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MULTIOBJECTIVE FRACTIONAL DUALITY

RICHARD R. EGUDO

The concept of efficiency (Pareto optimum) is used to formulate duality for multiobjective
fractional programming problems. We consider programs where the components of the
objective function have non-negative and convex numerators while the denominators are
concave and positive. For this case the Mond-Weir extension of Bector dual analogy is
given. We also give the Schaible type vector dual. The case where functions are p -convex
(weakly or strongly convex) is also considered.

1 INTRODUCTION AND PRELIMINARIES

Consider the following multiobjective fractional programming problem:

(FP): Minimise

subject to

(1) h(x)<0;

where / ; : Rn -> R, gi: Rn - • R for i = 1,2,... ,p and h: Rn -> Rm are differentiable

functions and minimisation entails obtaining efficient solutions.

Definition 1. A feasible solution x° for (FP) is an efficient solution for (FP) if there

exists no other feasible solution x for (FP) such that for some i 6 P = {1,2, . . . ,p},

9 i ( ) 9 ( ) 9 j { ) 9 j ( )
In the case of maximisation problems the signs in the above two inequalities are

reversed.

In [11], Singh gave a duality result for a class of multiobjective fractional pro-
grams (FP), where he assumed that among the denominators <7i, <72, • • • > <7p , there is
one which when multiplied by the other components (that is, fi/gi, i = 1,2, . . . , p )
gives convex functions. Also Weir [15], considered a special class of (FP) whereby all
the denominators are equal to g(x). Recently Weir [14] used proper efficienty [5], to
obtain a dual to (FP) when fi(x) > 0 and convex, and gi(x) > 0 and concave for
each i = 1,2,. . . ,p. Weir's dual [14], is simpler than Singh [ l l ] in that it does away
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with the condition of identifying a denominator which produces convex functions when
multiplied with the objective function components. It also generalises Singh [11] in the
sense that a program which satisfies Weir conditions [14] may fail to satisfy conditions
required by Singh [11]. Weir's dual [14] is an analogue of the Mond-Weir [8] extension
of the Bector dual [2] in the single objective non-linear programming case.

In this paper we use the concept of efficiency (Pareto optimum) rather than proper

efficiency to formulate duality between (FP) and the following two multiobjective non-

linear programming problems:

Weir type dual.

(FDD: .fc^f/iMAM ..ifej
«,r,y \gi{u) g2(u) 9p(u)

subject to

(2)

(3) ylh{u) = 0

(4) y > 0
p

(5) ^ 0 , t = l ,2 , . . . ,p , J2Ti = 1

and

Schaible type dual.

(FD2): Maximise (A1,A2,. . . ,AP),

subject to

p

(6) Y, Ti(V/i(tt) - \i9i(u)) + Vy'hU) = 0
t=i

(7) ilM = X 1 = 1,2,...,?
9iW

and (3) to (5).
The program (FD1) is slightly more general than Weir's dual [14] in that we no

longer require all the objective component multipliers r, 's to be strictly positive but
they should be non-negative with at least one of them strictly positive. This relaxation
is possible because instead of using proper efficiency we use efficiency to formulate
duality relations between (FP) and (FD1). The program (FD2) is our multiobjective
analogue of the Mond-Weir [8] extension of the Schaible [9, 10] dual in a single objective
optimisation.

The following result will be required in the proofs of strong duality results.
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LEMMA 1. x° is an efficient solution for (FP) if and only if x° solves

(FPfc(r
0)): Minimise i± f i

subject to

h(x) ^ 0,

where ej = fj(x°)/gj(x°); for each k = 1,2,. . . , p .

The proof of Lemma 1 is the same as the proof of Theorem 4.1 of Chankong and

Haimes [3].

If gj(x) > 0, for each j = 1, 2 , . . . , p , then FPfc(e°) can be rewritten as

Minimise
' 9k{x)'

subject to

fj(x) -e°jgj(x)<0 for all j * k,

h(x) < 0.

LEMMA 2. Assume that gj(x) > 0 for each j - 1,2,. . . ,p in (FP). Then x° is an

efficient solution of (FP) if and only if x° solves FP'k (e°) for each k = 1 ,2, . . . , p .

PROOF: Let x° be an efficient solution for (FP) and suppose that x° does not
solve FP'fc(e°) for some k 6 P = {1 ,2 , . . . , p } . Then there exists a feasible x for (FP)
such that

m h(x) ? / f c ( a : 0 )

1 ^ 9k(x) ^ M (*»)

and

(9) /,-(*) - e°j9i{x) ^ 0 for all j £ k.

Since gj(x) > 0 for all j — l , 2 , . . . , p , we rewrite (9) as

(10) ^ T < £ ? = ^ Y f o r a l i ; ^ .
9 { x ) ] 9 { x ° )
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Now (8) and (10) contradict the efficiency of x° for (FP).

To show the converse, assume that x° solves FP'fc(e°) for all k £ P. Then there

is no feasible x in (FP) such that for some k £ P

fk(x) fk(*°)

9k(x) 9k(x°)

and

which is the definition of efficieny of x° for (FP). R

2 WEIR TYPE DUALITY

In this section we prove weak and strong duality results between (FP) and (FDl).

THEOREM 1 (WEAK DUALITY). Assume that for all feasible x in (FP) and all

(•w, T, y) in (FDl), fi is non-negative and convex, gi is positive and concave for each i =

1,2, . . . ,p; and that ylh is quasiconvex at u . If also either of the following hypotheses

holds:

(a) T{ > 0 for all i S P = {1, 2 , . . . ,p} ,

(b) Y] T{———- is strictly pseudoconvex at u;
t=l 9i{*)

then the following cannot hold:

(ID m<m£ortJlj€p
9j\x) 9j{u)

and

(12) —T—- < —r—r for some i £ P.
9i(x) 9i{u)

PROOF: Since x is feasible for (FP) and (u,r,y) is feasible for (FDl) 3/4/I(.T) -

t/'/i(w) ^ 0; and since yih is quasiconvex at w, this inequality implies

(13) [x - *i)t'Vy
th(u) S 0.

Applying (13) to (2) we obtain

(14)
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Now suppose contrary to the result of the theorem, that (11) and (12) hold. From

hypothesis (a) it follows that

(15) n < Ti for some i € P
9i(x) 9i\u)

and

Also from fj(x) > 0 and gj(x) > 0 for all j £ P it follows tha t Tj^j^-, j = 1 , 2 , . . . , p
9j\x)

are pseudoconvex (see [1, 6] for example).

Hence (15) and (16) imply

which contradicts (14).

Applying T; ̂  0, i = 1, 2 , . . . ,p (since T is feasible in (FDl)) to (11) and (12) we

obtain

(17) lLTi^\

Hypothesis (b) and (17) now imply

p

(x - ul '

again contradicting (14). fl

R e m a r k 1. Weir [14] proved a similar result but he considered the case where only

hypothesis (a) holds.

COROLLARY 1. Let the conditions of weak duality (Theorem 1) hold. Then if

( ( I ° , T ° , J / 0 ) is a feasible solution for (FDl) such that u° is also feasible for (FP), then

u° is efficient for (FP) and {u.0,T°,y0) is efficient for (FDl).

PROOF: The proof is by contradiction. Suppose that u° is not efficient for (FP),

then there exists a feasible x in (FP) such that for some i G P = {1 ,2 , . . . ,p}
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and
fj(x) < />(«")
- y r ^ —TTT f o r all ; G -P.

Now since ( U ° , T ° , </°) is feasible for (FDl), these inequalities contradict the weak du-

ality (Theorem 1) result. Therefore u° must be an efficient solution for (FP). Similarly

assuming that (tt° ,T°, j/°) is not efficient for (FDl) leads to a contradiction; hence

(t6°,r°,j/0) is efficient for (FDl) . |

THEOREM 2 (STRONG DUALITY). Let x° be an efficient solution for (FP) and

assume that x° satisfies a constraint qualification [1, 6] for FkP(£°) for at least one

k = 1,2,...,p. Then there exists r° G RP and y° G Rm such that (x°,r°,i/0) is a

feasible solution for (FDl). If also weak duality (Theorem 1) holds between (FDl) and

(FP) then (x°,T°,y0) is an efficient solution for (FDl).

PROOF: Since x° is efficient for (FP), from Lemma 1, x° solves FP fc(e°) for each

k G P ~ {1,2,.. .p} . By hypothesis there exists a k G P such that x° satisfies a

constraint qualification for FPfc(e ) . From the Kulin-Tucker necessary conditions [1,

0] there exist T; ̂  0 for all i ^ k, and y > 0 G R"1 such that

(19) yth(x°)=O.

Dividing all terms in (18) and (19) by 1 + J2 ri a n d setting T£ = —— > 0,

T° = ^ — ^ 0, and y° = —— ^ 0, we conclude that (x°,T°,y°) is a

feasible solution for (FDl). Since weak duality (Theorem 1) holds between (FP) and

(FDl), efficiency of (x°,T°,y0) for (FDl) now follows from Corollary 1. |

3 SCHAIBLE TYPE DUALITY

Iii this section we prove weak and strong duality results between (FP) and (FD2).

As in the previous section we assume that the numerators of the objective function

components are non-negative and the denominators are strictly positive. The results

will be given for convex, p-convex and quasiconvex functions.

Definition 2. A function / : R" —> R is p-convex, [12, 13], if there exists a real

number p such that for each x, u G Rn and 0 < A £ 1,

f(Xx + (1 - X)u) < A / ( x ) + (1 - X)f(u) - pX(l- X)\\x - u\\2.
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For a diiferentiable function / : Rn —> R, / is ^-convex [13] if and only if for each

x,u e Rn

f(x) - / ( « ) >{x- uYVf(u) + p \ \ x - u\\\

When p is positive / is said to be strongly convex [13] and if p is negative it is said

to be weakly convex; and of course / is convex if p = 0.

THEOREM 3 (WEAK DUALITY). Assume that for each feasible x for (FP) and

eacii feasible (u,r,y) for (FD2); fi(x) > 0 and convex, gi(x) > 0 and concave for each

i = 1,2,... , p ; and that ylh is quasiconvex at u. If either of the following holds:

(a) Ti > 0 for all i G P = {1, 2 , . . . ,p} ,
p

(b) J3 Ti(fi ~ ^i9i) JS strictly convex at u;

then the following cannot hold:

(20) lM<lM{oiailjep
9j{x) 9}{u)

and

PROOF: From the feasibility of x and (U,T,y) in (FP) and (FD2) respectively, we

have ylh(x) — ylh(u) ^ 0; and since j/'/i is quasiconvex at u, this inequality implies

(22) 0 - u)'Vy'/i(tt) < 0.

Now suppose contrary to the result of the theorem, that (20) and (21) hold for some

feasible x for (FP) and (u,r,y) for (FD2). But ?-^\ = Xj and gj(x) > 0 for each
9j(u)

j' = 1,2,... ,p . So that (20) and (21) can be rewritten as

(23) fj(x) - Xm(x) < /,•(«) - Xj9j(u) for all j G P

and

(24) fi(x) - Xigi{x) < /((it) - Xi9i(u) for some i G P

respectively. If hypothesis (a) holds, that is, r,- > 0 for each j G P then (23) and (24)
imply

(25) Tj{fj(x) - Xj9j(x)) < rjifjiu) - Xjgj(u)) for all j G P
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and

(26) n(fi(x) - Xi9i(x)) < n(fi(u) - Xi9i{u)) for some i G P

respectively. From Xj ^ 0, Tj > 0 and the convexity of /_,- and — gj for each j E P
we know that Tj(fj{») — Xjgj(»)) is convex for each j G P . Therefore inequalities (25)
and (26) imply

p

(27) (x - «)' Y, ^V(/i(tt) - \i9i(u)) < 0.

Adding (22) to (27) we obtain

(x - «)* (J2 T-.-V(/.-(«) - Atf(u)) + Vy'^u)) < 0,

contradicting (6).

If hypothesis (b) holds, then we apply TJ > 0, j = 1, 2 , . . . ,p (since T is feasible
in (FD2)) to (23) and (24) to obtain

p p

(28) ]T Tj(fj(x) - Xjgj(x)) Z

p
Now apply the strict convexity of y) Tj(fj{*) — ^j9j(m)) to (28) to obtain

p

(x - u)1 J^ TjV(fj(u) - Xj9j(u)) < 0

which when added to (22) contradicts (6). R

THEOREM 4 (WEAK DUALITY). Assume that for all feasible x for (FP) and all
feasible (u,r,y) for (FD2), fi{u) ^ 0 and p, -convex and -gi(*) < 0 and a;-convex,
for each i = 1,2,.. .,p; and that hj is jj -convex for j = 1,2,... ,m. If also either of
the following is satislied:

(a) n > 0 for all i G P = {1, 2, . . . ,p} and £ T,(PI- + A,<7,) + f; yj7j ^ 0 ,
1=1 ;=i

(b) E ^(/». + Ai(7,-) + E 2/y7> > 0 ;
i=i

tiieji <7ie following cannot hold:

(29) M E l < Z i ^ l = A . f o r a i / j e p
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and

(30) liQ < li^l = Xi for some i e P

R e m a r k 2. Hypothesis (a) says that if the objective function component multipli-

ers are strictly positive, then the positive linear combination of numerators minus the

non-negative linear combination of the denominators plus the non-negative linear com-

bination of the constraints should be either convex or strongly convex. Hypothesis (b)

says that the non-negative linear combination of the numerators minus the non-negative

linear combination of denominators plus the non-negative linear combination of con-

straints should be strongly convex. The convexity conditions here are weaker than those

in Theorem 3 in the sense that some functions can be weakly convex provided that the

resultant linear combination is convex or strongly convex.

PROOF: Suppose contrary to the result, that (29) and (30) hold. Then if T, > 0

for all j £ P, (29), (30) and gj(») > 0 imply

p p

(31) Y.Tjifjix) - Xjgj(x)) < j > , - ( / » - Xi9j{u)).
j=i j=i

Also if TJ ;> 0 for each j £ P then again (29), (30) and gj(-) > 0 imply

p p

(32) J2 TiV>(*) ~ Xi9j(*)) ^ £ T,-(/,-(«) - Xj9j(u)).

Now from Tj ̂  0, Aj: ^ 0, /_,- is pj -convex and — gj is <jj -convex for each j £ P
p p

we know that ^ Tj(fj(*) - ^j9j{*)) ls 2 Tj(pj + Xj(Tj)-convex. Hence (31) and (32)
j=\ j=\

imply

(33) (x -«

and

p p

(34) (* - u? J2 TjVifjiu) - Xj9j(u)) + J2 rjiPj + XJ<TJ)\\X - u\\2 < 0.

Also since x is feasible for (FP) and (u,r,y) is feasible for (FD2), we have ylh(x) —
p

yth(u) ^ 0 and from the V yjfj-convexity of ylh{*) we obtain

(35) (x - ufVjhiu) + JT yjlj\\x - U||2 < 0.
7=1
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Adding (35) to (33) gives

/ J T J V ( / J ( M ) - Aj-<;j(it)) + Vylh(u)

( p m

X^fo + VjO + Z^™ ] <
Adding (35) to (34) yields

(x - «)'(X!T>V(/>(«) - ^>(«

Now applying hypothesis (a) to (36) and applying hypothesis (b) to (37) we obtain

(x - uf J2 TJV(/,-(«) - Xj9j(u)) + Vy'hiu) < 0;

which contradicts (6). |

THEOREM 5 (WEAK DUALITY). Let the conditions of Theorem 4 hold except that.

ylh be quasiconvex and hypothesis (a) and (b) become

{&') TJ>0 for all j G P and J2Ti(Pj + - V J ) ^ ° >

( b ' ) Z Tj(pj + XjtTj) > 0 .

then the result of Theorem 4 holds.

PROOF: The proof is similar to that of Theorem 4 except instead of using the
in

X! Vjlj -convexity of ylh we use its quasiconvexity and instead of hypotheses (a) and

(b) we use hypotheses ( a ' ) and ( b ' ) . R

COROLLARY 2. Assume that weak duality (Theorem 3, 4 or 5) holds between

(FP) and (FD2). If (u°,T°,y0) is a feasible solution of(FD2) such that u° is a feasible

solution of (FP), then u° is an efficient solution of (FP) and (i(.0,T°,y0) is an efficient

solution of(FD2).

PROOF: The proof is similar to that of Corollary 1. |
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THEOREM 6 (STRONG DUALITY). Let x° be an efficient solution of (FP) and

assume that x° satisfies a constraint qualification [1, 6] for FP'k[e°) for at least one

k = 1,2,... , p . Tiien there exist r° G Rp and y° G Rm sucii that (x°,T0,y°) is feasible

in (FD2). If also weak duality (Theorem 3, 4 or 5) holds between (FP) and (FD2), then

(x°,T°,y°) is efficient for (FD2).

PROOF: Since x° is efficient for (FP), from Lemma 2 we know that x° solves
FP'fc(f°) for each k ~ 1,2,... , p . By hypothesis x° satisfies a constraint qualification
[1, 6] for FP'fc(f°) for some k G P = {1,2, . . . , p } . From Kuhn-Tucker necessary
conditions [1, 6] there exist j / > 0 £ Rm and ry > 0 for all i ^ A; such that

(M) v ^ | + E

(39) y'hix0) = 0.

Now we set. Â  = — ' and \°- = e°- — -!——'- , j jL k and rk = . Then
9k(x ) J 9j(x ) gk(x°)

Now dividing both sides of equations (38) and (39) by 1 + gk(x°) V TJ

and setting

^ 0, for all t ^ fc,

y 0 -
y

then (so ,T°,y0) is a feasible solution of (FD2). Efficiency of (z°,T°,y0) for (FD2) is
now immediate from Corollary 2. n
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