, x) = ζ(k, x)e−α‖x‖
2

where x 7→ ζ(k, x) is polynomial on x of degree 6 2q and k 7→ ζ(k, x) is

an L2-function on K.

In this paper, our main goal is to prove a suitable analogue of Theorem 1.1

in the context of Heisenberg motion groups. Let Hn := Cn × R be the

Heisenberg group with the group operation defined by

(z, t) · (w, s) = (z + w, t+ s+ 1
2 Im(z · w)), z, w ∈ Cn; t; s ∈ R.

Alternatively, we can consider Hn as Rn × Rn × R with the group law

(x, y, t) · (u, v, s) = (x+ u, y + v, t+ s+ 1
2(u · y − v · x)),

x, y, u, v ∈ Rn; t, s ∈ R.

Let K = U(n) act on Hn by the automorphisms

(σ, (z, t))→ (σz, t), σ ∈K, (z, t) ∈Hn,

and let G= Hn oK be the Heisenberg motion group with the group law

(z, t, k) (w, s, k′) = ((z, t) · (kw, s), kk′).

We will prove two analogues of Hardy’s uncertainty principle for the

Heisenberg motion group. The first one makes use of the heat kernel of

the Heisenberg group and that of the associated compact group K and the

second utilizes the Euclidean norms. We will thus prove parallel versions of

the uncertainty principle as in Euclidean motion groups (cf. Theorems 1.1

and 2.1) without taking into account the polynomial growth in the condi-

tions of decay.

Our second formulation of Hardy’s uncertainty principle (cf. Section 3)

comes as a direct consequence of Miyachi’s uncertainty principle. In 1997

Miyachi [9] proved the following uncertainty principle which includes both

Hardy and Cowling–Price theorems as corollaries.
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4 A. BAKLOUTI AND S. THANGAVELU

Theorem 1.3. Let f be an integrable function on Rn such that

eα‖.‖
2
f ∈ L1(Rn) + L∞(Rn),

for some positive number α. Further assume that∫
Rn

log+
(
eβ||y||

2 |f̂(y)|
c

)
dy <∞

for some positive numbers β and c. If αβ = 1/4, then f is a constant multiple

of the Gaussian e−α‖.‖
2
.

This result leads to the following corollary.

Corollary 1.4. (Cf. [1]) Under the same conditions of Theorem 1.3,

the function f vanishes almost everywhere if αβ > 1/4. When αβ < 1
4 ,

there exist infinitely many linearly independent functions satisfying both

conditions.

The last part of the paper is devoted to formulate and prove an analogue

of Miyachi’s theorem for Heisenberg motion groups. As a direct consequence,

we also derive an analogue of Cowling–Price uncertainty principle and prove

the sharpness of the constant 1/4 in both the settings.

§2. A heat kernel version of Hardy’s uncertainty principle for

Heisenberg motion groups

Let πλ(z, t), λ ∈ R∗ be the Schrödinger representation of Hn realized on

L2(Rn) and defined as:

πλ(z, t)f(ξ) = eiλteiλ(xξ+
1
2
xy)f(ξ + y), z = (x, y).

For each k ∈K ⊂ U(n), (x, y, t) 7→ (k · (x, y), t) is an automorphism of Hn

because U(n) preserves the symplectic form xy − yv on R2n. If ρ is a

representation of Hn then using this automorphism we can define another

representation ρk by ρk(x, u, t) = ρ(k · (x, u), t) which coincides with ρ at

the center. If we take ρ to be the Schrödinger representation πλ, then by

Stone–von Neumann theorem ρk is unitarily equivalent to ρ and there exists

a unitary operator µλ(k) such that:

µλ(k) πλ(z, t) µλ(k)? = πλ(kz, t).

The operator-valued function µλ, which can be extended to the double

cover of Sp(n, R), can be chosen so that it becomes a unitary representation
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of K on L2(Rn) and is called the metaplectic representation. Let σ ∈ K̂
acting on a Hilbert space Vσ. We define for each λ ∈ R∗ and σ ∈ K̂, the

representation ρλσ on L2(Rn)⊗ Vσ by

(2.1) ρλσ(z, t, k) = (πλ(z, t)µλ(k))⊗ σ(k).

Then it is shown that ρλσ are all irreducible unitary representations of G.

They are enough to describe the Plancherel measure of G (cf. [11]). For an

integrable function f on G its Fourier transform ρλσ(f) is the operator-valued

function given by

ρλσ(f) =

∫
G
f(g)ρλσ(g)dg

where dg is the Haar measure on G. Observe that ρλσ(f) is a bounded linear

operator acting on L2(Rn)⊗ Vσ.
Let L be the sublaplacian on Hn with the associated heat kernel pa(z, t),

which is given by:

pλa(z) =

∫ +∞

−∞
eiλtpa(z, t) dt= cn

(
λ

sinh aλ

)n
e−

λ
4
coth(aλ)|z|2 .

Let ∆K be the Laplacian on K with the associated heat kernel qa(k). Let

ha(z, t, k) = pa ⊗ qa(z, t, k) be the heat kernel on G= Hn oK associated to

L + ∆K . We prove the following two theorems.

Theorem 2.1. Let f be a measurable function on G which satisfies:

(i) |f(z, t, k)|6 C ha(z, t, k).

(ii) For every λ ∈ R∗and σ ∈ K̂, ρλσ(f)?ρλσ(f) 6 Cρλσ(hb)
?ρλσ(hb),

for some positive constant C. Further assume that f is central in the

K-variable in the sense that f(z, t, k) = f(z, t, uku−1) for any k, u ∈K and

(z, t) ∈Hn. Then f = 0 whenever a < b.

The following remarks are in order. In the above theorem we are not

able to relax the condition that f is central in the last variable. We believe

the result is true without this assumption though our proof requires it.

Uncertainty principles for general functions with no restrictions on K-types

is still an open problem even in the context of semisimple Lie groups. The

only group on which a general version of Hardy’s uncertainty principle has

been proved is SU(1, 1), see [8] and [18].
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6 A. BAKLOUTI AND S. THANGAVELU

We also remark that we do not know what happens when a= b in the

above theorem. The same comment applies to Hardy’s theorem (see [19,

Theorem 2.9.2]) on the Heisenberg group also. However, we have the

following version which treats the equality case which is the analogue of

[19, Theorem 2.9.5].

For an integrable function f on G, define the partial Fourier transform

(2.2) fλ(z, k) =

∫
R
f(z, t, k)eiλtdt.

Theorem 2.2. Let f be a measurable function on G which is central in

the K-variable and satisfies:

(i) |fλ(z, k)|6 C pλa(z)qa(k) for all λ ∈ R∗
(ii) For every λ ∈ R∗and σ ∈ K̂, ρλσ(f)?ρλσ(f) 6 C ρλσ(ha)

?ρλσ(ha),

for some positive constant C. Then f(z, t, k) = ρa(z, t) ϕ(k), for some

ϕ ∈ L2(K).

The above theorems are proved by reducing them to the following result

for Laguerre expansions. We let

ϕn−1k,λ (z) = Ln−1k (12 |λ||z|
2)e−

1
4
|λ||z|2

stand for Laguerre functions of type (n− 1) on Cn. Any radial function f

on Cn can be expanded in terms of ϕn−1k,λ (z). Let f(z, k) be a radial function

on Cn taking values in L2(K). Define

Rλm(f, k) =
Γ(m+ 1)

Γ(m+ n)

∫
Cn
f(z, k)ϕn−1k,λ (z) dz

as the Laguerre coefficients of f . We have the following theorem.

Theorem 2.3. Let λ ∈ R∗ be fixed. Assume that f ∈ L2(Cn, L2(K)) is

a radial function which satisfies:

(i)
(∫
K |f(z, k)|2 dk

) 1
2 6 Cpλa(z),

(ii) For all m,
(∫
K |R

λ
m(f, k)|2 dk

) 1
2 6 C ((2m+ n)|λ|)

n−1
2 e−(2m+n)|λ|b

for some positive constant C. Then f = 0 whenever a < b and f(z, k) =

c pλa(z)ϕ(k) for some ϕ ∈ L2(K) when a= b.
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We do not prove the above theorem but remark that the proof is similar

to that of Hardy’s theorem for the Heisenberg group [19, Theorem 2.9.2]. In

fact, Hardy’s theorem is proved by reducing it to the above. See the proofs

of [19, Theorems 2.9.4 and 2.9.5].

In proving Theorems 2.1 and 2.2, we make use of certain results such as

Peter–Weyl theorem from the representation theory of compact Lie groups.

For the convenience of the reader we collect the relevant results referring

the reader to [15] for details. Given a compact Lie group K let K̂ stand

for its unitary dual consisting of equivalence classes of irreducible unitary

representations. If σ is one such representation realized on a dσ dimensional

Hilbert space Hσ with an orthonormal basis vj , j = 1, 2, . . . , dσ we denote

the matrix coefficients (σ(k)vj , vi) by σij(k). Then Peter–Weyl theorem

asserts that the functions {
√
dσσij : 1 6 i, j 6 dσ, σ ∈ K̂} is an orthonormal

basis for L2(K). Thus one has the expansion

f =
∑
σ∈K̂

dσ∑
i,j=1

dσ(f, σij)σij

and the Plancherel formula holds:∫
K
|f(k)|2 dk =

∑
σ∈K̂

dσ∑
i,j=1

dσ|(f, σij)|2.

By introducing the character χσ(k) as the trace of σ(k) the Peter–Weyl

expansion can also be written as

f(k)
∑
σ∈K̂

dσf ∗ χσ(k).

We will make use of these results in the case of K = U(n).

Proof of Theorem 2.1. The proof is long and is given in several

steps. We start the proof with the following calculation of ρλσ(ha). Let

{v1, v2, . . . , vd(σ)} be an orthonormal basis for Vσ. Let (Φλ
α)α∈Nn stand for

the Hermite basis for L2(Rn). We have the following:

ρλσ(ha)(Φ
λ
α ⊗ vj) =

∫
Hn×K

pa(z, t)qa(k)

× (πλ(z, t)µλ(k)⊗ σ(k))(Φλ
α ⊗ vj) dz dt dk

=

∫
K

(p̂a(λ)µλ(k)Φλ
α)⊗ (σ(k)vj)qa(k) dk.(2.3)
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Here p̂a(λ) = πλ(pa) is the Fourier transform of the heat kernel pa and it is

well known that p̂a(λ) = e−aH(λ) is the Hermite semigroup generated by the

Hermite operator H(λ) = (−∆ + λ2 |x|2), see [19, Section 2.8]. If |α|=N ,

then the space EλN spanned by Φλ
β, |β|=N is invariant under µλ(k). Thus

there exist some functions cλαβ(k) on K such that

(2.4) µλ(k) Φλ
α =

∑
|β|=N

cλαβ(k) Φλ
β.

As µλ(k) is unitary, we have

(2.5)
∑
|β|=N

|cλαβ(k)|2 = 1.

We also know that the matrix coefficients (σ(k)vj , vi) form an orthogonal

system in L2(K). We can write

(2.6) σ(k) vj =

d(σ)∑
i=1

(σ(k)vj , vi) vi.

Using (2.4) and (2.6) we have

ρλσ(ha) (Φλ
α ⊗ vj) =

∑
|β|=N

d(σ)∑
i=1

(∫
K
cλαβ(k)(σ(k)vj , vi)qa(k) dk

)
× (Φλ

β ⊗ vi)e−(2N+n)a|λ|,

where we have used the relation

e−aH(λ) Φλ
β = e−(2N+n)|λ|a Φλ

β

which follows from the fact that Φλ
β are eigenfunctions of H(λ) with

eigenvalue (2|β|+ n)|λ|, see [19, Section 2.3]. Thus,

‖ρλσ(ha)(Φ
λ
α ⊗ vj)‖

2
=
∑
|β|=N

d(σ)∑
i=1

∣∣∣∣∫
K
cλαβ(k)(σ(k)vj , vi)qa(k) dk

∣∣∣∣2e−2a(2N+n)|λ|.
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Summing over all j = 1, 2, . . . , d(σ) and then over all σ ∈ K̂ and using

Peter–Weyl theorem we get

∑
σ∈K̂

d(σ)∑
j=1

‖ρλσ(ha)(Φ
λ
α ⊗ vj)‖

2
d(σ) = e−2a(2N+n)|λ|

∑
|β|=N

∫
K
|cλαβ(k)|2|qa(k)|2 dk

= e−2a(2N+n)|λ|
∫
K
|qa(k)|2 dk

in view of (2.5). Hence we note that

‖ρλσ(ha)(Φ
λ
α ⊗ vj)‖ 6 C e−a(2N+n)|λ|.

The hypothesis ρλσ(f)
?
ρλσ(f) 6 C ρλσ(ha)

?
ρλσ(ha) leads to:

(2.7)
∑
σ∈K̂

d(σ)∑
j=1

‖ρλσ(f) (Φλ
α ⊗ vj)‖

2
d(σ) 6 C e−2a(2N+n)|λ|, |α|=N.

Let M = U(n− 1) considered as a subgroup of U(n) =K and let K̂M

stand for the set of all class one representations in K̂. By Peter–Weyl

theorem, we have

f(u′z, t, k) =
∑
δ∈K̂

d(δ)

∫
K
f(u′u−1z, t, k) χδ(u) du.

It can be shown that the integral is nonzero only when δ ∈ K̂M . Hence

evaluating at u′ = e, we get:

f(z, t, k) =
∑
δ∈K̂M

d(δ)

∫
K
f(u−1z, t, k)χδ(u) du.

Define fδ(z, t, k) =
∫
Kf(u−1z, t, k)χδ(u) du, so that

f(z, t, k) =
∑
δ∈K̂M

d(δ) fδ(z, t, k).

Note that fδ satisfies hypothesis (i) of Theorems 2.1 and 2.2. We will show

that they also satisfy hypothesis (ii) whenever f satisfies the same. Hence

Theorems 2.1 and 2.2 will be proved once we prove them for fδ for each

δ ∈ K̂M .
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Proposition 2.4. Let f(z, t, k) be central in the K-variable. Then the

condition

ρλσ(fδ)
?
ρλσ(fδ) 6 Cρλσ(hb)

?
ρλσ(hb)

holds whenever

ρλσ(f)
?
ρλσ(f) 6 C ρλσ(hb)

?
ρλσ(hb)

holds.

Proof. Recall that for δ ∈ K̂M ,

fδ(z, t, k) =

∫
K
f(u−1z, t, k) χδ(u) du

=

∫
K
f(u−1z, t, u−1ku)χδ(u) du,

and

ρλσ(fδ) =

∫
K
χδ(u) d(u)

∫
Hn×K

f(u−1z, t, u−1ku) ρλσ(z, t, k) dz dt dk.

We now compute:∫
Hn×K

f(u−1z, t, u−1ku)πλ(z, t)µλ(k)⊗ σ(k) dz dt dk

=

∫
Hn×K

f(z, t, k)πλ(uz, t)µλ(uku−1)⊗ σ(uku−1) dz dt dk

=

∫
Hn×K

f(z, t, k)µλ(u)πλ(z, t)µλ(k)µλ(u)? ⊗ σ(u)σ(k)σ(u)? dz dt dk

=
(
µλ(u)⊗ σ(u)

)
ρλσ(f)

(
µλ(u)? ⊗ σ(u)?

)
.

Thus:

ρλσ(fδ) =

∫
K

(
µλ(u)⊗ σ(u)

)
ρλσ(f)

(
µλ(u)? ⊗ σ(u)?

)
χδ(u) du.

Therefore, we get

‖ρλσ(fδ)(ϕ⊗ v)‖ 6
∫
K
|χδ(u)|‖(µλ(u)⊗ σ(u))

× ρλσ(f)(µλ(u)? ⊗ σ(u)?)(ϕ⊗ v)‖ du
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6 C

∫
K
|χδ(u)|‖ρλσ(f)(µλ(u)? ⊗ σ(u)?)(ϕ⊗ v)‖ du.

6 C

∫
K
|χδ(u)|‖ρλσ(ha)(µλ(u)? ⊗ σ(u)?)(ϕ⊗ v)‖ du.

Since ha(z, t, k) is central in K and radial in z, we see that:

(µλ(u)⊗ σ(u))ρλσ(ha)(µλ(u)? ⊗ σ(u)?) = ρλσ(ha).

Consequently,

‖ρλσ(fδ)(ϕ⊗ v)‖6 ‖ρλσ(ha)(ϕ⊗ v)‖
(∫

K
|χδ(u)| du

)
.

This completes the proof of Proposition 2.4.

From the above proposition it is clear that fδ satisfies the same hypotheses

as f . Our strategy is to show that under the hypothesis of Theorem 2.1,

fδ = 0 for each δ which will immediately imply that f = 0.

Corollary 2.5. Under the hypothesis (ii) of Theorems 2.1 and 2.2 we

have: ∑
σ∈K̂M

d(σ)∑
j=1

d(σ)‖ρλσ(fδ)(Φ
λ
α ⊗ vj)‖

2
6 C e−2(2|α|+n)b|λ|,

for some positive constant C provided that f is central in the K-variable.

Proof. The corollary is proved by repeating the argument leading to (2.7)

by replacing f with fδ.

For each p and q ∈ N, there exists an irreducible unitary class-1 repre-

sentation δp,q of K realized on Hp,q, the space of all bigraded spherical

harmonics of bidegree (p, q). Moreover, each δ ∈ K̂M is unitarily equivalent

to one and only one of δp,q. When δ = δp,q, we can expand fδ in terms of

solid harmonics:

fδ(z, t, k) =

d(p,q)∑
l=1

fl(z, t, k) =

d(p,q)∑
l=1

gl(z, t, k) Pl(z),

where d(p, q) = dim Hp,q, gl(z, t, k) are radial in z and Pl are solid harmon-

ics whose restrictions to S2n−1 form an orthonormal basis for Hp,q.
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In what follows we make use of several results from the theory of Weyl

transform and Weyl correspondence. For all the results and unexplained

terminologies used we refer the reader to Sections 2.6 and 2.7 of the book

[19]. First we make use of the Hecke–Bochner formula [19, Theorem 2.6.2]

for the Weyl transform:

f̂l(λ, k) = πλ(gl Pl) =Gλ(Pl) T
λ
l (k),

where G(Pl) is the Weyl correspondence associated to Pl and (assuming

λ > 0)

T λl (k) =
∞∑
m=p

RNm−p,λ (gλl , k) Pm(λ),

where N = n+ p+ q and

RNm,λ (gλl , k) =
Γ(m+ 1)

Γ(m+N)

∫
CN

gλl (z, k) ϕN−1m,λ (z) dz.

Also, Pm(λ) stands for the spectral projections associated to the Hermite

operator H(λ) = (−∆ + λ2|x|2). Thus we have

ρλσ(fδ) =

d(p,q)∑
l=1

∫
K
Gλ(Pl) T

λ
l (k)µλ(k)⊗ σ(k) dk.

Fix α with |α|=m+ p and choose an orthonormal basis {vi : i=

1, 2, . . . , d(σ)} for Vσ. Then

ρλσ(fδ) (Φλ
α ⊗ vj) =

∑
|β|=m+p

d(σ)∑
i=1

∫
K
cλαβ(k)RNm,λ(gλl , k)(σ(k)vj , vi)

×Gλ(Pl)(Φ
λ
β ⊗ vi) dk

=
∑

|β|=m+p

d(σ)∑
i=1

Aj(β, l, i)Gλ(Pl)(Φ
λ
β ⊗ vi),

where

Aj(β, l, i) =

∫
K
cλαβ(k)RNm,λ (gλl , k) (σ(k)vj , vi) dk.

We will calculate:

‖ρλσ(fδ)(Φ
λ
α ⊗ vj)‖

2
=
∑
i

∑
β,γ

∑
l,r

Aj(β, l, i)Aj(γ, r, i)(Gλ(Pl) Φλ
β, Gλ(Pr)Φ

λ
γ).
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We make the observation that:

(Gλ(Pl) Φλ
β, Gλ(Pr) Φλ

γ) = 0, for β 6= γ.

This can be easily verified using results (see [19, equation (2.6.22)]):

Gλ(Pl) Φλ
β =Gλ(Pl) Pm+p(λ) Φλ

β =Wλ(Pl ϕ
N−1
m,λ ) Φλ

β

and

Gλ(Pr) Φλ
γ =Gλ(Pr) Pm+p(λ) Φλ

γ =Wλ(Pr ϕ
N−1
m,λ ) Φλ

γ .

Therefore,

(Gλ(Pl) Φλ
β, Gλ(Pr) Φλ

γ) = (Wλ(Pr ϕ
N−1
m,λ )

?
Wλ(Pl ϕ

N−1
m,λ ) Φλ

β , Φλ
γ)

= c

∫
CN

Fl,r(z) (πλ(z, 0) Φλ
β , Φλ

γ) dz,

where

Fl,r =

∫
CN

Pr(−z + w) Pl(w) ϕN−1m,λ (z − w) ϕN−1m,λ (w) e
i
2
Im(z·w) dw.

Using the homogeneity of Pl and Pr, we see that Fl,r(z) is polyradial, that

is, radial in each zj separately. But (πλ(z, 0) Φλ
β , Φλ

γ) is homogeneous of

type (γ − β) and hence the integral is zero if β 6= γ.

In view of the above observation, we get:

‖ρλσ(fδ)(Φ
λ
α ⊗ vj)‖

2
=
∑
i

∑
β

∑
l,r

Aj(β, l, i)Aj(β, r, i)(Gλ(Pl)Φ
λ
β, Gλ(Pr)Φ

λ
β).

Consider now the sum S =
∑

σ d(σ)
∑d(σ)

i,j=1 Aj(β, l, i)Aj(β, r, i). By Peter–

Weyl theorem, we see that

S =
∑
σ

d(σ)

d(σ)∑
i,j=1

(∫
K
cλα,β(k)RNm,λ(gλl , k) (σ(k)vj , vi) dk

)

×
(∫

K
cλα,β(k)RNm,λ(gλr , k) (σ(k)vj , vi) dk

)
=

∫
K
|cλαβ(k)|2 RNm,λ (gλl , k)RNm,λ (gλr , k) dk.
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Therefore,

S′ =
∑
σ∈K̂

d(σ)
∑

|α|=m+p

d(σ)∑
j=1

‖ρλσ(fδ)(Φ
λ
α ⊗ vj)‖

2
=
∑
l,r

∑
|α|=|β|=m+p

∫
K
|cλαβ(k)|2

×RNm,λ(gλl , k)RNn,λ(gλr , k) dk(Gλ(Pl)Φ
λ
β, Gλ(Pr)Φ

λ
β).

Since
∑
|α|=m+p|cλαβ(k)|2 = 1, we get

S′ =
∑
l,r

∫
K
RNm,λ (gλl , k)RNm,λ (gλr , k) dk

∑
|β|=m+p

(Gλ(ρl) Φλ
β , Gλ(ρr) Φλ

β).

But the later sum is (Pl, Pr)L2(Sn−1) which equals zero for l 6= r. Hence:

∑
σ∈K̂

d(σ)
∑

|α|=m+p

d(σ)∑
i=1

‖ρλσ(fδ)(Φ
λ
α ⊗ vj)‖

2
= C

∑
l

∫
K
|RNm,λ (gλl , k)|2 dk.

In view of Corollary 2.5, we see that
∫
K |R

N
m,λ (gλl , k)|2 dk 6 Ce−(2m+n)2b|λ|

for any l.

By appealing to Theorem 2.3, we can prove Theorems 2.1 and 2.2.

§3. Miyachi Theorem on Heisenberg motion groups

Our attention is focused in this section on an analogue of Miyachi’s

Theorem for the Heisenberg motion group G= Hn oK. Given f ∈ L2(G),

consider the group Fourier transform:

f̂(λ, σ) =

∫
K

∫
R

∫
C
f(z, t, k)ρλσ(z, t, k) dz dt dk

=

∫
K

∫
Cn
fλ(z, k)(πλ(z, 0)µλ(k))⊗ σ(k) dz dk,

where the partial Fourier transform fλ(z, k) is as in formula (2.2). Then for

f ∈ (L1 ∩ L2)(G), one gets as in [11, page 30] that

(3.1)

∫
Cn×K

|fλ(z, k)|2 dz dk =
|λ|n

(2π)n

∑
σ∈K̂

d(σ)‖f̂(λ, σ)‖2HS ,

and the Plancherel formula for the group G reads:∫
K

∫
Hn
|f(z, t, k)|2 dt dz dk = (2π)n

∑
σ∈K̂

d(σ)

∫
R\{0}

‖f̂(λ, σ)‖2HS |λ|ndλ,
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where d(σ) stands for the dimension of the space Vσ of the representation

σ as in the second section. We also introduce the Euclidean norm on Hn as

‖(z, t)‖ :=
√
t2 + ‖x‖2 + ‖u‖2, z = (x, u), x, u ∈ Rn and t ∈ R.

Our first result in this section is the following theorem.

Theorem 3.1. Let f be a square integrable function on G which

satisfies:

(i) ea‖x‖
2
f(x, k) ∈ L1(G) + L∞(G).

(ii)
∫
R log+((

∑
δ∈K̂ d(δ)|λ|ne2bλ2‖f̂(λ, δ)‖2HS)/(c)) dλ <∞ for some posi-

tive constant c. Then

(1) If ab > 1
4 , f = 0 almost everywhere on G.

(2) If ab= 1
4 , f(z, t, k) = e−at

2
f(z, 0, k) for any (z, t, k) ∈ Cn × R×

K.

(3) If ab < 1
4 , there exist an infinite number of linearly independent

functions meeting hypotheses (i) and (ii).

Proof. Let ϕ be a Schwartz function on Cn ×K and F the function

defined on R by

F (t) =

∫
Cn×K

f(z, t, k)ϕ(z, k) dz dk.

Then for λ ∈ R,

F̂ (λ) =

∫
Cn×K

fλ(z, k)ϕ(z, k) dz dk

and therefore

|F̂ (λ)|2 6 C

∫
Cn×K

|fλ(z, k)|2 dz dk

for some positive constant C. On the other hand, we get by virtue of formula

(3.1) that:

|F̂ (λ)|2 6 C

(2π)n
|λ|n

∑
δ∈K̂

d(δ)‖f̂(λ, δ)‖2HS .

As such, for some constant c > 0, we get:∫
R

log+
(
ebλ

2|F̂ (λ)|
c

)
dλ 6

∫
R

log+
(∑

δ∈K̂ d(δ)|λ|ne2bλ2‖f̂(λ, δ)‖2HS
c

)
dλ

< +∞.
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On the other hand, clearly F ∈ L∞(R) + L1(R). So by Theorem 1.3, if

ab > 1
4 , F = 0 almost everywhere and so is f as ϕ is taken arbitrary on

Cn ×K.

When ab= 1
4 , taking a well chosen Hilbert basis of L2(Cn ×K) consisting

of Schwartz functions, we get the second assertion.

We now look at the third case where ab < 1
4 . Let f be a function of L2(G)

of the from f = f1 ⊗ f2, where f1 is defined on Hn and f2 on K. Let as earlier

(Φλ
α)α∈Nn be the Hermite basis for L2(Rn) and let cλαβ(k) be the functions

defined on K by the relation

µλ(k) Φλ
α =

∑
|β|=|α|

cλαβ(k) Φλ
β.

Then for (Φλ
α ⊗ vi)α∈Nn, i=1,...,d(σ) as before, we get

ρλδ (f1 ⊗ f2)(Φλ
α ⊗ vi) =

∫
K
πλ(f1)µλ(k)Φλ

α ⊗ δ(k)vif2(k) dk

=
∑
|β|=|α|

πλ(f1)Φ
λ
β ⊗

∫
K
f2(k)cλα,β(k)δ(k)vi dk

=
∑
|β|=|α|

πλ(f1)Φ
λ
β ⊗ δ(cλα,β · f2)vi.

By the Cauchy–Schwartz inequality

‖ρλδ (f1 ⊗ f2)(Φλ
α ⊗ vi)‖2 6

( ∑
|β|=|α|

‖πλ(f1)Φ
λ
β‖ ‖δ(cλα,βf2)vi‖

)2

6 C(2|α|+ n)n−1
∑
|β|=|α|

‖πλ(f1)Φ
λ
β‖2‖δ(cλα,βf2)vi‖2.

On the other hand, for A=
∑

δ∈K̂ d(δ)
∑d(δ)

i=1 ‖ρλδ (f1 ⊗ f2)(Φλ
α ⊗ vi)‖2, we

have

A 6 C(2|α|+ n)n−1
∑
|β|=|α|

‖πλ(f1)Φ
λ
β‖2
∑
δ∈K̂

d(δ)

d(δ)∑
i=1

‖δ(cλα,βf2)vi‖2

= C(2|α|+ n)n−1
∑
|β|=|α|

‖πλ(f1)Φ
λ
β‖2
∫
K
|cλα,β(k)|2|f2(k)|2 dk.
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Hence for B =
∑

δ∈K̂ d(δ)‖f̂(λ, δ)‖2HS , one gets:

B 6 C
∑
α∈Nn

(2|α|+ n)n−1
∑
|β|=|α|

‖πλ(f1)Φ
λ
β‖2

∫
K
|cλα,β(k)|2|f2(k)|2 dk

= C

∞∑
j=0

(2j + n)n−1
∑
|β|=j

‖πλ(f1)Φ
λ
β‖2

∫
K

∑
|α|=j=|β|

|cλα,β(k)|2|f2(k)|2 dk

= C
∑
β∈Nn

(2|β|+ n)n−1‖πλ(f1)Φ
λ
β‖2
∫
K
|f2(k)|2 dk

in view of equality (2.5). Since πλ(L f1) = πλ(f1)H(λ) and H(λ)Φλ
β =

(2|β|+ n)|λ|Φλ
β as explained earlier we see that∑

δ∈K̂

d(δ)‖f̂(λ, δ)‖2HS 6 C|λ|−n+1
∑
β∈Nn
‖πλ(L

n−1
2 f1)Φ

λ
β‖22 ‖f2‖22

= C|λ|−n+1‖πλ(L
n−1
2 f1)‖2HS‖f2‖22.

Consequently,

(3.2) |λ|ne2bλ2
∑
δ∈K̂

d(δ)‖f̂(λ, δ)‖2HS 6 C|λ|e2bλ2‖πλ(L
n−1
2 f1)‖2HS‖f2‖22.

It is possible to choose functions f1 ∈ L1 ∩ L2(Hn) such that

|λ|‖πλ(L
n−1
2 f1)‖2HS 6 e−2bλ

2
.

So, for well chosen functions f ∈ L2(K) we can arrange

log+

(∑
δ∈K̂ d(δ)|λ|ne2bλ2‖f̂(λ, δ)‖2HS

c

)
= 0.

This achieves the proof of (iii).

As a direct consequence of Theorem 3.1, we get the following theorem.

Theorem 3.2. (Hardy’s theorem for Heisenberg motion groups.) Let f

be a measurable function on G such that:

(i) |f(z, t, k)|6 Ce−a‖(z,t)‖
2

for all (z, t, k) ∈G.
(ii) |λ|

n
2 ‖ρλδ (f)‖HS 6 Cδe

−bλ

https://doi.org/10.1017/nmj.2016.58 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.58


18 A. BAKLOUTI AND S. THANGAVELU

for some C > 0 and Cδ > 0 such that
∑

δ∈K̂ d(δ)C2
δ <+∞. Then we have:

(1) If ab > 1
4 , f = 0 almost everywhere on G.

(2) If ab= 1
4 , f(z, t, k) = e−at

2
f(z, 0, k) for any (z, t, k) ∈ Cn × R×K.

(3) If ab < 1
4 , there exist an infinite number of linearly independent func-

tions meeting hypotheses (i) and (ii).

As a further generalization, our next objective in this paper is to prove the

following analogue of Cowling–Price theorem for Heisenberg motion groups.

We have the following theorem.

Theorem 3.3. (An analogue of Cowling–Price theorem for Heisenberg

motion groups.) Let α and β be positive real numbers, 1 6 p, q 6∞ such that

min(p, q) is finite, and let f be a square integrable function on G satisfying

the following decay conditions:

(i) eα‖·‖
2
f ∈ Lp(G).

(ii) e2β|λ|
2 |λ|n

∑
σ∈K̂ d(σ)‖ρλδ (f)‖2HS ∈ Lq(R).

Then the following conclusions hold:

(1) f = 0 almost everywhere whenever αβ > 1/4.

(2) If αβ < 1/4, then there are infinitely many linearly independent func-

tions satisfying both conditions (i) and (ii).

Proof. Let f be a function meeting the hypotheses of the theorem.

Then, first we obtain that f verifies the condition (i) of Theorem 3.1

since Lp ⊂ L1 + L∞. Furthermore, based on the inequality, Log+(x) 6 x for

x ∈ R+, we can see that f verifies the second condition of Theorem 3.1.

Hence f = 0 almost everywhere whenever αβ > 1/4. Second, if αβ = 1/4

then f(z, t, k) = λ(k, z)e−αt
2

for some function λ ∈ L2(K × Cn). But then

eα‖·‖
2
f is independent of the variable t and hence the condition eα‖·‖

2
f ∈

Lp(G) forces λ(k, z) to be zero for almost every k ∈K and z ∈ Cn. Finally for

αβ < 1/4, restricting to the setting of Heisenberg groups, we know that there

exists an infinite family of linearly independent functions fε, α < ε < 1/β

with the property:

|λ|n‖πλ(L
n−1
2 fε)‖2HS 6 Cεe

−2ελ2

some positive constant Cε. Hence inequality (3.2) enables us to achieve the

proof.
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