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Abstract
Brown adipose tissue (BAT) has recently been given more attention for the part it plays in obesity. BAT can generate great amounts of heat
through thermogenesis by the activation of uncoupling protein 1 (UCP-1), which can be regulated by many environmental factors such as diet.
Moreover, the build-up of BAT relates to maternal nutritional changes during pregnancy and lactation. However, at present, there is a limited
number of studies looking at maternal nutrition and BAT development, and it seems that the research trend in this field has been considerably
declining since the 1980s. There is much to discover yet about the role of different fatty acids on the development of BAT and the activation
of UCP-1 during the fetal and the postnatal periods of life. A better understanding of the impact of nutritional intervention on the
epigenetic regulation of BAT could lead to new preventive care for metabolic diseases such as obesity. It is important to know in which
circumstances lipids could programme BAT during pregnancy and lactation. The modification of maternal dietary fatty acids, amount and
composition, during pregnancy and lactation might be a promising strategy for the prevention of obesity in the offspring and future
generations.
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There is substantial evidence suggesting that the perinatal
nutritional environment has profound implications for the
development and long-term health outcomes in the off-
spring(1–3). This may be a consequence of ‘fetal programming’,
a phenomenon that describes the adaptive responses of the
offspring to the environmental cues during the initial phases of
life(1,2).
Fetal metabolic programming occurs because of the modu-

lation of gene expression mediated by epigenetic mechanisms
that can permanently affect the structure and functions of
tissues and organs, changing the number, distribution and
differentiation of different cell types(3). The higher plasticity rate
and sensibility to the environmental changes generate a unique
genetic opportunity, which can influence the phenotype(4).
Since the past decades, a plethora of epidemiological and
experimental evidence supports the allegation that fetal and
early postnatal timings, compared with other phases of life, are
paramount to establish the susceptibility for non-communicable
chronic diseases such as obesity(5,6).
Therefore, the early-onset and increased rates of obesity seen

nowadays should not be attributed to genetic and/or environ-
mental factors alone. It is well known that obesity has a

multifactorial and complex aetiology, which derives from an
energy imbalance – when energy intake is greater than energy
expenditure. Obesity is defined by adipose tissue storage and
white adipose tissue (WAT) expansion that occurs through
adipocyte hypertrophy and hyperplasia(7). WAT is recognised
by its secretory capacity and role in the energy homoeostasis for
storing TAG when energy exceeds or releasing free fatty acids
(FFA) when there is an energy deficit(8). On the other hand,
brown adipose tissue (BAT) is recognised by its thermogenic
function, but also plays a role in the energy homoeostasis and
could contribute to obesity control(9).

Obesity, considered a pandemic disease, has more than
doubled since 1980. It is one of the greatest challenges of public
health care in the world(10). The increased consumption of red
meats, refined cereals, industrialised and fried foods, which are
characteristics of a Western diet, low in fibre, high in fat and
carbohydrates of poor quality, contributes to increasing these
indices(11).

Diet, besides its impact on health and disease, can also
influence the offspring’s phenotype, depending on what the
mother ate during gestation and lactation periods(1–3). Experi-
mental models showed that it is expected to find phenotypes of

Abbreviations: BA, brown adipocytes; BAT, brown adipose tissue; UCP-1, uncoupling protein 1.

* Corresponding author: L. P. Pisani, fax +55 13 38783700, email lucianapisani@gmail.com

British Journal of Nutrition (2018), 120, 619–627 doi:10.1017/S0007114518001629
© The Authors 2018

https://doi.org/10.1017/S0007114518001629  Published online by Cam
bridge U

niversity Press

mailto:lucianapisani@gmail.com
https://doi.org/10.1017/S0007114518001629
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0007114518001629&domain=pdf
https://doi.org/10.1017/S0007114518001629


body weight loss in the neonate and obesity and cardiometa-
bolic risk in the offspring whose maternal diets were poor in
proteins(12), rich in fats(13) and Western diet style(14), respec-
tively. A similar process occurs between diet and BAT: diet can
stimulate(15) and programme the development of this tissue, as
it can act directly on the uncoupling protein 1 (UCP-1)(16). The
epigenetic mechanisms are possibly the main explanation for
the potential evolutionary reasons that offspring BAT might be
programmed by maternal diet(17). Researchers revealed that
foods typical of a Western diet – for instance, margarine – were
related to impaired BAT function and UCP-1 activation in
experimental models of fetal programming(18); similar outcomes
were found in adult animals(19).
In BAT, the mitochondrial inner membrane holds UCP-1,

which is the main factor responsible for thermogenesis. The
mechanism of action of UCP-1 is to uncouple oxidative phos-
phorylation from an ADP molecule, resulting in greater oxida-
tion of substrates, and heat production(20). During cellular
respiration, the uncoupling of oxidative phosphorylation
represents 20–50% of all energy expended by the mitochondria
of a normal functioning cell(21). Under conditions of controlled
cold exposure, estimates are that 60 g of BAT could contribute
to up to 20% of heat production in humans(22).
Seemingly, there exists a direct relation among balanced diet,

UCP-1 metabolism and fetal BAT programming, as well as a
potential connection between an inadequate diet and impaired
BAT function, which may be correlated with the onset of obe-
sity. Therefore, we question what might be the real action of the
fatty acids on the BAT. Also, we wonder whether different fatty
acids might modulate BAT and UCP-1 differently and how
strong is the evidence that fatty acids from the maternal diet
could programme BAT in experimental models. In addition,
research investments on fetal programming concerning BAT
may represent a relevant way to tackle obesity and its comor-
bidities. Therefore, this review brings to light the relation of fetal
programming mediated by fatty acids on the offspring BAT.

Methods

We have selected published manuscripts from 1988 to 2018, in
the English language, using a combination of the following
index terms: brown adipose tissue, uncoupling protein 1, fetal
programming and fatty acids. Five databases of published
literature were used: PubMed, Cochrane Library, EMBASE,
Medline and ScienceDirect.

Brown adipose tissue

It was once believed that BAT was only present in hibernating
animals, rodents and newborns(23). The interest in BAT grew
after studies found it in adult humans, which inversely corre-
lated with BMI(24). Increased BAT and UCP-1 activity are also
related to glucose and lipid metabolism improvement(9,25). In
newborns, BAT is responsible for non-shivering thermogenesis,
assuring an efficient adaptation to the environment, preventing
hypothermia and possibly neonatal death(23). Consequently, the
uncoupling oxidative phosphorylation process is paramount in

the regulation of energy balance in many developmental
phases (Fig. 1).

Uncoupling protein-1 activation rate in BAT depots vary
according to the fatty acid availability and flow into the cells(26).
For this reason, there is a potential for dietary fatty acids to act
on the fetal BAT and UCP-1 activation. It is acknowledged that
BAT depots and UCP-1 differ between species and with
age(27,28). There are differences in the main BAT depots at birth
between different animal species. In rats, BAT is found mainly
in the interscapular region and small quantities at birth, which
reaches its capacity to produce heat only after birth(29). In
human babies, there are huge BAT depots, and these are
located in the supraclavicular and neck, pericardium and peri-
renal regions. Moreover, they also have an axial BAT depot(30).

Distinct from WAT, BAT is characterised by multilocular lipid
droplet phenotype, higher mitochondrial density and lower
secretory activity. Regarding cell lineage, brown pre-adipocytes
derive from cellular precursors that express encoding myogenic
factor5,ageneexpressed inmyogeniccell lineage(31).Despite their
differences in functionanddevelopment, theyhave incommonthe
primary adipogenesis regulators, which are transcriptional factors
such as peroxisome proliferator-activated receptor (PPAR) and
CCAAT-enhancer binding proteins (C/EBPp)(32).

Regulation of brown adipose tissue thermogenesis
by dietary fatty acids

Brown adipose tissue is highly vascularised and innervated by
the sympathetic nervous system, and its response varies
depending on the nature of the external stimulus, such as age,
sex, genetics and also diet(33). One of the first works published
in 1988 showed that 48 h of fasting reduced interscapular BAT
depots and UCP-1 gene expression, and lowered the thermo-
genic capacity in adult mice. Moreover, a refeeding period of
10–15 d was enough to re-establish normal thermogenic capa-
city in the animals, highlighting a pivotal role of the diet in the
functioning of this tissue and the activation of UCP-1(34).

Despite diet-induced thermogenesis being a controversial
subject in the literature(35), there is not yet a consensus about
which nutritional cue may activate UCP-1 in BAT. However,
vitamin A(36–41), some amino acids such as L-arginine(42) and

Activation of UCP-1

Non-shivering thermogenesis
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Fig. 1. Mechanism of action of uncoupling for the prevention of neonatal death
and metabolic adult diseases. BAT, brown adipose tissue; UCP-1, uncoupling
protein 1.
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L-ornithine(43), some bioactive compounds such as anthocya-
nins(44), resveratrol(45–47), isoflavones(48,49), catechins(50–52) and
flavonoids(53) may stimulate UCP-1 in adult rats BAT. Because
fatty acids sustain lipid oxidation and act as uncouplers of
mitochondrial oxidative phosphorylation, thus increasing ther-
mogenesis(54,55), a plethora of experimental model studies are
now investigating how dietary fats activate UCP-1 in BAT.
Authors have shown positive regulation of UCP-1 mRNA and

protein levels in the BAT of adult rats and young mice, after a
high-fat diet intake(19,57,58). However, higher UCP-1 gene
expression not always means lower adiposity and weight
gain(37,41,59). A recent study showed that a high-fat diet during
lactation causes increased weight gain, body fat depots and
UCP-1 gene expression in offspring BAT after weaning(59). In
addition, the transcription of other genes involved in the ther-
mogenesis, such as positive regulatory domain containing 16
(PRDM16), PPARγ coactivator 1α (PGC-1α), cell-death-inducing
DNA fragmentation factor A-like effector A (CIDEA), cyto-
chrome c oxidase subunit 7-α (COX7) and elongation of very-
long-chain fatty acids like 3 (ELOVL3) was unaltered in BAT.
Moreover, when these animals were exposed to cold, they
showed reduced UCP-1 gene expression, suggesting a decline
in the cold-induced adaptive thermogenesis. During adulthood,
they showed reduced UCP-1 gene expression and the above-
cited thermogenesis markers in BAT(59). The authors concluded
that a high-fat diet damaged the thermogenesis in BAT, and it
has been associated with persistent adiposity and the devel-
opment of metabolic syndrome in adulthood(59). Therefore,
evidence indicates that high lipid levels could propitiate a
momentary increase of UCP-1 in the offspring, albeit it does not
overcome the adiposity that this diet can cause(60).
Supplementation with 30% of olive oil, rich in MUFA, for 28 d

reduced body weight and weight gain, and increased UCP-1
gene expression in BAT of 7-month-old male Sprague–Dawley
rats(61). Other scientists fed adult male Wistar rats having an
average body weight of 240 (SD 2) g with 40% of total energy
from olive oil for 4 weeks, and they have not found body
weight alteration, but as already seen by other studies they
found increased UCP-1 mRNA in the interscapular BAT(62).
Besides, oral supplementation with oleic and 2-hydroxyoleic
acids and long-chain MUFA C18 (600mg/kg), every 12 h for 7 d,
did not change UCP-1 gene expression in BAT but caused
weight loss in 16-week-old male Wistar Kyoto rats. The absence
of changes in UCP-1 gene expression in BAT could be related to
the short-term exposure to treatment(63). Hence, despite the
time of diet exposure being an important factor, these studies
confirm that the type and amount of fatty acids prompt UCP-1
gene expression in BAT.
In the literature, PUFA, especially the n-3 family, could

stimulate thermogenesis, lipid metabolism and lead to weight
loss(64). DHA (22 : 6n-3), a type of n-3 PUFA, is associated with
weight loss in obese women(65). A similar outcome was seen in
overweight mice that consumed one daily portion of fish for
16 weeks(66). A 3-month-old male C57BL/6 mice supplemented
with 119 and 238 g/kg of fish oil containing EPA and DHADHA
for 8 weeks improved metabolic profile and positively affected
UCP-1 mRNA and protein expression in BAT. In the same study,
increased thermogenesis positively correlated with lower

weight gain(67). However, n-3 PUFA may lower the expression
of lipogenic proteins such as acetyl-CoA carboxylase, fatty acid
synthase and malonyl-CoA and raise protein expression of
carnitine palmitoyltransferase 1. The latter is responsible for
fatty acid translocation from the cytoplasm to the mitochondria,
favouring β-oxidation, which in turn can contribute to thermo-
genesis(68). Although the literature still requires more insights
into the mechanisms of action of different fatty acids on BAT,
UCP-1 and lipogenic proteins, considerable advances have
been made in the identification of the transcriptional factors and
co-regulatory proteins promoting embryological development
and the acquisition of thermogenic profile in BAT. Among the
transcriptional factors, highlight the PPAR, even though UCP-1
could be induced in their absence, PPAR are related to diet and
fatty acids(69). PPARα and PPARγ are regulated by PGC-1α(70,71).
PGC-1α is a transcriptional coactivator that has a critical role in
the activation of cAMP-dependent protein kinase A, the protein
responsible for lipolysis and thermogenesis in BAT, which
responds to cold and diet triggers via β-adrenergic receptors
under norepinephrine control(72). Another gene highly expres-
sed in BAT, and regulated by PPARα, is PRDM16. PPARα can
induce gene transcription of PGC-1α in brown adipocytes (BA)
through mechanisms involving PRDM16. Thus, PPARα regulates
thermogenesis in brown fat by inducing gene expression of
PGC-1α and PRDM16, which leads to higher UCP-1 expression
and mitochondrial oxidative activity(70). Other proteins such as
CIDEA can control thermogenesis by inducing UCP-1 expres-
sion(73). Also, a protein product of fibroblast growth factor 21
(FGF21) may act as a potential adipogenic adipokine, which
influences thermogenesis by upregulating UCP-1 expression in
progenitors isolated from human cervical fat differentiated into
BA-like(74). There are also the sirtuin 1 (SIRT1) and sirtuin 3
(SIRT3), protein family of seven histone deacetylases (class III),
that function as redox sensors that respond to changes in NAD/
NADH levels. The stimulation of SIRT1 and SIRT3 may lead to
an increased UCP-1 expression in BAT(75). SIRT3 is also posi-
tively regulated by PGC-1α(76), increasing UCP-1 and mito-
chondrial gene expression in this tissue(75,76). Published
research shows that these proteins could be regulated by fatty
acids, in particular EPA(73,75,77). Additionally, the presence of
G-protein-coupled receptor 120 (GPR120, also known as FFA
receptor 4 (FFAR4)), a cellular receptor for PUFA in the BA, may
cooperate in the regulation of the transcriptional factors. Cor-
roborating this view, a recent study found that the activation of
GPR120 induces the release of FGF21 by BA(78). Hence, EPA
may activate some transcriptional factors, such as PPAR, in the
BA nucleus. In turn, it causes an increased UCP-1 gene
expression and boosts BA activity, thus leading to accretion in
the energy expenditure.

Epigenetic mechanisms are involved with UCP-1 and ther-
mogenesis(17,79). These are responsible for the formation,
maintenance and reversion of gene transcriptional patterns. The
main epigenetic events include DNA methylation, histone post-
translational modifications (acetylation, methylation, phos-
phorylation and others) and non-coding RNA(80). Damped DNA
methylation in the promoter region of the UCP-1 gene was
inversely related to the expression of this protein(79). Histone
acetylation is involved in gene transcriptional control of
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thermogenesis in BAT(81). In this context, class 1 and class 3 of
sirtuin deacetylases (SIRT1 and SIRT3) altered the thermogenic
function by deacetylation of PGC-1α. In contrast with the
thermogenic function activated by the inhibition of histone
deacetylases, in this same study, the overexpression of SIRT1 in
2-month-old mice increased BAT activity, leading to a greater
energy expenditure(82). Demethylases were also found to be
involved in the differentiation process of BA in mice BAT(83).
Recently, it has been shown that BA release exosomes, and the
activation of BAT increases their release(80). MicroRNA are a
subclass of non-coding RNA that regulate protein expres-
sion(84). The literature conveys that they may be implicated in
the functioning of this tissue(85). In adult humans, miR-92a
exosome levels were inversely correlated with BAT activity,
which was measured by positron emission tomography with
F-18 fluorodeoxyglucose (18F-FDG PET/CT). In this study,
microRNA was considered a potential human serum biomarker
of BAT activity(17). It has been revealed that EPA is related to
increased gene expression of promoters of brown fat devel-
opment, as well as UCP-1, through mechanisms that entail
microRNA modulation in subcutaneous pre-adipocytes of
women with a BMI range of 28.1–29.8 kg/m2(86). A study with
palmitic acid, oleic acid and EPA found that the latter (100mM)
was associated with microRNA clusters at inducing the activa-
tion of the FFAR4, which is also known as GPR120, in primary
brown cells. Later, this signalling axis (EPA/FFAR4/microRNAs)
was confirmed in C57BL/6 adult male mice fed fish oil (15%)
for 12 weeks(87).
There is still a lot to discover about the epigenetic mechanisms

in BAT and UCP-1 expression, and even more about their regu-
lation mediated by different fatty acids in the diet. In spite of this,
at the moment, the literature has shown that the mechanisms
involving fatty acids, especially EPA, beta-oxidation enzymes,
thermogenic transcriptional factors, specific receptors and other
thermogenic proteins, seem to be interconnected to regulate and
activate UCP-1 and thermogenesis in BAT. Therefore, they could
be a plausible target to increase energy expenditure and aid in the
treatment of obesity (Fig. 2).

Fetal programming of brown adipose tissue by maternal
dietary fats

Clearly, UCP-1 gene expression and thermogenesis in BAT are
sensible to dietetic changes. Such changes are also closely
related to fetal programming(88,89). It is now thoroughly known
that not just the amount but also the quality of the maternal diet
matters as a variable in the epigenetic regulation in the off-
spring(90). For this reason, it is important to think about the
beneficial effects of nutrition on fetal programming of BAT,
setting up thermogenesis and preventing obesity.
Maternal dietary fat composition during gestation and lacta-

tion is the most important determinant of the quality of fatty
acids that reach the fetus through the placenta, or the infant
through breast-feeding(90,91). Fetuses and newborns can syn-
thesise SFA and MUFA, but they have limited capacity to syn-
thesise long-chain PUFA (LCPUFA)(92). After birth, LCPUFA are
transferred to the infant through maternal milk, in which the

content of arachidonic acid remains relatively constant, whereas
the amount of EPA and DHA are dependent on the maternal
dietary habits(92).

Despite the diversity of placental structure between mammal
species, placental basic morphology, the main cellular type and
function are conserved between many species. Trophoblastic
cells make up the placenta and assure a bi-directional flux of
appropriate nutrient residues required for the normal growth
and maturation of the embryo(93). Many maternal dietary cues,
such as MUFA and n-3 PUFA(94), foods rich in bioactive com-
pounds(95–98), prebiotics(99) and some probiotics(100), pass
through the placenta and programme different fetal tissues by
modulating proteins with the perspective of protecting the
organism from many diseases throughout life. Studies on fetal
programming and the impact of these nutritional compounds
on the BAT are rare.

In humans, BAT development occurs mainly in the third
gestational trimester and expands its mass in the early postnatal
period, keeping a relatively stable size until adolescence, and
gradually regressing with age(101). A study in mice showed that
ageing makes BAT morphology more similar to beige adipose
tissue, with unilocular lipid droplets, bigger cellular size and
higher TAG content(102). Such morphologic alterations lead to
reduced thermogenic and lipolytic capacity, which may
increase the development of diseases(103).
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Fig. 2. Eicosapentaenoic acid regulating thermogenesis and uncoupling
protein 1 (UCP-1) expression by activation of specific cellular receptors
(G-protein-coupled receptor 120 (GPR120)) in the brown adipocyte or by
activation of proteins related to fatty acid oxidation, mitochondrial biogenesis
and thermogenesis in brown adipose tissue (BAT). CIDEA, cell-death-inducing
DNA fragmentation factor A-like effector A; FGF21, fibroblast growth factor 21;
PGC1α, PPARγ coactivator 1α; PRDM16, PR domain containing 16; SIRT1,
sirutin 1.
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In 1988, a study revealed that a low-energy diet during
pregnancy caused lower birth weight in the rat offspring, and
did not change UCP-1 thermogenic activity in BAT. However,
when dams that had mild maternal undernutrition during lac-
tation nursed these offspring, they kept lower neonatal body
weight, and significantly repressed UCP-1 expression in BAT
(assessed on the 4th and 13th day of life). In contrast, when
dams were fed a normal energetic diet during lactation, neo-
natal body weight was restored, and BAT remained unaltered in
the offspring. Therefore, it implied that slight maternal under-
nutrition during lactation could alter UCP-1 expression in off-
spring BAT(16).
In light of the above, a study using ewes subjected to 30%

energy restriction for 60 d before conception and during
gestation caused increased UCP-1 mRNA in perirenal offspring
BAT. However, restricted food intake by 50% fewer energy
content in late gestation lowered UCP-1 mRNA and fetal fat
depot. Hence, this study showed that different phenotypes
could be established depending on the degree of the maternal
diet restriction, timing and length of duration(104).
Corroborating, another research finding on ewes treated during

late gestation with energy restriction of 40% of total energy
requirements resulted in reduced UCP-1 gene expression, and
reduced expression of other genes related to thermogenesis, such
as the β3-adrenergic receptor and deiodinase type 2, in the
pericardial BAT of newborn offspring. However, these alterations
were absent in the 30-d-old offspring(105). On the other hand,
early to mid-pregnancy diet restriction followed by ad libitum
diet intake increased UCP-1 expression and the expression of
genes involved in the browning of adipose tissue, such as bone
morphogenetic protein 7 and C/EBPp, in the near-term (140d)
fetus. These alterations were also associated with increased fetal
pericardial adiposity and body weight. These results suggested
that UCP-1 could re-establish normal levels upon offspring
growth, and the rise of this protein associated with pericardial
adiposity may be an important factor in neonatal viability(106).
A study on a high-fat diet (45% energy from fat) during the

postweaning, and preceded by maternal protein undernutrition
(9% of casein) during gestation, did not change the final body
weight, energy expenditure and UCP-1 in the interscapular
BAT, but increased the adiposity in male mice offspring aged
30 weeks. Though, offspring not exposed to maternal protein
restriction (18% of casein) during pregnancy, only postweaning
high-fat diet, increased energy expenditure and UCP-1 mRNA in
BAT. The authors concluded that a high-fat diet increases
energy expenditure by diet-induced thermogenesis, and this is
attenuated in mice when their mothers were fed a protein-
restricted diet during gestation and lactation, probably resulting
in obesity in adulthood(107).
As with total dietary fat quantity, UCP-1 seems to be sensitive

to changes in the type of maternal dietary fatty acids in fetal
programming. A maternal diet rich in olive oil, butter or mar-
garine from the 14th day of gestation until the 20th day of
lactation resulted in increased UCP-1 in the interscapular BAT of
21-d-old male rat offspring from dams fed olive oil, which is rich
in oleic acid. In addition, oleic acid was found in the maternal
milk and the offspring’s serum, and it correlated positively with
lessening weight gain in these animals during lactation(18).

Previous studies showed that maternal supplementation with
hydrogenated vegetable fats, rich in trans fatty acids, in a nor-
molipidic diet model during pregnancy and lactation led to low-
grade inflammation in the subscapular BAT of male Wistar rat
offspring after weaning. Furthermore, maternal supplementation
with the fruit of juçara palm, rich in MUFA and anthocyanins,
studied by this same research group, was associated with repair of
the BAT homoeostasis by increased UCP-1 protein expression and
protected against stunting and reduced carcass fat deposits(108).

Despite the scarcity of studies on this subject, the discussed
data suggest mechanisms that are integrating fetal programming
in BAT and maternal dietary fatty acids, regulating UCP-1
expression and thermogenesis in the offspring (Fig. 3).

Future research directions

The maternal consumption of Western diet in early gestation
and during lactation, even in the absence of pre-gestational
maternal obesity, can entail increased adiposity, including
higher body weight and adipocyte hypertrophy in the offspring
after weaning(109,110). During lactation, maternal diet is critical
to the development of obesity and metabolic consequences in
the offspring(109,111). Increased offspring adiposity could be
amplified if during lactation the maternal diet is high in fat(112),
demonstrating that maternal nutrition is an important regulator
of obesity in the offspring. In animal models, there is evidence
that maternal dietary fat programme BAT is strong(16,104–108).
There is a limitation to human testing for ethical reasons, but the
altered UCP-1 expression in offspring BAT from mothers whose
diets were high in fat or had a low-quality fat source, for

Placenta Maternal milk

AA EPA
DHA

Epigenetic regulation

UCP-1

Thermogenic capacity

Obesity and metabolic
diseases susceptibility

Fig. 3. A schematic diagram showing the impact of maternal nutrition,
especially EPA and DHA ingestion, in fetal metabolic programming of brown
adipose tissue (BAT) and uncoupling protein 1 (UCP-1) expression and
consequently influence on the susceptibility to obesity. AA, arachidonic acid.
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instance hydrogenated vegetable fats, during gestation and
lactation could be a possible cause for the increased trend in
childhood obesity. Hereby, we remark the importance of more
research on the impact of different fatty acids on fetal pro-
gramming in BAT during different programming periods and in
different species. More insights into the epigenetic mechanisms
involved in the regulation of UCP-1 expression on fetal pro-
gramming in future research may contribute to the explanation
of various results found in the literature. BAT amount and
activity are normally analysed by FDG-PET in combination with
CT(24). These techniques require cold condition and expose
individuals to ionising radiation, which is not recommended
during pregnancy, in newborns and infants until 6 months of
age. It is still missing diagnostic tools that allow safe and easy
assessment of BAT in humans, in particular during phases of
development. With this in mind, future research directions
should search for BAT biomarkers that could be easily screened
by blood analysis, and that could reflect BAT activity.

Conclusion

The need to understand fetal programming as regards BAT is
emphasised by the growing obesity prevalence. Diet is a
regulatory factor in the activation of UCP-1 in BAT. A high-fat
diet and different fatty acid profiles seem to regulate the UCP-1
expression in BAT positively. However, the molecular
mechanisms that explain the activation of UCP-1 in this tissue
still need to be more unearthed. There is a limited number of
studies looking at the maternal nutrition and BAT development,
and it seems that the research trend in this field has been
considerably declining since the 1980s. Thus, a better under-
standing of the impact of a nutrition intervention with fatty acids
on the activation of UCP-1 in BAT could lead to new preventive
care for metabolic diseases such as obesity.
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