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The free surface and flow field structure generated by the uniform acceleration (with
dimensionless acceleration o) of a rigid plate, inclined at an angle « € (0, m/2) to
the exterior horizontal, as it advances (o > 0) or retreats (¢ < 0) from an initially
stationary and horizontal strip of inviscid incompressible fluid under gravity, are
studied in the small-time limit via the method of matched asymptotic expansions.
This work generalises the case of a uniformly accelerating plate advancing into a
fluid as studied by Needham et al. (Q. J. Mech. Appl. Maths, vol. 61 (4), 2008,
pp. 581-614). Particular attention is paid to the innermost asymptotic regions
encompassing the initial interaction between the plate and the free surface. We
find that the structure of the solution to the governing initial boundary value problem
is characterised in terms of the parameters o and pu (where u =1+ o tan ), with
a bifurcation in structure as u changes sign. This bifurcation in structure leads
us to question the well-posedness and stability of the governing initial boundary
value problem with respect to small perturbations in initial data in the innermost
asymptotic regions, the discussion of which will be presented in the companion paper
Gallagher et al. (J. Fluid Mech. vol. 841, 2018, pp. 146-166). In particular, when
(a, w) € (0, ®/2) x RT, the free surface close to the initial contact point remains
monotone, and encompasses a swelling jet when (o, n) € (0, w/2) x [1, o0) or a
collapsing jet when (o, ©) € (0, ®/2) x (0, 1). However, when («, i) € (0, T/2) x R™,
the collapsing jet develops a more complex structure, with the free surface close to
the initial contact point now developing a finite number of local oscillations, with
near resonance type behaviour occurring close to a countable set of critical plate
angles a =a; € (0, m/2) (n=1,2,...).
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1. Introduction

The two-dimensional (2D) irrotational flow generated by the steadily accelerating
motion of a flat rigid plate inclined at an angle o to the horizontal into a uniform
horizontal strip of inviscid fluid under the action of gravity has previously been
studied, with the small-time structure investigated in detail by King & Needham
(1994), Needham, Billingham & King (2007) and Needham, Chamberlain &
Billingham (2008), and, subsequently, the large-time structure investigated in Needham
(2012). In each of the small-time studies, it was found that a jet rises up the surface
of the plate, close to the initial intersection point of the free surface and the plate. In
addition to the abovementioned series of papers, there have been a number of studies
(both experimental and numerical) by other authors on related problems. Greenhow
& Lin (1983) performed a series of scale-model experiments involving the impulsive
start of a wavemaker, and the high-speed entry of a wedge into calm water. Yang &
Chwang (1992) investigated the case of a surface piercing vertical plate impulsively
accelerated into an expanse of initially stationary fluid. Their scale-model experiments
found that water rises up the plate during the initial stages of plate motion, in good
agreement with the numerical solutions found by Yang & Chwang (1989). There have
been several studies concerning the family of water-entry problems, which are closely
linked to the topic of this paper. A review of incompressible water-entry problems
characterised by the impacting body being nearly parallel to the initially flat water
surface was presented by Howison, Ockendon & Wilson (1991). Similar methods
to those applied in the current paper have been employed by Ilafrati & Korobkin
(2005) and Tassin, Korobkin & Cooker (2014), who considered the problem of flow
generated by the impulsive start of a floating wedge. Greenhow (1987) conducted a
numerical investigation into the wedge entry problem. He found that a jet of fluid
rises up the side of the wedge and may then separate from the wedge surface, which
agrees qualitatively with the experiments of Greenhow & Lin (1983). This behaviour
is not fully explained, but it was suggested by the author that there is an introduction
of new free surface particles between the original intersection between the surface of
the wedge and the tip of the jet, with a modified numerical scheme achieving some
success in simulating such flows. Other small-time free surface problems include that
of modelling the initial stages of dam-break problems. Yilmaz, Korobkin & Iafrati
(2013) studied the dam-break problem for two immiscible fluids. Here, the authors
paid close attention to the motion at the point at which the free surfaces of the
fluids and the interface meet. The singularity of the flow at this point was shown
to be dependent on the density ratio between the two fluids, and the shape of the
flow region. The fine details of the flow near this point were investigated by the
introduction of an inner region that contained the intersection point between the free
surfaces of the fluid and the interface.

In this paper, we generalise the work presented in Needham et al. (2008), for
an advancing plate, to the case of a plate, inclined at an angle o € (0, t/2) to the
horizontal, advancing into or retreating away from an inviscid irrotational fluid, with
constant acceleration a € R (see figure 1). We consider again the case of advancing
plates both for completeness and because we are able to remove the dependence
on acceleration from the problem by utilising an observation that was overlooked in
Needham et al. (2008). The case of the retreating plate is then considered in detail.
We use the method of matched asymptotic expansions to investigate the asymptotic
structure of the solution to the free surface evolution problem in the small-time
limit, where we are particularly interested in the behaviour of the free surface in
the innermost asymptotic region close to the contact point between the plate and the
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FIGURE 1. Definition sketch showing the displacement of the plate and free surface at
time ¢.

free surface. The structure of the solution to this problem is interpreted in terms of
the parameters « € (0, w/2) and u € R (where u =1 + o tan @, with o being the
dimensionless acceleration), with a change of structure as p changes sign. When
u <0, with o € (0, t/2), we find a particularly delicate structure, with a sequence of
pairs of near resonance points between which the initial gradient of the free surface
rapidly changes sign, vanishing at a sequence of points ¢ =« (n=1,2,...) which
are decreasing in n and approach zero as n — oo.

The outline of this paper is as follows. In §2, we formulate the mathematical
problem (which we term [IBVP]) via the governing hydrodynamic equations along
with the associated boundary and initial conditions, and regularity requirements.
Following the method of matched asymptotic expansions, §§3 and 4 consider the
solutions to [IBVP] as time r — O% in the outer and inner asymptotic regions
respectively. Finally, the case w = 0 requires that we consider an inner—inner
asymptotic region, which is discussed in §5. In §6, we draw conclusions on both
the mathematical and fluid mechanical implications of this work, and motivate the
analysis in the companion paper, Gallagher, Needham & Billingham (2018).

2. Equations of motion

We consider the situation where, initially at time 7 = 0, a semi-infinite strip of
inviscid incompressible fluid under the action of gravity lies at rest above a plane
horizontal bed at y=—h and is bounded above by its horizontal free surface at y=0.
Here, (x, y) denotes the Cartesian coordinate system fixed in space, with x pointing
horizontally into the fluid layer and y pointing vertically upward. The fluid layer is
initially bounded on the left by an inclined rigid plate at y= —xtan «, with o« being
the angle of inclination of the plate with the negative x-axis. From ¢ = 0, the plate
translates in the x direction with constant acceleration a € R. The free surface of
the fluid is subsequently located at y = n(x, t), with the contact point between the
free surface of the fluid and the inclined plate denoted by (x, y) = (x,(?), y,(1)), with
(1) = n(x,(#), t). In addition, the intersection point of the inclined plate and the
rigid bed is denoted by (x, y) = (x,(¥), —h). The situation is illustrated in figure 1.
In this paper, we consider the situation with @ € (0, w/2). The fluid motion when
t> 0 is irrotational, since the fluid is initially at rest, and hence there exists a velocity
potential ¢(x,y, ¢). In addition, we denote the fluid pressure by p(x, y, t), and introduce
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dimensionless variables

x/:{ Y n/:Q
ha y ha h’ 21
d)/: ¢ p,=L t/=t g ( . )
hy/gh’ pgh’ h’
and set
a
o=-, 2.2)
8

with o, g and p being the dimensionless plate acceleration, the acceleration due to
gravity and the density of the fluid respectively. Hereafter, we drop the primes for
ease of notation. It is convenient to introduce the coordinate X, defined by X =x — s(?)
in t >0, where

s(t)=1or, (2.3)

with s(#) measuring the displacement of the intersection point of the plate and
the positive x-axis from the fixed origin in the (x, y) plane. The origin O’ of the
(x, y) Cartesian coordinate system is now located on the plate. The (%, y) Cartesian
coordinate system will be the primary coordinate system throughout the paper. We
now define the domain occupied by the fluid in the (¥, y) plane to be given, at each
t >0, by D(t) =D;(t) UD,(r), with

D, ={(x,y) eR*:X,(1) <x<X,, —Xtana <y <7n(x, t)},} 0.4

D,={x,y) eR*:x>%, —1<y<n b},

where X, (1) =x,(t) — s(), X, = cota, with now y,(1) =n(X,(?), 1) = —X,(t) tan in £ > 0.
The governing equations and boundary conditions are

Vip=0, (x,y)eD(), t>0; (2.5)

Vo -n=35)sina, y=-—Xtana, X,(t) <X <Xp, t>0; (2.6)
¢,=0, y=-1, Xx>x, t>0; 2.7)

N+ ¢z —otlnz— ¢, =0, y=n, 1, X>X,0), t>0; (2.8)

¢ —otps+ VPP +n=0, y=nE 1), X>%,0), t>0; (2.9)
IVp| -0 as Xx— oo, uniformly for —1 <y <n, 1), t>0; (2.10)
n—0 asx— o0, t>0. 2.1

Here, V =(9/9%, 3/dy), and fi = (sin, cos &) is the unit normal to the plate pointing
into the fluid. In addition to (2.5)—(2.11), we have the initial conditions

¢ y,00=0, (& eD©), (2.12)
n(x 0)=0, x=>0. (2.13)

The pressure field (setting atmospheric pressure to zero) is given explicitly by
p=pi—y. &y eD@®),t>0, (2.14)

with p, being the dynamic fluid pressure field, which is given, via the Bernoulli
equation, by

pa=—¢+otp:— 5|V’ X y) €D, t>0. (2.15)
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We will study classical solutions to the initial boundary value problem (2.5)—(2.13)

(excluding contact point separation or cavitation), in the sense that we require the
regularity conditions

o )
peC@GNC(GUIGHUC (g>»} (2.16)

neCH)NC'(H),

where
G={&x y,neR: (X, y) €D(), 1€(0,00)},

G ={x, y,H)eR>: X, y)eDO\D(®®), te(0,0c0)}, (2.17)
H={x1eR*:xe[x,(r),00), te(0,0c0)}.

These regularity conditions, particularly with regard to the free surface and plate
contact point, are the minimal conditions for classical smoothness at the contact
point in ¢ > 0, requiring finite fluid velocity, finite contact point velocity and finite
free surface slope at the contact point in ¢ > 0. They are required to eliminate
eigensolutions with singular fluid velocities and free surface slope in the outer region,
as discussed in § 3, after (3.4), and in the inner region, as discussed in §4.2, from
(4.26) to (4.29) and in the paragraph before (4.36). We will henceforth refer to
the initial boundary value problem (2.5)-(2.13), with regularity conditions (2.16),
as [IBVP]. The purpose of this paper is to investigate the principal flow through
construction of the asymptotic structure of the solution to [IBVP] as ¢t — 0" via the
method of matched asymptotic expansions.

We should remark here that when o < 0, the initial boundary value problem
[IBVP] represents a principal flow that is a boundary withdrawal problem under
gravity, adjacent to a free surface. By imposing the regularity conditions (2.16), we
are explicitly examining the existence of solutions to [IBVP], in which the motion of
the contact point (x,(f), —x,(¢) tan ) remains regular in ¢ > 0; that is, no separation
occurs at = 0% of the initial contact point, at (x, y) = (0, 0), from the plate. Indeed,
the occurrence of such a separation would require a singularity formation in the
dynamic pressure p; (in (2.15)) at (x, y) = (0, 0) when ¢ = 0%, which would then
be alleviated by separation when r> 0*. However, within the framework of matched
asymptotic expansions, we demonstrate that the solution to [IBVP] has p,; regular
at (x, y) = (0, 0) when r= 0%, and thus contact point separation does not occur at
t=0". In contrast, we observe that in the related problem, when the plate is extracted
from the fluid layer with an initial finite impulsive velocity, the impulsively induced
pressure field at ¢t = 0", in the corresponding formulation to [IBVP], does have a
singularity at (x, y) = (0, 0) when t=07", and separation should be anticipated. Indeed,
this behaviour has been reported in a corresponding impulsive extraction problem in
Norkin & Korobkin (2011), with a similar forward impulsive problem examined in
Needham et al. (2007). In addition, we should also remark that although contact point
separation does not occur in the principal flow determined by [IBVP], it is certainly
possible that this principal flow, close to the initial contact point, may be temporally
unstable, and even ill-posed, to small initial perturbations, and that subsequent rapid
growth in local perturbations close to the initial contact point could lead to subsequent
contact point separation. Indeed, it is this question that is addressed in part 2 of this
pair of papers (Gallagher et al. 2018). Additional discussion is given in Sedov et al.
(1965).

Finally, we note here that throughout the paper, to reduce the need for additional
notation (in the already extensive notation required), we adopt the convention that
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the principal dependent variables that appear in both inner and outer regions, for
example the velocity potential ¢ and the free surface displacement n, will be
assumed to have spatial arguments associated with the region and coordinate system
under consideration at that stage. For example, ¢ = ¢(-, -, ©) and n = n(-, ), where,
considering the outer region, (-, -, ) = (x,y,t) and (-, ?) = (x, £) when working in the
outer region Cartesian coordinates (x, y), while (-, -, ) = (r, 8, ¢) and (-, ) = (r, 1)
when working in the outer region polar coordinates (r, ). Slmﬂarly, in the inner
region, (-, -, ) =X, Y,t) and (-, 1) =X, 1), or (-, -, ) =X, Y, ) and (-, t)_(X 1)
when working in the inner region Cartesian coordinates (X, Y) or (X Y), with a
similar convention when working in the inner region polar coordinates (R, 0), or any
other coordinate system in the paper.

3. Outer region as t— 0T

We begin in an outer region in which (¥, y) € D(t) = O(1) as t — 0*, after
which we require additional asymptotic regions to complete the structure, in which
(X, y) € D(t) =0(1) as t— 0. It is the structure in the innermost region that captures
the initial dynamics of the interaction between the plate and fluid free surface.
Conditions (2.6) and (2.8), together with (2.3), require that ¢ = O(¢) and n = O(#*)
as t— 07 in the outer region. Thus, we introduce the asymptotic expansions

dX, y, 1) =to sinad(X, y) + 0%, nE, 1) =rnE) + 0@, (3.1a,b)

as t — 0" in the outer region, with the factor o sin« in (3.1) included for algebraic
convenience at a later stage. On substitution from (3.1) into [IBVP], we obtain the
leading-order problem for ¢ as

V2$ =0, (x,y)€D(0);

I, y=-Xtanwo, 0 <X <cota;
=0, y=-1, Xx>cota; (3.2)
5:0, y=0, x> 0;

IVé| — 0 as Xx— oo, uniformly for —1 <y <0.

After this, 77 is given by
7(xX) = 1o sinag,(x,0), x>0. (3.3)

Hence, ¢ is the solution to the linear harmonic boundary value problem (3.2) above,
defined on the fixed semi-infinite polygonal domain D(0), and, according to (2.16),
we require

¢ € C(D(0)) U C'(D(0)\{(0, 0)}) N C*(D(0)), (3.4)
[Vé| has, at worst, an integrable singularity at (¥, y) = (0, 0) ’

We remark that a problem similar to (3.1)—(3.4) arose in the case of o = /2 with
impulsive initial motion in Wu (2001). Although the possibility of allowing |V¢| to
have an integrable singularity at (X, y) = (0, 0) violates the full regularity conditions
(2.16) on ¢ and 5, via (3.1) and (3.3), it is necessary to ensure the existence of
a solution to (3.2). The problem (3.2), which is independent of the dimensionless
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FIGURE 2. Equipotentials of ¢ when o = m/4. Lines separate regions in which (3.5),
(3.6) or (3.7) is used.

acceleration o, was considered in detail in Needham er al. (2008), where it was
established that there exist real constants A,, B, and C, (n=0, 1,2, ...) such that

. . 9 oo
Fr,0) =" £ 3 A sin (k0 a), (3.5)
CoSs o

n=0

for 0 <r<coseca, —a <6 <0, where Xx=rcosf and y=rsin6d, while

m—o

_ cosf — o
60, 8) = L2274 N, prne cos( . > (3.6)
sina
for 0<p<1,0<O<m—a, where X —cota=pcosf and y+ 1 = psin6, and

PR y) =) Ce ™ sin(k,y), (3.7)

n=0

for x > cota, —1 <y <O0. It then follows from (3.3), (3.5) and (3.7), that

1 1 =k,
nx) = 50 tan o + 50 sin o ZA,,; xola=t (3.8)
n=0

for 0 <x < coseca, and

1 o0 _
7(%) = S0 sina > Cukye™, (3.9)

n=0

for X > cosecw. Here, k,=(n+1/2)7t, n=0,1,2,....

The three expressions (3.5), (3.6) and (3.7) are used to obtain numerical
approximations to ¢ and hence 7 from (3.8) and (3.9). The approach used is to
truncate each of the three infinite series and equate partial sums at collocation points
in the intersection of domains of validity of (3.5), (3.6) and (3.7). The numerical
procedure is completed by solving the resulting linear system of algebraic equations
for the first N coefficients in each series. As in Needham et al. (2008), we choose
N =38 to achieve a sufficient level of convergence. We plot contours of ¢ in figure 2,
with lines separating regions where the numerical solution switches from the use of
one of (3.5), (3.6) or (3.7) to another, noting that there is no visible distortion of the
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FIGURE 3. The free surface elevation 7, scaled with respect to o. A circle highlights the
transition from (3.8) to (3.9).
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FIGURE 4. The coefficient A, plotted against «. The solid line shows the analytical
expression (3.10), while numerical approximations are shown as dots.

contours across these arcs. Having approximated ¢, we then obtain 7 directly from
(3.8) and (3.9). Figure 3 shows 7, scaled with respect to o, for four values of «.
The coefficient Ay in (3.5) and (3.8) (which depends solely upon «) will be of
particular interest later, when we perform asymptotic matching of the outer and inner
regions, and figure 4 shows A, plotted against «, along with the analytical expression

1 {205F(1/2+a/75) }“/2“
(¢ — 1/2) sina NEINCTES) ’

which is derived in Needham et al. (2008) and from which we obtain

Ap(a) = (3.10)

2 2 2\ T2 -1 —
Ay~ —— ll as o — 0T, A0~<a—E> as oz—>E . (3.11a,b)
T b 2 2

The dynamic pressure in the outer region has the asymptotic expansion, from (2.15)
and (3.1),
pa(X,y, ) =pX, y) + 0(), (3.12)
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as t — 07, where

Thus, the level curves of ¢ plotted in figure 2 correspond, through (3.13), to the
leading-order isobars of the dynamic pressure in the outer region. We see that, when
o <0, there is a region of low pressure close to the base of the plate, and when o > 0,
there is a region of high pressure close to the base of the plate. The effect this has
on the free surface, close to the contact point with the plate, will be considered later.

We see from (3.5), (3.6), (3.8) and (3.9) that the leading-order terms in the outer
region asymptotic expansions (3.1) satisfy the regularity requirements (2.16), except
in a neighbourhood of the initial location of the intersection point of the free surface
and the plate, at (¥, y) = (0, 0) € D(0). In particular, we have from (3.5) and (3.8) that

o(r,0) =

ino 0
PSMY L A2 sin 22 4 03, (3.14)
COoS 20

as r— 0", when —a <6 <0, and

o sin o

1
7(x) = 50 tana + A 1 T2l L o, (3.15)
o
as X — 0*. It follows from (3.14) that
IVo(r, )| =seca + OF™* 1y, (3.16)

as r —> 0, when —a < 0 < 0. Equation (3.15) reveals a weak singularity in 7' (X)
as X — 0. Further investigation reveals that this singular behaviour is compounded
in successively higher-order terms in the asymptotic expansions (3.1) in the outer
region, and so the regularity conditions (2.16) fail to be satisfied by the outer region
asymptotic expansions (3.1) in a neighbourhood of the initial contact point of the free
surface and the plate, where (¥, y) =o(1) as ¢t — 0. This requires the introduction of
an inner region in order to capture the full regularity in the neighbourhood of the
intersection point of the plate and the free surface.

4. Inner region as t— 0
We now consider the inner region in the solution to [IBVP] as ¢t — O%.

4.1. Inner region structure

We have (%, y) = O(8(r)), with §(t) = o(1) as t — 0T, in the inner region. It then
follows from (3.1) and (3.15) that n = O(*) as t — 0% in the inner region, so that,
to capture the free surface in the inner region, we must take §(¢) = O(#*); therefore,
without loss of generality, we set §(f) =#>. An examination of (3.1) and (3.14) then
requires that ¢ = O(#’) as t — 0" in the inner region, while (3.12) and (3.13) require
that p; = O(f*) as t — 0" in the inner region. Thus, we introduce the scaled inner
region coordinates (X, Y) by the transformation

T=rX, y=~rY, (4.1a,b)

where (X, Y) =0(1) as t — 01 in the inner region. The location of the plate in the
inner region is given by Y = —X tan o, and the contact point is denoted by (X, Y) =
(X, (1), Y,(1)), with X,(t) = *X,(t) and y,(1) = Y, (7).
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We now write the free surface and velocity potential in the inner region as

nX,n=>rmX,n, X=X, t=>0; “2)
X, Y, )=P¢(X, Y, 1), X=X,(1), —Xtana <Y <n(X, 1), t=0, ’

where n;(X, 1), ¢;(X, Y, 1) =0(1) as r— 07, after which we introduce the inner region
asymptotic expansions as

(X, 1) = o(X) + 725(X) + 0(/*2), } 4.3)

PX, Y, 1) =do(X, Y) + 7/ 2p(X, ¥) + o(t™/*7?),
as t — 0% in the inner region, where the form of the correction terms has been

deduced from (4.1), together with (3.1), (3.5) and (3.8). It then follows from (4.1)
and (4.2) that the free surface in the inner region is located at

Y=nX,1n, X=>X,/), 4.4
and hence we must expand
X, (1) =Xo + 772X, + o(t™*7?),  Y,(t) = —X,(t) tan o (4.5a,b)

as t— 0%,

We now write [IBVP] in terms of the inner coordinates and variables, and substitute
from (4.3). The leading-order problem, when supplemented with matching conditions
to the outer region (obtained through the use of Van Dyke’s matching principle (Van
Dyke 1964)), has the solution (see Gallagher 2015)

do(X,Y)=o0 tanc [Y—%(%—l—atana)], X >X,, —XtanozgYS%tanoz, (4.6)
no(X)=1otana, X >Xo, 4.7

where
Xo=—10. (4.8)

It then follows from (4.6) and (4.7), on using (4.1)-(4.3), that the regularity conditions
(2.16) are satisfied at leading order in the inner region. We now formulate the problem
at O(t/*~%), where it is convenient to introduce coordinates (X, Y) according to

Xz—%a + X, Y=%a tana + Y, (4.9a,b)

which is simply a shift of origin from the original inner coordinates (X, Y). We then

write ~ N
¢ =A¢o sinap, 1n=Ay0 sinan, (4.10a,b)

with the Aypo sin o scaling chosen for algebraic convenience. We now obtain the
problem for ¢, 7 and X, as

Vig=0, X>0, Xtana <Y <0; (4.11)
V¢-n=0, X>0, Y=—Xtane; (4.12)
Xy —r=0, X>0, Y=0; 4.13)
o
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<1+£>$—2X$y+(l+atana)ﬁ=0, X>0, Y=0; (4.14)
(07
O(R,0) = R cos E(0 +a) + o(ﬁn/za) as R— oo, —a<0<0; (4.15
o
7(X) = 41)?"/2“" FoX™y a5 X — oo (4.16)
(04

Here, V = (3/9X, 9/3Y), the final conditions (4.15) and (4.16) are the matching
conditions with the outer region, and we have introduced polar coordinates (R, 6),
given by X =Rcos#, Y =Rsinf. After this, we have

X, = —Ayo cos an(0). 4.17)

We now notice that in the boundary value problem (4.11)—(4.17) (which is the same
as that derived in Needham et al. (2008), where this observation was overlooked), the
dimensionless acceleration o appears only in the dynamic boundary condition (4.14)
as (1+otana). Thus, we set =1+ o tanw and, in the case that u #0, we introduce
the following scalings:

p=u™®, F=|u"*'H, X=|uX, Y=|ulY. (4.18a—d)

The corresponding boundary value problem for @X, Y) and H(X) is now
independent of u, and is reducible to a scalar linear harmonic problem in @, allowing
us to write, explicitly,

H®) =+ (2)?@2— (1+g> <p>, X>0, ¥=0, 4.19)
with + and — corresponding to u >0 and u < O respectively,
HX) = %Xﬂ/za—l Fo(X™ 1) as X - 00 (4.20)
and
X, = —Ao(@)o cos a|u|™** ' H(0), 4.21)

after which we obtain the two linear harmonic boundary value problems for ¢ alone
(depending upon whether x> 0 or u < 0), hereafter termed (PBVP)*, given by

1 1 ~
P+ =P+ ==Pyw=0, R>0, —a<0<0, 4.22)
R R
®y=0, 6=—a, R>0; 4.23)
1 i b 21\ ~ ~ —~
e Y <1+7) ®+2(1+ ) Roy —4RRPpz), 6=0, R>0;
R o o o
(4.24)
DR, 0) = —R"*cos 1/2a(0 +a) + o(R**) as R— oo for —a < < 0.
(4.25)

Here V = (8/8)?, 8/817), (IAQ, 0) are polar coordinates given by X=Rcos6 and ¥ =
R sin 0, and the 4/— sign in (PBVP)* corresponds to the cases i >0 and u <0
respectively.


https://doi.org/10.1017/jfm.2018.4

https://doi.org/10.1017/jfm.2018.4 Published online by Cambridge University Press

120 M. T Gallagher, D. J. Needham and J. Billingham

4.2. Analysis of the boundary value problem (4.11)—(4.17)

The full regularity conditions (2.16) on [IBVP] require regularity conditions on each
of (PBVP)* (and then on H through (4.19)), namely

@ eCH(T)NCHT), HeC' (0, c0)), (4.26a,b)

where T = {(ﬁ, 0) ‘R> 0, —a <6 < 0}. It is worth observing here that for fixed o €
(0, /2), the scaling (4.10) reflects a change of sign as o changes sign. However, the
scaling (4.18) indicates a change in structure as p changes sign and the dimensionless
acceleration of the plate in withdrawal has o < —(tana)~".

We begin by examining whether (PBVP)* will admit a solution local to the tip of

the wedge, as R — 0, —a < 6 <0, which has the regularity required by (4.26). It is
readily established that any solution to (PBVP)* must have

DR, 0) ~ ay®y(R. 0) + > _ b,®,(R, O)R™ cos "6 +a), (4.27)
o
n=1
as R — 0, uniformly for —a < 6 <0, and some globally determined real constants
(which will depend upon «) ag, b, (n =1, 2, ...) not all zero, with @8, D, —> 1
(n=1,2,...) as R— 0, uniformly for —a <6 < 0. On substitution from (4.27) into
(PBVP)*, we obtain

~t(l+7/a)

DR, 0)=1+R cos(6 + &) + O(R?), (4.28)

o sinao

as R — 0, for —a <6 < 0. We then have, from (4.19) and (4.28),
HX) ~ +ao [— (1 n E) BY(X, 0) +2XP° (X, 0)}
. ,
+3 b (-1 { [(2;1 i 1} ®,(X, 0)X"/
n=1 o
+ 2)?117‘[/0!“'1@”5(\()?’ O)} , (429)

as X — 0. Thus, both of (PBVP)* will admit a solution with regularity (4.26) as )A(,
R — 0. Following Needham et al. (2008), we observe that both (PBVP)* admit exact
solution for the angles o =, € (0, /4], where

o

o, =——, n=1,2,.... (4.30)
2(n+1)

For (PBVP)*, we have the exact solution at e =, (n=1,2,...) given by

n+1
(R, 0)=>> (E1)"""q,R cosp(60 +a,), R>0, —a, <O <O, (4.31)
p=0

with, from (4.19),

H(X) = (£1)""a,[2p — (2n+ 3)] cos(per,)X’, X >0, (4.32)

p=0
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where a,,; =—1 and
n+1
—(1/DMn+ D! ] sinCher,)
a,= A . p=0,1,2,...,n. (433
41 pl(n+ 1= p)ln+3/2 — p)! | | cos(ker,)

k=p

Thus, when o =«,, from (4.31)—(4.33), we obtain the near-field constant a, in (4.27)

as
n+1

— @& /) ] ] sinker,)
ag = k=l , (4.34)

n

41 (n + 3/2)! T ] cos(ker,)

k=0

for (PBVP)* respectively. The simplest case occurs when n =1 and o = | = /4,
when, from (4.31)-(4.34), for (PBVP)* respectively,

0@ 6) = (Y2 Reos (4 1) = Rcos2 (64 1), R0
®="% 3 COS(+4) €08 (+4)’ =%
HX)=+L+X, X>o0.

(4.35)
For the remaining values of « € (0, w/2), we must obtain a numerical solution of
the two linear harmonic problems (PBVP)i. Here, we use a finite difference method
in terms of polar coordinates to discretise the wedge domain. The singularity of the
coordinate system at the tip of the wedge (R=0) requires that the regularity (4.26) is
enforced as R — 0, through the introduction of a near-field boundary condition given,
from the near-field asymptotic form (4.27) and (4.28), as

@y +Rtan(0 + )Pz =0, R=¢, —a <0 <0, (4.36)

with € > 0 chosen to be sufficiently small. The near-field constant ay in (4.27) is then
approximated numerically for both of (PBVP)*. We now examine the results obtained
from the numerical solution of (PBVP)® in turn.

4.3. Numerical results for (PBVP)™*

We examine the results obtained from the numerical solution of (PBVP)*. Figure 5
presents plots of the level curves of @ for « = n/4 and o = 1/6, computed using
finite differences. Values of R = 2.5 and ¢ = 10~ were found to be suitable for
implementation of the boundary conditions (4.25) and (4.36). The cases o = m/4
and o = /6 permit exact solutions for @ as given in (4.31), and we plot these in
figure 6. Comparisons show excellent agreement between these exact solutions and
the numerical solutions at least up to the scales shown on the representative graphs.
Figure 7 shows H plotted against X for a number of angles « € (0, /2), and shows
that the inner region has regularised the free surface elevation since H and its first
derivative are bounded up to the plate.
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a=m/4 a=m/6
0 0 -5
)
-05 -0.5 -10
~1.0 -4 _10 —;g
7 15 -6 -15 s
-2.0 -8 20 30
25 10 25 -35
3.0 L, 30 —ig
0 1 2 3 0 1 2 3 -
X X

FIGURE 5. Contours of @ for the numerical solution of (PBVP)" when o = m/4 and
a = m/6. In each plot, a black line shows R = 2.5, after which the far-field asymptotic
form (4.25) is plotted.

a=m/4 a=m/6
0 -5
2
-05 -05 -10
~1.0 -4 10 *ég
7 15 -6 -15 s
-2.0 8 20 -30
-25 o 25 -35
-3.0 L, 30 —;‘g
0 1 2 3 0 1 2 3 a
X X

FIGURE 6. Contours of @ for the exact solution (4.31) of (PBVP)" when o =m/4 and
oa=T1/6.

In figure 8, we show plots of H(0) and Hy(0) against «. We see that as o — 0%,
H(0) — 0% and H(0) — 0%, while as o — /27, H(0) — 1/2 and H3(0) — 0". We
notice that H3(0) has a maximum value close to o = 7/4. As before, the angles that
have exact solutions are shown as circles.

Figure 9 shows a plot of the numerically determined near-field constant ay(c), as
given in (4.27), for (PBVP)* against « € (0, 7t/2), where the exact values for o =,
in (4.34) are shown as circles. The numerical evidence shows that ay(a) <O for all
a € (0, /2), with ao(o) — 0 as o — 0T, that ao(r) is monotonically decreasing as
« increases and that ay(e) - —1/6 as @« — 7/2~. The numerical solution indicates
that (PBVP)" has a unique solution, which we denote by & = &} (ﬁ, 0), with a
corresponding solution for H, given from (4.19), which we denote by H =H;“()?). It
follows from (4.27)—(4.29) that

@7 (R, 0) = ap() <1 %R cos(6 +a) + O(Rz)) as R— 0, —a <6 <0,

(4.37)
TE/O[)

Hf®)=— (1 + 3) ao(e) (1 X+ 0(X2)> as X >0, (4.38)
o o tan
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a=m/8 a=T1/6

100 T 20 T
51 9 15+ *
H 50 1 10 - b
| / ] 51 b
0 1 2 3 0 1 2 3

0(:]'[/4 O[=3T[/8

4 T 1.0 T T
3r 7 08 7
H 2 b 0.6 - *
1r bl 04 - b
L L L 02 L L L
0 1 2 3 1 2 3

X X

FIGURE 7. Graphs of H for the numerical solution of (PBVP)* for a selection of angles
«. In each graph, a square shows R=2.5, after which the far-field asymptotic form (4.20)
is plotted.

0.50
S
= 025 1
T
0 /8 /4 31t/8 /2
1.0 r
S
(< 8
= 0.5
0 /8 /4 31/8 /2

o

FIGURE 8. Numerical approximation to H(0) and Hg(0) for (PBVP)*. Exact values for
a=a, (n=1,2,...,10) (via (4.32)) are shown as circles.

with ap(«) as given in figure 9, and the regularity conditions (4.26) are satisfied in
the inner region; thus, no further asymptotic regions will be required in the structure
to [IBVP] as t— 0" in this case.

4.4. Numerical results for (PBVP)~

We now examine the results obtained by solving (PBVP)™ numerically. The numerical
solution reveals a rapidly changing character around values « =« (n=1, 2, ...), with
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ot
-0.04 -
S
= -0.08r
S
-0.12 1
-0.16 - ‘ ‘ ‘
0 /8 /4 31/8 /2

o

FIGURE 9. Numerical approximation to the near-field constant ao(e) for (PBVP)*. Exact

solutions for « =, (n=1,2,...,10) (4.34) are shown as circles.
o= T[/4 o= TC/6
20 0 200
a0 -2 ~400
» -600
-60 ~800
-80 -6 —1000
~100 _8 -1200
120 ~1400
-10 -1600
-140 12 ~1800
-160 -2000
0 5 10 0 5 10
X X

FIGURE 10. Contours of @ for the numerical solution of (PBVP)” when o = w/4 and
a = /6. In each plot, a line shows R = 10, after which the far-field asymptotic form
(4.25) is plotted.

o having been determined from the numerical solution, the values of which indicate

that
Bl T

=, <A, <y =,
2(n+1) . 2n

where o is taken as 1/2. Following the approach used to solve (PBVP)", we first
set the numerical parameters, choosing € = 10~*. For the angles e =a, (n=1,2,...),
where we have exact solutions, we implement the far-field asymptotic form (4.25) at
R= 10, which must then be increased as we approach each ¢ = o) (n=1, 2, ...).
As with the solution to (PBVP)*, we begin by choosing angles « = 1/4 and o = 1/6,
numerically solve (PBVP)™ using a finite difference scheme for each angle, and plot
the level curves of @ in figure 10 and H in figure 11.

It is of interest to examine the structure of the level curves of @, in both cases
a=T7/4 and o = 1/6, closer to the tip of the wedge. These are shown in figure 12.
For o = m/4, figure 12(a) reveals a stationary point (saddle) for @ on the boundary
0 = —m/4 when R~0.24. This accompanies a reversal in Vo onf=—x /4 when the
stationary point is crossed, and a change in sign of Vo - Jjon 8 =0, as can be seen

in figure 14(a), where the vector field Vo is plotted for ¢ = /4 and o = /6. For
o =T7/6, figure 12(b) reveals that there are now two stationary points (both saddles)

n=12,..., (4.39)
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()[:T[/4 (1:1'[/6
T T
200 - N
10 |- N
100 B
H 5| |
0 1 0 7
| | | |
0 5 10 0 5 10
X X

FIGURE 11. Graphs of H for the numerical solution of (PBVP)" when o = w/4 and
o =m/6. In each plot, a square shows R =10, after which the far-field asymptotic form

(4.20) is plotted.

@ 0 0.14
-0.05 0.12
-0.10 0.10

0.08
-0.15 0.06
-0.20 0.04
~0.25 0.02

0
-0.30 -0.02
-0.35 -0.04
040 -0.06

0.10 020 0.30 040

~>

A

X
b)) (x107%) (b)(i1)
0 1.0 0 06
-0.02 0.5 -0.2 04
0 _ 0.2
~0.04 05 0.4 o
V4 e -0.6
~0.06 -1.0 -0.2
-15 -0.8 -0.4
-0.08 20 -10 ~0.6
-0.10 -25 -0.8
0 0.04 0.08 0 04 08
X X

FIGURE 12. Contours of @ for the numerical solution of (PBVP)™ close to the tip of the
wedge when (a) @ =7/4 and (b) o = 1t/6. The stationary points are marked with a dot.
It should be noted that the scales in (b)(i) and (b)(ii) have been chosen to show clearly
the contours of @ close to each of the stationary points.

for @ on the boundary 6 = —m /6, when R~0.054 and R~0.61. Consequently, there

are now two reversals in V@ on 6 = —m/6, and two associated sign changes in V@ - j
on 6 =0, as can be seen in figure 14(b). An investigation of each of the angles o =,
(n=1,2,...) where exact solutions are available (given in (4.31)) reveals that when
a=a, n=1,2,...), then @ has exactly n stationary points (each a saddle point) on
6 = —a,, and, consequently, there are n sign changes in Vo. Jj on 8 =0. Significantly,
each of these sign changes leads to a zero of H(X) in X > 0. Thus, when o = a,


https://doi.org/10.1017/jfm.2018.4

https://doi.org/10.1017/jfm.2018.4 Published online by Cambridge University Press

126 M. T Gallagher, D. J. Needham and J. Billingham
a=m/4 a=T1/6

0.10 ‘ 0.0250

0.05 - 8 0.0125

ok g 0

-0.05 - . ~0.0125

-0.10 ‘ -0.0250

0 0.05 0.10 0.15 0

X

X

FIGURE 13. Graphs of H close to the tip of the wedge for the numerical solution of
(PBVP)” when o =7/4 and o = 7t/6. In each plot, circles highlight the locations of zeros
of H.

@ o e
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~0.10 NS / "
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¥ 020 \ \\\\ \\K
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~0.30 \\\
~035
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0 010 020 030 040
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4 0.6
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08
~0.08 1o
~0.10 _

0 0.02 0.04 0.06 0.08 0.10

X

2
0 02 04 06 08 1.0 1.2

A

X

FIGURE 14. The vector field V& for the numerical solution of (PBVP)™ close to the tip
of the wedge when (a) « = /4 and (b) @ = 1t/6. The reversal points are marked with a
dot. It should be noted that the scales in (b) have been chosen to show clearly the vector

field V@ close to each of the reversal points.

n=1,2,...), then H(X) has exactly n zeros in X > 0, and H(0) has sign (—1)", with
H(X)— oo as X — oc. Since H(X) is a polynomlal of degree n, then this establishes
that H (X) has exactly (n— 1) turning points in X>0. Th1s is illustrated in figure 13,
which plots H (X) for « = /4 and o = /6, close to X =0. The exact solutions to
(PBVP)™ ((4.31) and (4.32)) when o = /4 and o = /6 are plotted in figures 15
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oa=T /4 oO=T / 6
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=30 a4 -300
—40 -400
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—gg -8 ~600
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-0 -12 -900
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FIGURE 15. Contours of @ for the exact solution (4.31) of (PBVP)” when « = 7w/4
and o = 1t/6.
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0 2 4 6 8 10 0 2 4 6 8 10

<>
<

FIGURE 16. Graphs of H for the exact solution (4.32) of (PBVP)" when o =7 /4 and
a=T1/6.

and 16. Comparison between figures 10 and 11, and figures 15 and 16 shows excellent
agreement up to the graphical scales given in the figures.

The near-field constant ay(c), as given in (4.27) for (PBVP)™, is now investigated
for o € (0, /2). A careful numerical study shows, in the case of (PBVP)™, that ay(x)
has a very distinct character from that for (PBVP)", which supports our observations
earlier for the cases when o« =«, (n=1, 2, ...), and the exact polynomial solution is
available. Numerical agreement with the cases « =, (n=1,2,...) is excellent up to
the graphical scales given in the figures, and gives us confidence in the determination
of ayp(x) for « € (0, m/2). The structure of the graph of ag() for @ € (0, T/2) is as
follows.

(i) The constant aop(x) has a sequence of pairs of near resonances, between
which ay(o) rapidly changes sign, vanishing at a sequence of points o = o

(n =1, 2, ...), which are decreasing in n and approach zero as n — oo.
Moreover, ¢ =« (n =1, 2, ...) interlaces with ¢« =, (n =1, 2, ...), as in
(4.39), with o} ~ 1.41. Computed values of « for n =2, 3, ..., 10 are given

by of ~ 0.739, af ~ 0.493, oj ~ 0.378, af ~ 0.303, of ~ 0.251, a; ~ 0.214,
ag ~0.186, aj ~0.163, aj, ~0.146.

(i) Between the near resonance pairs, ao(«) is positive and monotone decreasing for
a € (af, m/2). Subsequently, ay(cr) is positive, with a single minimum point, at
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ap(@)

FIGURE 17. A qualitative sketch of the structure of ag(«) for « € (0, w/2).

values of a € (a3,,,,@5,) (n=1,2,...), while ap(a) is negative, with a single
maximum point, when o € (o}, &5, ) (n=1,2,...).

A qualitative sketch of ag(e) for « € (0, w/2) is illustrated in figure 17. Computation
shows that the consecutive stationary values of ag(c), between consecutive near
resonance pairs, approach zero as o — 0T, and ay(«) approaches a finite positive
value as o — 1/27. In addition, as each o) (n=1,2,...) is crossed, with decreasing
a, the number of stationary points (saddles) of @ on 6 = —a increases by one, and
the number of zeros and turning points of H in X >0 increases by one. At o =«
@ has a stationary p01nt (saddle) at the tip of the wedge.

For a € (af, m/2), ¢(X Y ) has no stationary points, and H (X) has no zeros but has
a single minimum point in X > 0. We note that the numerical solution of (PBVP)~,
for angles close to ¢ =« (n=1,2,...), required increasingly large values of R to
achieve suitable accuracy in the far-field boundary condition.

Denoting the solution to (PBVP)” as & = & (R, 6) (and correspondingly
H=H, ()A()), the behaviour close to the tip of the wedge is as follows.

For a € (0, m/2)\{ee} :n=1,2, ...}, it follows from (4.27)-(4.29) that

(1l + /o)~

@ (R, 0) = ap(a) (1 — Rcos(d +a) + 0(?2)) as R— 0, —a <6 <0,

o sin o
(4.40)

S L n(l — /o)< o~ ~
H-®) = (1 n 7) a@) (1+ "M% 1 0X)) as X—0.  (441)
o otan o
For a e{a:n=1,2,...}, it follows from (4.27)-(4.29) that

@ (R, 0) = by () (Temﬁ cos — (0 + ) + 0(1?‘“/“7?)) as R— 0, —a <6 <0,
n a;f;

(4.42)
H,.(X) = b, (o)) (1 - ) XY as X — 0, (4.43)
" a*

n

with b;(a;) being a globally determined real constant.
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4.5. Summary of the solution structure to the boundary value problem (4.11)—(4.16)

We are now able to summarise the results of the previous three subsections in relation
to the boundary value problem (4.11)—(4.16). We interpret these results in terms of the
parameters « € (0, t/2) and uw € R (with w =1+ o tan ). We have the following.

For >0, a €(0, 7t/2), a solution exists to the boundary value problem (4.11)—(4.16)
with the required regularity (4.26) at (X, Y) = (0, 0), given by

NG /20 5+ R -
PR, ) =pn""d7 (=, 0], R=20, —a<6<0, (4.44)
7
~Y w/20—1 7+ Y v
nX) = pn Hi (-], X=>0, (4.45)
"
where @ and H have local structure given in (4.37) and (4.38) respectively.

For u <0, ¢ € (0, m/2)\{e; :n =1, 2, ...}, a solution exists to the boundary value
problem (4.11)—(4.16) with the required regularity (4.26) at (X, Y) = (0, 0), given by

$(R’ 9) = (_M)H/ZD[@; (a» 9) ) R > Oa — < 0 < 05 (446)
—i
NX) = (—)™* 'Hy (X> . X=0, (4.47)
(=)

where @, and H have local structure given in (4.40) and (4.41) respectively.

For u <0, e €f{a):n=1,2,...}, a solution exists to the boundary value problem
(4.11)—~(4.16) with the required regularity (4.26) at (X, Y) = (0, 0), given by

$R.0)= (- D, ((% 9) , R>0,-a<6<0, (4.48)
" —K
1) = (=)™ H, (X) , X>0, (4.49)
"\ (=)

where P and H; have local structure given in (4.42) and (4.43) respectively.

The case u =0, o € (0, /2) has not been treated yet. However, it is readily
established (and anticipated by the coordinate scalings in (4.18)) that, in this
degenerate case, the solution to the boundary value problem (4.11)—(4.16), which
has the least singular behaviour at (X, Y)=(0,0), is simply given by the far-field
functions; that is,

PR, 0) = - cos 21(9 +a), R>0, —a<6<0, (4.50)
o
~ T —n/2a—1 <
A = XV X >0, 4.51)
4o

4.6. Reconstructing the inner region asymptotic expansions

In this section, we reconstruct the inner region asymptotic expansions for the contact
point, fluid velocity potential ¢ and free surface elevation 5 in terms of the inner
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region coordinates X, Y, and then consider the behaviour close to the intersection
point of the fluid free surface and the inclined accelerating plate. The corresponding
details of the inner region asymptotic expansions for the dynamic fluid pressure field
and the fluid velocity field are given in the appendix A. We must consider the four
cases u >0 with o € (0, w/2), u <0 with ¢ € (0, n/2)\{o} :n=1,2, ...}, u <0 with
ac{a:n=1,2,...} and u=0 with « € (0, /2) separately.

4.6.1. The case u >0 with a € (0, /2)

It follows from (4.5), (4.8), (4.9), (4.17) and (4.18) that the intersection point of
the plate and the fluid free surface is located at (X, Y) = (X, (1), Y, (1) = X,(t) +
(0/2),Y,(1) — (0/2) tan @), where

X, (1) = —17*2A¢(a) (r — 1) cotar cos ap ™~ HF(0) + o(£/*72), (4.52)
Yp(l‘) =1"*2Ay(a)(;t — 1) cos aun/za_lH;(O) + o(t7/*72), (4.53)

as t — 0*. We then have, from (4.2), (4.3), (4.7), (4.9), (4.10) and (4.18), that
_ 1 X
mX, 1) = E(“ — 1) + 7 Ag(e) (. — 1) cos o™ ' H T () +o(f"*7?), (4.54)
nw

for Y}Y,,(t), as t — 0%. We recall that, in the inner region, the fluid free surface is
located at Y =n;(X, t), so that in the shifted coordinates (X, Y), the free surface is
located at

Y=nX,0)—3(nu—1), (4.55)

for X > X, (7). Then, from (4.54), the free surface in the inner region is located at

o X
Y=Y,X, ) =1"*?Ag(e)(n — 1) cos ap™** ' H} () +o(t*7?), (4.56)
17

for X > X, (1), as t — 0". We next have, from (4.2), (4.3), (4.6), (4.9), (4.10) and
(4.18), that

— - - 1
¢(X, Y, 1) = (u—1) [Y—6(2—M)]

XY
+ 17240 (a) (u — 1) cos oc,u“/z"‘cb‘j ( )
T
+o(r™?), (4.57)
for X >X,(t), —Xtana <Y <Y;(X, 1), as r— 0. We now consider the structure of
the inner region asymptotic expansions close to the intersection point of the inclined

plate and the fluid free surface when (X, Y) = O(u™?*~'f/*=2) as t — 0*. We have,
from (4.37), (4.38), (4.44) and (4.45), together with (4.52)—(4.57), that

X, (1) = /2 (1 n E) Ao(@)ag(@) (1 — 1) cota cos ap™ 1 £ o(/%2),  (4.58)
o

Y, (1) = — /2 (1 n g) Ao(@)ap(@) (i — 1) cos ap ™ 4 o2, (4.59)
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o(R,0,1) = (u—1) [Rsin@ - é(Z—M)}

+ 7* 2 Ag(a)ag(a) (u — 1) cos ap™*
1 _ _
» <1 L IF O g s+ + O(Rz))
Mo sin o

+o(r™*%), for 0 <R« min(l, u), —a <6 <0, (4.60)

- 1
.0 = 5= 1D =2 (14 2 ) Ay(@ar(@) (1 — 1) cos a2
(04

l—nja)— _
x (1 _rd-n/ee O(Xz)) +o(*?),  for 0 <X < min(1, ),
o tan o

(4.61)

as t— 0% in the inner asymptotic region, with Ay(a) and ag(a) as given in figures 4
and 9 respectively. We observe from (4.60) and (4.61) that, in this case, each of the
inner region asymptotic expansions remain uniform up to the contact point, where
(X,Y) = O(u™?1¢"/*=2) Thus, the asymptotic structure as ¢ — 0, of the solution
to [IBVP], is complete in this case.

We can now draw the following conclusions concerning the free surface in the inner
asymptotic region.

(i) The contact point is located at
(%,3) = 3 (u = DPA(= cota, 1) + O™, (4.62)

as t— 0% (see (4.1), (4.5) and (4.8)).
(i) The free surface slope at the contact point is given by

=X, (1), ) = nx(X, (), 1)
o1 2
= /e (1 - 2) Ao(a)ao(a)(pn — 1) cot o cos arp ™72
o

(07
+ o(M* %), (4.63)

as t — 0T (see (4.45) and (4.54)). We see that the free surface slope is positive
when (o, u) € (0, ©/2) x (0, 1) and negative when (o, 1) € (0, t/2) x (1, 00). A
contour plot of n:(X,(t), Nr*~™*, as t — 0T, in the («, u) plane (with (o, p) €
(0, /2) x (0, 00)), is shown in figure 18.

(iii) The free surface n(X, ) is given by

Y 1 2 /o n/2a—1 + Y /o
n(X, t)=§(,u— Dte+ 1" *Ag(a) (e — D cosaH, | — | +o(t"%), (4.64)
w

as t— 0T, for X >X,(t) (see (4.2) and (4.54)). It follows from (4.64) that n(X, 1)
is monotone increasing in X > X, (r) when (o, u) € (0, ©/2) x (0, 1), while n(X, 1)

is monotone decreasing in X > X, (1) when (o, u) € (0, 1/2) x (1, 00).
When p > 1 (0 > 0), examination of (A1), (A2) and (4.64) reveals that, to leading
order in the inner asymptotic region, the acceleration of the inclined plate induces
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FIGURE 18. Contour plot of tz’”/"‘n;()?p(t), f) as t— 0T on the (a, ) plane, in the
case u > 0.

a constant vertical dynamic pressure gradient of (1 — u)j, which drives a vertical jet
close to the intersection point of the free surface and the plate of height (1/2)#* (i —1).
When O <pu <1 (—cota <o <0), we see from (A1), (A2) and (4.64) that, to leading
order in the inner asymptotic region, the acceleration of the inclined plate induces a
constant vertical dynamic pressure gradient of (1 — u)j, which causes the free surface,
close to the intersection point of the free surface and the plate, to collapse to a height

of (1/2)P(u—1).

4.6.2. The case u <0 with o € (0, 1/2)\{or; :n=1,2,...}

It follows from (4.5), (4.8), (4.9), (4.17) and (4.18) that the intersection point of
the plate and the fluid free surface is located at (X, Y) = (X,(?), Y,(1) = (X, () +
(1/2)0, Y,(t) — (1/2)0 tan ), with

X, () = —1"*Ag(e) (n — 1) cota cos a(—p) > ' H, (0) + o(r™*7?),  (4.65)
Y, (1) =72 Ag(a) (i — 1) cos a(—pw)™** 7 H, (0) 4 0(7/*72), (4.66)

as t— 0T. We then have, from (4.2), (4.3), (4.7), (4.9), (4.10) and (4.18), that

X
n/a—2
(—u)) +o(t ),
4.67)

for X > Yp(t), as t — 07. We now have, from (4.55) and (4.67), that in the shifted
coordinates (X, Y), the free surface in the inner region is located at

Y 1 /a2 /201 17—
mX, 1) = 5(# — D)+ 17" Ag(a) (u — 1) cos a(—p) H,

Y=Y,X, ) =1"*"2A¢(a)(u — 1) cos a(—p)"**'H <(X)) +o(t™*7?),  (4.68)
—p

for X > Yp(t), as r — 0. We next have, from (4.2), (4.3), (4.6), (4.9), (4.10) and
(4.18), that

— - - 1
¢ X, Y, 1) = (n—1) [Y— 6(2—,u)] + 72 Ag (@) (= 1)

x cos a(—pu) D (X,Y>+o(f‘/“—2), (4.69)
(=) (=)
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for X > X,(t), —Xtana <Y <Y;(X, 1), as t— 0*. We now consider the structure of
the inner region asymptotic expansions close to the intersection point of the inclined
plate and the fluid free surface when (X, Y) = O((—u)™?* '/*=2) as t — 0*. We
have, from (4.40), (4.41), (4.46) and (4.47), together with (4.65)—(4.69), that

X, (1) = /a2 (1 n E) Ao(@)ag(a) (i — 1) cota cos a(—w) ¥ + o(/*2), (4.70)
o

Y, (1) = —1/a? (1 ¥ g) Ao(@)ao(@) (1t — 1) cos a(—p) ™2 4 o(r /2y, (4.71)
$i(R,6,1) = (u—1) [R sin 6 — é(z - M)} + 7“2 Ag(a)ag(a) (u — 1) cos at(—p) ™

X (1 + Mﬁcos O +a)+ 0(R2)>
o sin o

+o(*?), for 0 <R < min(l, p), —a <0 <0, (4.72)
1 Tja—2 T (/20)—1
=D+ (1+ ;) Ao(@)ag(@) (i — 1) cos ar(— )

l—mje)— _
x (1 _rd-mjee 0(X2)> + o), for 0 <X <« min(1, ),
o tan o

n (Yv t)

(4.73)

as t— 0% in the inner asymptotic region, with Ag(«) and ao(«) as given in figures 4
and 9 respectively. We observe from (4.72) and (4.73) that, in this case, each of the
inner region asymptotic expansions remains uniform up to the contact point, where
X, Y) = O((—p)™?~1#7/2=2) Thus, the asymptotic structure as t— 0%, of the solution
to [IBVP], is complete in this case.

We can now draw the following conclusions concerning the free surface in the inner
asymptotic region.

(i) The contact point is located at
(%, y) = 3 (u — DF (= cota, 1) + OF™), 4.74)

as t— 0" (see (4.1), (4.5) and (4.8)).
(i) The free surface slope at the contact point is given by

=X, (1), 1) = nxX, @), 1)

n/a—2 T nz n/2a—2
=1 — 11— — Ag(a)ag(a)(n — 1) cota cos a(— )
o o

+ o), (4.75)

as t — 07 (see (4.47) and (4.67)). We see that the free surface slope is
positive when (o, p) € (i, @3, ) X (—00,0) (n=1,2,...) and negative when
(a, w) € (a3,,,,a3,) x (=00,0) (n=1,2,...) and (a, p) € (af, 7/2) x (=00, 0).
A contour plot of nx(X,(t), H*™*, as t — 0%, in the (o, w) plane (with
(o, ) € (0, T/2) x (—00, 0)), is shown in figure 19.

(iii) The free surface n(X,t) is given by

_ 1 _ (X
1X.0) =2 (= DF 7 Ag(@) (= D (=) cos a, <()) +o(™%),
—u
(4.76)
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FIGURE 19. Contour plots of 7 ™*nz(X, (1), t) as r— 0" on the (o, 1) plane in the
case u <0 with o € (af, m/a) and a € (ay o) n=1,2,...,5).

as 1 — 0T, for X > X,(r) (see (4.2) and (4.67)). It follows from (4.76) that
n(X, t) is initially decreasing, with a single turning point for « € (o}, m/2).
For o € (o}, of), n(X, t) is initially increasing, with two turning points. For
a € (a3, o], n(X, 1) is monotone increasing. For a € (a3,,, a3,) (n=1,2,...),
n(X, t) is initially decreasing and has (2n — 1) turning points. Lastly, for
ac(@;,a; ) (n=2,3,...), n(X, t) is initially increasing and has (2n — 2)
turning points.

When p <0 (0 < —cota) with @ € (0, t/2)\{of :n=1,2, ...}, examination of (A1),
(A4) and (4.76) reveals that, to leading order in the inner region, the acceleration of
the inclined plate induces a constant vertical dynamic pressure gradient of (1 — w)j,
which causes the free surface, close to the intersection point of the free surface and
the plate, to collapse to a height of (1/2)f* (i — 1).
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4.6.3. The case n <0 with e efa;:n=1,2,...}

It follows from (4.5), (4.8), (4.9), (4.17) and (4.18) that the intersection point of
the plate and the fluid free surface is located at (X, Y) = (X, (1), Y,(1) = (X,(t) +
(1/2)o,Y,() — (1/2)o tana;), with the expressions for X,,(t), Yp(t) following precisely
those in (4.65) and (4.66), with @ =«*. Similarly, the expressions for n;(X, 1), Y;(X, 1)
and ¢;(X, Y, 1) follow from (4.67)—(4.69), with o« = a*.

We now consider the structure of the inner region asymptotic expansions close
to the intersection point of the inclined plate and the fluid free surface when
X, V) =0((—p)™?a~1yv/4=2) as t — 0T. We have, from (4.42), (4.43), (4.48) and
(4.49) (recalling that ay(c;) =0),

X, () =o(™*™%), Y,(t) =o(™*?), (4.77a,b)
$R, 0,1 = (u—1) [Rsing — L2 — w)] + 0@ *R"),
for 0 < R min(1, n), —a <6 <0, (4.78)
mX, n=1u-1+ o™Xy, for 0 <X < min(1, w), (4.79)

as t— 0% in the inner asymptotic region. We observe from (4.78) and (4.79) that, in
this case, each of the inner region asymptotic expansions remains uniform up to the
contact point, where (X, Y) = o((—u)™?*~1#"/*=2), Thus, the asymptotic structure as
t— 0%, of the solution to [IBVP], is complete in this case.

We can now draw the following conclusions concerning the free surface in the inner
asymptotic region.

(i) The contact point is located at

(%, y) = 1(u — D (= cotaf, 1) + OF/*), (4.80)

n’

as t— 0" (see (4.1), (4.5) and (4.8)).
(i) The free surface slope at the contact point is given by

11X, (0, 1) =1, 3X, (1), 1) = o™/ ), (4.81)

as t— 01 (see (4.49) and (4.67)).
(iii) The free surface n(X, t) is given by

Y 1 2 /oy * n/2/ak—1 o Y
nX,n = E(M_ D" + 1% Ag(er,) (0 — D (=p) ™"~ cos o, H . =)

+ (™), (4.82)

as 1— 0T, for X > X,(1).

When p <0 (0 < —cota)) with e € {a) :n=1, 2, ...}, examination of (A1), (A6)
and (4.82) reveals that, to leading order in the inner region, the acceleration of the
inclined plate induces a constant vertical dynamic pressure gradient of (1 — w)j, which
causes the free surface, close to the intersection point of the free surface and the plate,
to collapse to a height of (1/2)7*(u — 1).
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4.6.4. The case nu =0 with a € (0, /2)

As discussed in §4.5, it is readily established that in this degenerate case, the
solution to the boundary value problem (4.11)—-(4.16), which has the least singular
behaviour at (X, Y) = (0, 0), is simply given by the far-field functions. In this case
we have, from (4.50) and (4.51), that

X,() =o(t™*?),  Y,(t)=o("*?), (4.83a,b)

$i(R.0.1) = — (Rsing — ) + 7 Ao(@) cos aR"™ cos 21(9 +a) + o),

o
for R>0, —a <6<0, (4.84)
_ — 1 1 Ja—2 T —n/2a—1 Ja—2 -
nX,)=Y,;X,t) — —=—= — " Ap(a) cosa—X +o(t"*77), for X >0,
2 2 4oy

(4.85)

as t — 0T in the inner asymptotic region. In this case we observe, from (4.84) and
(4.85), that each of the inner region asymptotic expansions remains uniform up to
the contact point, when (X, Y) = o(t/*72), provided that 0 < a < 1/4. However, for
7/4 <a < 7/2, a weak non-uniformity in derivatives (17, x, V¢;) persists close to the
contact point and, in particular, when X, Y = O(¢:/«=2/2(=/40)y 35 t — 0F. In this case,
an inner—inner asymptotic region will be required when X, Y = Q(¢"/@=2/2(=7/4a)) 4q
t — 0" in order to correctly capture the behaviour of the free surface at the contact
point.

When 0 < @ < /4, we can draw the following conclusions concerning the free
surface in the inner asymptotic region.

(i) The contact point is located at
(X, y) = =31 (— cotar, 1) + 0 (™), (4.86)

as t— 07,
(i) The free surface slope at the contact point is given by

o(t/*72), 0<a<m/4,
<X, (1), ) =n,xX, (), ) = A 4 4.87
Nz (X, (0), 1) = n;3x(Xp(0), 1) _Ao(m/ )t2+0(t2)’ Y (4.87)
V2
as t— 0t.
(iii) The free surface n(X, ) is given by
Y 1 2 T/ T —n/20-1 /o
nX,n= _Et —1"%Ap(a) cosa4—X +o(t™"), (4.88)
o

as 1— 0T, for X > X,(t) (see (4.2) and (4.85)).

When w/4 < o < m/2, we consider the inner—inner asymptotic region, where
X,Y) = O(t/«=2/20-7/40Y) a5 t — O, in the next section.
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5. Inner-inner region as t— 07 when (a, u) € (n/4, n/2) x {0}

With (a, p) € (n/4, n/2) x {0}, we set (X, Y) = O(A(?)), with A(f)=o(1) as
t — 0T in the inner—inner region. It then follows from (4.85) that Y; = (1/2) +n; =
O™ /*2A(t)™?*~') as t — 0" in the inner—inner region. The free surface must be
captured in the inner—inner region, and so we require A(¢) = O(t"), with

(/o —2)

= = (5.1)

as t — 07. Thus, we introduce scaled inner—inner region coordinates (¥, y) by the
transformation

X=1t'%, Y={7y, (5.2a,b)
where (X, y) = O(1) as t — 0" in the inner—inner region. The location of the plate
in the inner—inner region is given by y= —Xtan« and the contact point is denoted
by (x,5) = X,(1), y,(1)), with X,,(r) ='X,(t) and y,(t) = —X,(r) tan«. An examination
of (4.84) and (4.85) reveals that n,=—1/24+0") and ¢;=1/3 —t''y+ O(*") as
t— 0" in the inner—inner region. We now write the free surface and velocity potential
in the inner—inner region as the expansions

m& ) =—3+t"n@& 0, I=%,0), (5.3)
d)l(-;ga 3;’ t)=%_tr3;+t2r¢”(5€’5;v t)a 352351)(05 _%tanagyg 7711(35, t)’ (54)

where ny, ¢y = O(1) as t — 0. The inner—inner region asymptotic expansions are
then introduced as

nu (X, l):io(f)—i-o(l), (5.5)
dux,y, 1) =¢o(x,y) +o(1), (5.6)

where 7, 50 =0(1) as r— 0*. It then follows from (5.2)-(5.6) that we expand X, ()
as
%, (1) =% + o(1) (5.7)

as t — 07. We now write [IBVP] in terms of the inner—inner region variables to
obtain, at leading order, a nonlinear harmonic free boundary problem. It is convenient
to introduce the following simple transformations into this problem:

5():/{25, To=kH, X=«%, Y=KYy, F=kKT, Xo=KZXo, (5.8a—f)
where
k = (—Ag(e) cos a)"’?, (5.9)
with |
= 5.10
V=0 = w/4a) (5-10)

The resulting boundary value problem for @ and H is dependent only upon « and is
given by

~

V2P =0, %>%, —xtana <3y <H®); (5.11)
=0,

< By

@ -n ¥>%), ¥=—Xtana; (5.12)
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yH+[P: — yilH: — $;=0, T>%), y=H®); (5.13)
Qy —D® —y G +3Pp) + 12+ 102 =0, F>%. F=H®:  (5.19)
H(®,) = —% tan a; (5.15)
H®) = a1 o(xXV*7 1) as ¥ — oo; (5.16)
Ol

5(?, 0) = —7/** cos 7(0 +a)+o0F*) asF—>o00, —a<0<0; (517)
o

where V = (8/9x, 9/3y) and (7, 6) are polar coordinates given by X =7 cos 0, y =

Tsin 6. The above problem (5.11)—(5.17), hereafter termed (RBVP), is similar to that

studied by Needham et al. (2008) for « € (7/2, 7). Thus, we use the same boundary
integral method to solve (RBVP) numerically and as such do not reproduce further
details here. It is useful at this stage to obtain the form of quantities of interest in
the inner—inner region, up to numerical constants that will be fixed by the numerical
solution of (RBVP). From (5.7) and (5.8), we have

X, (1) = 31 cota +'kXo + o(1"),  y,(1) =—31F —'«kXotana +o(r"),  (5.18a,b)

as t— 0%, From (5.2), (5.3) (5.5) and (5.8), the free surface slope at the intersection
point of the free surface and the plate is given by

1, (1), 1) = Hx(Xo) 4 (1), (5.19)

as t — 0T. From (5.2), (5.4) (5.6) and (5.8), the fluid velocity at the contact point
becomes

VoG, (1), 5,0, 1) = —tj + K>V Ry, —To tan @) + o), (5.20)

as t— 0%,

Numerical solutions to (RBVP) are plotted in figures 20-24. The numerical solution
indicates that the free surface 3= H (%) is monotone increasing in X %o, for all angles
a € (n/4, t/2), with the gradient of the free surface at the contact point decreasing
with increasing « € (7w/4, n/2) and approaching zero as « — m/2. In figure 20, we
demonstrate the agreement of the numerical solution with the far-field asymptotic form
(5.16) in (RBVP). In figure 21, we present the free surface function H (%) against X for
the numerical solution of (RBVP), for a selection of angles « € (w/4, nt/2). Figure 23
shows plots of |H(%y)|cosec a, the distance from the origin of the (X, y) coordinate
system to the contact point of the free surface and the plate against o L € (/4, 1t/2)
and figure 22 shows the numerical approximations to X, H(xo) and Hﬁ(xo) against
o € (n/4, n/2). Figure 24 shows the behaviour of the free surface function very close
to the plate, presented in a rotated (x, y) coordinate system, oriented so that the plate
lies along the y-axis, for a typical angle o = 1.56. The presence of very localised
oscillations is revealed. R R

We see in figure 22(b) that H(Xp) has a minimum at o ~ 1.22, where H(Xo) ~0.392,
and that H (Xo) = 1/2 as o — m/2~. We notice that figure 22(c) indicates that the free
surface meets the plate with angle /2, for all @ € (ww/4, t/2). This is confirmed by
the local analysis of (RBVP) in Gallagher (2015). It follows from this that the gradient
of the free surface at the contact point must be given by

Bi(y) = tan (g - a) . (5.21)


https://doi.org/10.1017/jfm.2018.4

https://doi.org/10.1017/jfm.2018.4 Published online by Cambridge University Press

A uniformly accelerated plate. Part 1 139

10.0

75

HE)

A

50¢

25¢1

0 50 100 150 200 250

=>

FIGURE 20. Graph of the free surface function H (x) against X, showing agreement with
the far-field asymptotic form (5.16), for the numerical solution of (RBVP) with o =0.9,
1, 1.1, 1.2, 1.3, 1.4, 1.5 and 1.56. For each angle, a square shows s =250, after which
the far-field asymptotic form (5.16) is plotted, and a dashed line shows the location of
the plate.
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FIGURE 21. Graphs of H (%) against X for the numerical solution of (RBVP). (a) Solutions
with « =09, 1, 1.1, 1.2, 1.3, 1.4, 1.5 and 1.56; (b) solutions close to the plate with
a=1.1, 1.2, 1.3, 1.4, 1.5 and 1.56 for clarity. For each angle, a dashed line shows the
location of the plate.
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FIGURE 22. Numerical approximations to X,(c), HG(@)) and H:(Zy(er)) for (RBVP). In
(c), the curve tan(w/2 —«) is plotted as a solid line, with numerical approximations shown
as crosses.
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FIGURE 23. Graph showing the distance in the (¥,y) coordinate system from the origin of
the (X,y) coordinate system to the contact point of the free surface and the plate against
a € (nt/4, 1/2), as determined by the numerical solution of (RBVP).
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FIGURE 24. The free surface close to the plate when o = 1.56. It should be noted that
the axes have been rotated so that the plate lies along the y-axis.

In figure 22(c), we plot the numerical approximation to the gradient of the free
surface Hz(X,) at the contact point against « € (w/4, ©t/2), and compare this with
tan(w/2 — o). We notice the introduction of some noise into the solutions as o — 71 /4;
this is due to the increasing difficulty in obtaining converging solutions as « — m/4.
As mentioned above, and as shown in figure 24, the numerical solution indicates that
H(®) oscillates very rapidly very close to the contact point ¥ =X,. The amplitude of
the oscillations is very small, decreasing to zero at the contact point, and the frequency
of the oscillations increases, becoming unbounded as the contact point is approached.
This local structure is entirely analogous to that reported in Needham et al. (2008)
and can be analysed in exactly the same way. This has been performed in Gallagher
(2015) and is not repeated here.

Indeed, following Gallagher (2015), we can verify that the regularity conditions
(2.16) are now satisfied at the contact point, and the asymptotic structure is complete.
We see that the acceleration of the inclined plate induces a vertical dynamic pressure
gradient of #'j, which causes the free surface, close to the intersection point of the free
surface and the plate, to collapse to a height of —#>/2. The details in the inner—inner
asymptotic region are now complete for all pairs (o, u) € (/4, m/2) x {0}.

6. Conclusions

In this paper, we have studied the problem of a rigid plate, inclined at an angle « €
(0, /2) to the horizontal, accelerating uniformly from rest, into or away from a semi-
infinite strip of inviscid incompressible fluid, via the method of matched asymptotic
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expansions. We began in an outer asymptotic region in which (%, y) = O(1) as t —
0". Here, we established that the leading-order terms in the outer region asymptotic
expansions (3.1) for the velocity potential and the free surface elevation, ¢ and 7,
satisfy the required regularity (2.16), except in a neighbourhood of the initial location
of the intersection point of the free surface and the plate, at (x, y) = (0, 0). This
motivated the introduction of an inner asymptotic region, in which (X, y) = o(1) as
t— 07, in order to capture the full regularity in this neighbourhood. It is the structure
of the solution in the inner asymptotic region that reveals the interesting detail of the
initial development of the flow as r— 0. We found that the structure of the solution
to the problem [IBVP] in the inner region is characterised in terms of the parameters
@ and «, with the results for the solution of [IBVP] in the inner asymptotic region
falling into five distinct cases.

(1) The case (o, u) € (0, w/2) x (0, 00)

Here, we solved (PBVP)* numerically for each « € (0, m/2). We established that,
when p > 1, the free surface in the inner asymptotic region is monotone decreasing
and rising as a local jet up the plate with height (1/2)(u — 1)* + O(™%). For
0 < u <1, the free surface in the inner asymptotic region is monotone increasing and
falling as a local plunging collapse down the plate with drop (1/2)(u — 1)£*> 4+ O(™/*).
In terms of the inner region coordinates (X, Y), it follows from (A 1) and (4.52) that
on the plate in the inner region, the leading-order dynamic pressure is given by

paX, —Xtana, ) ~ 1 (u — 1)(1 + 2X tan ) + O(t™*)  for X > 0, (6.1)

as t— 0" when X = O(1). Thus, when the plate is advancing (i > 1), the dynamic
pressure on the plate increases locally to the contact point. However, when the plate
is retreating (0 < u < 1), the dynamic pressure on the plate decreases locally to the
contact point.

(2) The case (o, u) € {0, m/2)\{e}:n=1,2,...}} x (—00,0)

Here, we solved (PBVP)™ numerically for each o € (0, n/2)\{o) :n=1, 2, ...}. Pairs
of near resonances occur in a small neighbourhood of o =« (n=1,2,...). Away
from the near resonance pairs, for those « € («f, t/2), the free surface has one turning
point and is initially decreasing. For angles o € (a}, «f), the free surface has two
turning points and is initially increasing. For angles « € (a3, of], the free surface is
monotone increasing. For angles (o, ,,a5,) (n=1,2,...), the free surface has (2n —
1) turning points and is initially decreasing. For angles (a3, 5, ) (n=2,3,...), the
free surface has (2n — 2) turning points and is initially increasing. In this case, the
plate is always retreating and the free surface is falling as a local plunging collapse
down the plate, with drop (1/2)(u — 1)#* + O(#™/%). The dynamic pressure in the inner
region, on the plate, is again given by (6.1) at leading order as t — 0" when X =0O(1).
We see that the dynamic pressure on the plate decreases locally to the contact point.

(3) The case (o, w) e{a):n=1,2,...} x (=00, 0)

Here, (PBVP)™ has a stationary point at the intersection point of the free surface and
the inclined plate. Each angle « =« (n=1, 2, ...) separates the two near resonances
in each near resonance pair. The plate is retreating and the free surface drop, and
dynamic pressure on the plate, are as in case (2) above.

(4) The case (o, u) € (0, (1/4)7) x {0}
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In this degenerate case, the solution to the boundary value problem (4.11)-(4.14) in
the inner asymptotic region is simply given by the far-field forms (4.15) and (4.16),
which remain uniform up to the intersection point of the free surface and the inclined
accelerating plate. The details follow those in case (1) for 0 < u < 1.

(5) The case («, ) € (1/4)7, (1/2)7) x {0}

In this degenerate case, the solution to the boundary value problem (4.11)-(4.14) in
the inner asymptotic region that has the least singular behaviour at the contact point is
simply given by the far-field forms (4.15) and (4.16). This required the introduction of
an inner—inner asymptotic region, in which (X, Y)=o0(t"), with I' = (/o —2)/(2(1 —
1t/4a)) as t — 0T, in order to capture the full regularity at the contact point. Here,
we solved (RBVP) numerically for each o € (1t/4, t/2). We established that the free
surface in the inner—inner asymptotic region is monotone increasing and meets the
plate with a constant angle of w/2 for all @ € (/4, m/2). Oscillations are present on
the free surface in the inner—inner region. The overall details follow those for case (2).

The complex structure in the inner region, particularly when u <0, leads us to pose
the following two related questions. Is the problem [IBVP] well-posed with respect to
perturbations in initial data in the inner asymptotic region? When the problem [IBVP]
is well-posed, is it stable with respect to perturbations in initial data in the inner
asymptotic region? We shall consider these two questions in detail in the companion
paper Gallagher et al. (2018). In anticipation of the analysis in this companion paper,
we make the following observations relating to the present results, and, in particular,
relating to the emergence of a more complex structure in u <0 than that when u > 0:
from a physical point of view, when p < 1, then cases (1)-(5) reveal that in the inner
(or inner—inner) region, at leading order, the free surface plunges downwards locally
with dimensionless acceleration (i« — 1); when this acceleration is less than that due
to gravity (unity in dimensionless variables), then pu > 0, while when this acceleration
exceeds that due to gravity, then u < 0O; this indicates that well-posedness and temporal
stability may be expected when pu > 0, while a rapidly developing instability, and
even ill-posedness, may be expected close to the contact point when p < 0. Indeed,
experimental work on this problem by S. Thoroddsen, which remains unpublished, has
indicated that the initial flow close to the contact point is regular and well-resolved
when w > 0, but becomes very rapidly complex and finely structured when u < O,
which gives support to this conjecture, and, in particular, to the conclusions of the
companion paper.
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Appendix A. Reconstructing the dynamic pressure and fluid velocity fields in the
inner region

A.1l. The case pn >0 with o € (0, w/2)
An examination of (2.15) and (4.2) requires that we write in the inner asymptotic
region

paX, Y, n=rpX,Y,1), X>X,(), —Xtana<Y<Y,(X,n, 120, (Alab)
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after which we have, from (2.15), (4.2) and (4.57), the inner region asymptotic
expansion for the dynamic fluid pressure field as

v VvV 1 VvV n/a—2 /20 Yt X Y
piX, Y, 1) = E(/L — DA =2Y)+1¢ Ag(a)(u — 1) cosapu 2X0 5| = —
AN M

(XY X Y
+ 2707, < ) —(1+3) oy < >) +o@™?),  (A2)
T\ a wop

as t — 0%, with X > X, (), —Xtana <Y < Y;(X, 7). In the inner region, the fluid
velocity field is given, from (4.2) and (4.57), as

- . /a—1 /20 + Y 7 ;
gX, Y, H)=V¢ = t(u—1)j+1t Ag(a)(n — 1) cosa <Pa§ —, — ]
AN
XY
+ o ( > j> + o(™*7?), (A3)
TAM M
as r— 0", with X > X,(1), —Xtana <Y <Y;(X, 7).

A2. The case p <0 with a« € (0, n/2)\{a) :n=1,2,...}

The inner region asymptotic expansion for the dynamic fluid pressure field is given,
from (2.15), (4.2), (A1) and (4.69), as

— 1 _
piX, Y, 1) = E(M_ (1 —-2Y)

+ 172 A (@) (e — 1) cos o (— )™ (2ch <X, Y)
X\ (=) (=)

+2YDP - (X Y) — <1 +E> b (X Y))
V(=) (=) al N\ (=) (—p)
+0(t7r/a—2)’ (A4)

as t — 0%, with X > X, (), —Xtana <Y < Y;(X, 7). In the inner region, the fluid
velocity field is given, from (4.2) and (4.69), as

X.Y = / m/a—1 /20 — Y 7 .
4 Y0 = 1= Dj+ 7 @) = D eosa=p ™ (@3 (o0 =5 )i

+ @ (X Y> > + o(1™*7%) (A5)
T\ Em ) ’

as r— 0", with X >X,(1), —Xtana <Y <Y,(X, 7).

A3. The case p <0 with a ef{a;:n=1,2,...}

The inner region asymptotic expansion for the dynamic fluid pressure field is given,
from (2.15), (4.2), (A1) and (4.69), as
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— 1 -
X, Y, 0 = 5= D(1 —=2Y)

/o =2 * * /20 Y b~ X Y
4+t Ap(a,) (i — 1) cos o, (— ) 2XP . ,
(=) (=)

+ 2V, (X Y) - (1 + K) @, <X Y))
4wV \ (—p) (—p) ar) "\ (=) (=)
+0(trr/at,’;—2)’ (A 6)

as t — 0T, with X > X,(r), —X tana’* <Y < Y;(X, 7). In the inner region, the fluid
velocity field is given, from (4.2) and (4.69), as

qX, Y, 1) = t(u—1)j + 7 Ag(e) (m — 1) cos a (=)™

(2 (S ) o (o))
X\ Ew )T e e )Y
+o(t™?), (A7)

as 1— 0, with X > X,(), —Xtano* <Y <Y, (X, 1).

A.4. The case w=0 with o € (0, /2)

The inner region asymptotic expansion for the dynamic fluid pressure field is given,
from (2.15), (4.2), (A1) and (4.84), as

7] — 1
piR, 0,0 = (R sin@ — 2)
— 1“7 Ag(at) cos aR™"** cos 21(9 +a) + o(f/7?), (A8)
o

for R >0, with —a <0 <0, as t — 0T in the inner region. In the inner region, the
fluid velocity field is given, from (4.2) and (4.84), as

qR,0,1) = —fj — t”/"‘flle(a) cosaR™*™! (sin (1 _ 1) i
2« 20

_ _1 . §5) w/a+1
cos (1 2a)91) (1+ O®)) + o(r™/*+1), (A9)

for R> 0, with —a <6 <0, as t— 0" in the inner region.
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