
2
Bases, Penalties, and Likelihoods

P-splines combine two simple ideas: regression on (many) B-splines and a
difference penalty on their coefficients. The B-splines are local functions, each
of them covering only a small part of the x-axis. They can give a very flexible
fit to data. To keep a fitted curve from getting too flexible, the penalty comes in.
It lets adjacent coefficients “hold hands,” encouraging a smooth fit. Once the
number of B-splines has been set, a single parameter, λ, tunes smoothness.

P-splines have many interesting and useful properties. Interpolation and
extrapolation of the fitted curve are automatic. Standard errors and derivatives
of the fitted curve are easy to compute.

With a heavy penalty a polynomial curve fit is obtained, creating a bridge
between semi-parametric and classic parametric models. But in essence,
P-splines are parametric models. The coefficients have a very clear interpre-
tation and can be presented graphically as the skeleton of the fitted curve.

P-splines are grounded in linear regression. Extensions to generalized
linear regression are straightforward through penalized likelihood. Counts and
binomial data can be handled in an elegant way.

The penalty makes the number of B-splines irrelevant, as long as it is large
enough. With many of them, say 10 to 50, the number of coefficients in the
model is moderately large. Yet, as will be shown, the effective dimension of
the model will be (much) smaller than this number, depending on the amount
of smoothing.

2.1 Linear and Polynomial Regression

Consider a scatterplot of data pairs (xi,yi), i = 1 : m. Figure 2.1 displays
m = 111 daily readings of wind speed (mph) (x-axis) and the maximum
of daily ozone (ppm) (y-axis) in New York City (data set airquality in R).

6
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Figure 2.1 Air pollution in New York: scatterplot of daily maximum ozone
concentrations and wind speed. Least squares linear (blue broken line) and
quadratic (solid red curve) fits. R code in f-air-wind.R

The straight blue broken line shows the linear least squares fit, while the solid
red line shows the quadratic fit.

The formula for a quadratic curve is μi = α0 + α1xi + α2x
2
i . The vector

α = [α0 α1 α2]′ that gives the “best” fit to the data is found by minimizing the
least squares objective

S =
m∑

i=1

(yi − μi)
2 =

m∑
i=1

(yi − α0 − α1xi − α2x
2
i )2.

It is easier to work in matrix notation. For the above quadratic curve, we express
the m by 3 regressor matrix B, the 3 by 1 unknown parameter vector α, and the
m by 1 mean vector μ as

B =

⎡
⎢⎢⎢⎢⎣

1 x1 x2
1

1 x2 x2
2

...
...

...
1 xm x2

m

⎤
⎥⎥⎥⎥⎦ α =

⎡
⎣ α0

α1

α2

⎤
⎦ μ = Bα, (2.1)

respectively. Now the least squares solution minimizes the objective

S = ||y − Bα||2, (2.2)
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8 2 Bases, Penalties, and Likelihoods

defined as the squared-norm (y − Bα)′(y − Bα). This leads to the normal
equations B ′Bα = B ′y or α̂ = (B ′B)−1B ′y.

A more general setting introduces a vector of weights, w. They can reflect
known precisions of the data, or w can contain zeros and ones, where a zero
indicates a missing y. Using such weights, missingness can be introduced
deliberately, e.g., to (temporarily) exclude selected observations. It is more
convenient than excluding rows of B and y. With W = diag(w), we get

S = (y − Bα)′W(y − Bα), (2.3)

and the normal equations B ′WBα̂ = B ′Wy, with solution α̂ = (B ′WB)−1

B ′Wy.
The regression scheme can be extended to higher powers of x by adding

columns in B with third, fourth, or higher powers. In theory, the computation
of α̂ does not change, but in practice one has to center and scale x to avoid
numerical instabilities. Modern regression software overcomes this issue by
using specialized algorithms, like the QR decomposition (Wood, 2017). We
will not get into the details of the QR decomposition here. After showing that
high-degree polynomial curve fits have serious and fundamental problems, we
will discard them as a general smoothing tool.

More generally, the nth degree polynomial model is

μi = α0 + α1xi + α2x
2
i + α3x

3
i + · · · + αnx

n
i ,

resulting in n + 1 columns in the matrix B, augmenting (2.1) to powers of n.
This again gives μ = Bα in matrix notation. We call B a basis matrix and the
powers of x the basis functions.

Figure 2.2 shows data from a simulated motorcycle crash, with a complicated
trend: it is a time series of the acceleration of a helmet (Härdle, 1992). These data
have become a workbench data set and a rite of passage for many smoothing
techniques. A polynomial of low degree has no chance to fit these data well, so
we try degree 9 (an arbitrary choice). Two fits are provided: one where all data
were used (solid blue curve) and another where all data less than 5 ms were
dropped (broken red curve). This small change has rather large consequences.
The two curves differ strongly at the left (near 5 ms), which is expected, as we
have changed the data there. But we also find large differences at the very right
end (near 50 ms), which is unsettling.

Polynomial basis functions are global: they have a nonzero value for almost
every x. The net effect is that any change in one of the coefficients in α results in
a change in the curve over the entire domain of x. Worse, the higher the degree
of the polynomial, the stronger this effect becomes.
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Polynomial fits to motorcycle helmet data

Figure 2.2 The acceleration of a motorcycle helmet in a simulated crash. Two
polynomial (degree 9) fits are displayed. Blue line: based on all data; red broken
line: after discarding the observations at less than 5 ms. R code in f-motpol1.R

2.2 B-splines

We first visualize B-splines before using them. The left panel of Figure 2.3
shows seven B-splines, shifted vertically to separate them. The right panel
provides a more standard presentation. For either panel, the middle curve shows
one complete B-spline, which strongly resembles a normal density. The other
curves are shifted copies of this middle curve, but truncated at the left or right
boundary.

These are so-called cubic, or degree 3, B-splines. Each B-spline consists of
four polynomial segments, each of degree 3, that begin and end at specific values
of x called knots. In Figure 2.3, the knots are located at the integer numbers 0
to 4. At the inner knots (1 to 3) two polynomial segments of the same B-spline
meet; their values and those of the first and second derivative are equal on both
sides of each knot. Together these (degree +1) polynomial segments form one
B-spline basis function (resembling a normal density).

The knots divide the domain of x into four sections of equal length. The
number of B-splines is seven because they have degree 3. In both panels a
vertical broken line visualizes the evaluation of the B-splines for one value of x.
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Figure 2.3 B-splines in perspective. In the left panel, the splines are offset
vertically, in the right panel they are plotted on top of each other. R code in
f-persp.R
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Figure 2.4 Linear (left) and quadratic (right) B-spline bases illustrated. R code in
f-B-lin-quad.R

Only four of the evaluations have a nonzero value; which four is determined
by the value of x. It is easy to check this by imagining a vertical line anywhere
in the two panels. The number four is determined only by the degree of the
B-splines and does not depend on their number. Said differently, even in a large
basis with many B-splines, only four of them are nonzero for any x. Figure 2.4
shows linear and quadratic B-splines for the same choice of knots.
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2.2 B-splines 11

With x of length m and n B-splines, we form the basis matrix

B = [bij ] = [Bj (xi)] =

⎡
⎢⎢⎢⎣

B1(x1) B2(x1) . . . Bn(x1)

B1(x2) B2(x2) . . . Bn(x2)
...

...
...

...
B1(xm) B2(xm) . . . Bn(xm)

⎤
⎥⎥⎥⎦ ,

where i = 1 : m and j = 1 : n. Note that the elements of x do not have to be
evenly spaced. They can have any value on the chosen domain, their order is
immaterial, and repeated values are allowed.

Like with other basis functions, μ= Bα gives us values of a curve, at
the positions determined by x. Given a vector y of data to be fitted,
linear regression gives us, in principle, an estimate of the coefficients:
α̂ = (B ′WB)−1B ′Wy. This is only true when B ′WB can be inverted, which is
only the case when every B-spline has enough support, meaning that there are
no columns in B with only zeros. For the moment we assume that this is the
case. In Section 2.3, we will introduce penalties to solve the support problem.

Given the properties of the chosen B-splines (domain, number of segments,
and degree of the splines), a basis matrix B� can be computed for any
desired new x�. Multiplication with the coefficients then gives a curve
f̂ (x�)= f̂ = B�α̂. Generally the observed x does not form a nice grid, but
one can choose a detailed x� for plotting the fit.

The coefficients α̂ form the skeleton of a B-spline fit. A plot of them
already gives a good impression of what a detailed curve f would look like,
especially when the number of splines is large; we can get a glimpse of this
by looking ahead to the different panels found in Figure 2.8. Although one
generally speaks of a non-parametric model, in fact the influence of each
B-spline coefficient on a curve fit can be seen very clearly. In a parametric
model with a power functions basis, this is much more difficult.

To characterize a B-spline basis, we use the number of segments on the
chosen domain. The number of B-splines is this number plus the degree of
the B-splines. It is also the number of columns of B (or B�). The number of
segments is independent of the degree of the B-splines and lends itself well to
the human tendency to prefer numbers like 10, 20, or 50.

Returning to the motorcycle data, Figure 2.5 shows two B-spline fits, with
slightly different choices of the domain. The left parts of the curves are quite
different from each other, whereas the right parts are essentially identical.
This illustrates the local behavior of B-splines, in contrast to polynomial fits
(Figure 2.2).
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Motorcycle helmet impact data

Figure 2.5 The motorcycle data, fit with cubic B-splines (five segments). Blue
curve: based on all data; red broken curve: after discarding the observations at less
than 5 ms. R code in f-mot-bsp.R

B-splines are zero over the largest part of the domain of x. As we have
seen, this limited support makes them respond only locally to data, which is an
advantage. On the other hand, it makes them vulnerable to sparse or missing
data. Figure 2.6 presents two fits to the motorcycle data, one using 10 and the
other using 20 segments. In the latter case, the rightmost B-splines are poorly
supported, leading to B ′B being almost singular and the presence of so-called
variance inflation. These consequences are illustrated by the downward swing
near the end of the fitted curve.

Figure 2.7 shows B-spline fits to simulated data. The curve is smooth with
a small basis and more wiggly with a larger one. One may get the impression
that more splines in B automatically lead to a more detailed and wiggly curve
Bα. While this is often true, it is not necessary. In fact, the smoothness of
μ = Bα depends on α, not only on B. Consider Figure 2.8, which shows a
variety of curves μ using the same B-spline basis, with different α. The values
of the coefficients are plotted in the graphs to show that the smoother curves
correspond to a less erratic α. As noted above, a plot of α alone already gives
a strong impression of what the curve will be.

Figure 2.8 also displays the main idea of P-splines: use a rich B-spline basis
with relatively many columns, say 20 or even 50, and control the smoothness
of the coefficients α. To achieve such control, we need a measure for the
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Figure 2.6 The motorcycle data fit with cubic B-splines using 10 (red broken curve)
and 20 (blue solid curve) segments. R code in f-mot-bsize.R

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00

Small basis

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00

Large basis

Figure 2.7 Two cubic B-spline fits to the same simulated data, with a small basis
(left) and with a larger one (right). R code in f-bsize.R

roughness of α, so that we can penalize for it in a properly chosen objective
function. Excellent candidates for measuring roughness are differences in
adjacent elements of α, and we will consider a variety of differencing orders,
e.g., first, second, or even higher.
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Figure 2.8 An illustration of how roughness of the mean μ can vary dramatically
while using exactly the same basis B. The roughness of the curve only depends
on the roughness of the coefficients α, measured by r . The red circles show the
values of the individual coefficients associated with their corresponding B-splines.
R code in f-brough2.R

2.3 Penalized Least Squares

In this section, we introduce penalties that are based on differences of neigh-
boring elements of α. First-order differences are defined as �αj = αj − αj−1.
Here � is an operator, not a number. Second-order differences are obtained
by applying the operator twice: �2αj = �(αj − αj−1) = �αj − �αj−1,
and higher orders follow by induction. With �dα, we indicate dth ordered
differences of all elements of α. Note that �dαj does not exist for j < 1 + d.
If α has n elements, �dα has n − d elements.

Both for theoretical and numerical work, it is convenient to have matrix
operations for differences, so that �α can be written as D1α and �2α as D2α,
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and so on for higher orders. The required matrices show patterns as in the low
dimensional examples below:

D1 =
⎡
⎣ −1 1 0 0

0 −1 1 0
0 0 −1 1

⎤
⎦ , D2 =

⎡
⎣ 1 −2 1 0 0

0 1 −2 1 0
0 0 1 −2 1

⎤
⎦ . (2.4)

In R, these matrices are obtained simply by D=diff(diag(n),diff=d), for
d < n.

To measure the roughness of α, we use the sum of the squares of differences
of order d:

R = R(α) =
n∑

j=1+d

(�dαj )
2 = α′D′

dDdα = ||Ddα||2. (2.5)

A derived measure is

r =
√

R/(n − d).

Figure 2.8 gives an impression of r for four different choices of the α vector,
each with decreasing roughness. Note that in the limit all elements of α are
equal and r = 0. In contexts where it is not explicitly needed, we will drop the
subscript in Dd , and simply use the notation D. Typically we use a second-order
penalty (d = 2) in this book.

Now that we have a measure of roughness associated with the B-spline
coefficient vector, we can use it as a penalty to minimize the following objective
function:

Q = (y − Bα)′W(y − Bα) + λ||Dα||2. (2.6)

The second term is the penalty measuring the roughness of α. Its influence is
determined by λ, a positive number, which is sometimes referred to as a tuning
parameter. Standard B-spline smoothing results when λ = 0. Initially we will
assume that λ is chosen by the user. In Chapter 3, we will present procedures
for finding a reasonable data-driven or model-based choices for λ.

Equation (2.6) now technically presents the essence of P-splines: regression
on a rich B-spline basis, combined with a discrete roughness penalty on the
coefficients. As mentioned, we recommend using many splines to avoid any
discussion about the size of the basis. The default choice can be 50, unless
prior knowledge of flexibility indicates more. There is no way in which this
simple recipe can go wrong; even 1,000 B-splines will work well with only 10
observations. In most of our examples, we will use 20 to 50 segments, unless
indicated otherwise. Often 50 is (far) more than needed, but we suggest this
number to emphasize that it is impossible to have too many B-splines.
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Setting the derivative of Q, with respect to α, equal to zero produces the
penalized least squares equations:

(B ′WB + λD′D)α = B ′Wy, or α̂ = (B ′WB + λD′D)−1B ′Wy.

The solution depends on the value of λ, giving easy control over smoothness.
Note that B ′WB, D′D, and B ′Wy only have to be computed once. The entire
smoothing problem is now driven by the value of λ. Remarkably, B ′WB+λD′D
is of full rank, even though this is certainly not the case for D′D, and potentially
not for B ′WB. This is the reason that it can do no harm to have many basis
functions in B, allowing very flexible fits to our data, even for the case of
n � m. Eilers et al. (2015) provide an example, smoothing 10 data points with
40 segments on the basis. The appendix of that paper also contains a proof.

Figure 2.9 displays the penalty in action for a simple scatter plot. As λ

increases, the objective Q places more and more weight on the roughness
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Figure 2.9 The first-order penalty in action for various values of λ. Also shown are
the standard deviations of the residuals (s) and the roughness measure (r). Cubic
B-splines, 20 segments. R code in f-d1pen.R
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2.3 Penalized Least Squares 17

measure R, and the minimization of Q produces fitted curves that become
increasingly more smooth. This feature is also observed through the estimated
coefficients α̂: they fluctuate less as the penalty increases. This is expressed
numerically by r . On the other hand s, the standard deviation of the residuals,
increases.

The smooth fit tends toward a horizontal line as λ gets larger, and it is easy
to see why this is the case. If the differences between neighboring coefficients
are small, they will essentially have identical values.

The tendency toward a horizontal line can make the curve fit inflexible,
generating a strong bias. Second-order differences are more attractive and
generally give a smoother curve without increasing the sum of squares of
the residuals; see Figure 2.10. They are nothing more than difference of
differences, and the simple line of R code is provided just below (2.4) with
d = 2.
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Figure 2.10 The second-order penalty in action for various values of λ. Also shown
are the standard deviations of the residuals (s) and the roughness measure (r). Cubic
B-splines, 20 segments. R code in f-d2pen.R
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18 2 Bases, Penalties, and Likelihoods

In holds that with differences of order d , the limit of heavy smoothing will
be a polynomial of degrees d−1. It is the best-fitting (least squares) polynomial
of that degree. In Section 2.8, we discuss the limiting behavior of P-splines in
more detail.

2.4 Interpolation and Extrapolation

As explained in Section 2.2, to get fitted values, we only need the B-spline basis
matrix B and the estimated α̂. We can also interpolate to any desired resolution
by evaluating the same B-splines, but now on a finer grid of x and multiplying
it by α̂.

P-splines offer a second type of interpolation, one of the coefficients of
B-splines that does not have support. As if by magic, they are filled in
automatically. Eilers and Marx (2010) present a detailed analysis that we
summarize here. The penalized least squares equations are the key. We have that

(B ′WB + λD′D)α = B ′Wy. (2.7)

Assume that several neighboring elements of B ′Wy are zero because of zero
weights in W . The corresponding rows and columns of B ′WB will then also
be zero, and we will have that

λD̆′D̆ᾰ = 0, (2.8)

where ᾰ and D̆ contain only the affected rows of α and columns of D.
Equation 2.8 is a homogeneous linear difference equation of order 2d. The
solution is an exact polynomial in j , the index of the coefficients, of degree
2d−1. With a first-order penalty, interpolation is linear, and with a second-order
penalty it is cubic. This holds for the coefficients. When “fleshing out” the
curve with B-splines, some rounding of the shape will occur at the boundaries
of interpolated regions.

Extrapolation is just as easy as interpolation. Pseudo-observations with zero
weights are added at one or both ends of the data, extending the domain of x.
The corresponding y-values can be any arbitrary number, but zero is an obvious
choice. P-spline fitting automatically gives extrapolated B-spline coefficients
from which an extrapolated curve fit can be calculated.

We do not get linear, but constant, extrapolation when d = 1. The
explanation is found in the upper left and lower right corners of D′D. Consider
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2.4 Interpolation and Extrapolation 19

extrapolation at the left boundary with d = 1. Then D̆′D̆ would be the upper
left block of

D′D =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 0 . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .

0 0 −1 2 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ .

The first row of D̆′D̆ᾰ = 0 forces ᾰ1 = ᾰ2, leaving ᾰ ≡ c as the only
possibility, where c is computed automatically to connect to the observed data
smoothly.

With second-order differences, we have that

D′
2D2 =

⎡
⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 . . .

−2 5 −4 1 0 0 . . .

1 −4 6 −4 1 0 . . .

0 1 −4 6 −4 1 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ . (2.9)

In the first two rows, the values of the elements are such that they
“kill” quadratic and cubic terms, like the linear term was annihilated for
d = 1.

We used zero weights for existing data as example for explaining inter-
and extrapolation. The situation is a little different when there are simply no
observations for large parts of the domain of x. As a result, some (or many) of
the B-splines in the basis matrix have no support and the corresponding columns
of B will contain only zeros. They do not contribute to B ′WB and B ′Wy, and
the corresponding rows of the latter and rows of columns of the former contain
only zeros. We thus get the same results as for the analysis with zero weights.

Figure 2.11 demonstrates interpolation and extrapolation of data having a
large gap in the central region of x. The basis matrix has three unsupported
B-splines in the center and five at each end.

Automatic interpolation is extremely convenient. We do not have to worry
about lack of support when choosing the number of B-splines in a basis. The
function bbase in our package JOPS is happy to compute a basis with (many)
unsupported B-splines. Many high-profile packages, like mgcv and gamlss, use
algorithms that simply refuse to do such.
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Figure 2.11 P-spline extrapolation and interpolation of a large gap in the x data,
with penalty order d = 1 (left) and d = 2 (right). The gray dots show the data,
and the blue circles show the values of the B-spline coefficients. The fitted curve
is shown in red. R code in f-extrapol1.R

2.5 Derivatives

In some applications, we are not only interested in a fitted curve, but also in
its derivative(s). A typical example is the growth speed of children. We use the
fact that

d

dt

∑
j

Bj (t;p)αj =
∑
j

Bj (t;p − 1)�αj/h, (2.10)

where p the degree of the B-splines and h the distance between the knots, which
is equal to the length of the domain of x divided by the number of segments.
When μ̂ = Bα̂, we get

d

dt
μ̂ = B̃(Dα̂)/h, (2.11)

where B̃ contains the B-spline basis of degree p − 1, and D forms first-order
differences. Derivatives of order k can be computed in a similar way:

dk

dtk

∑
j

Bj (t;p)αj =
∑
j

Bj (t;p − k)(�kαj )/hk . (2.12)

A condition is that p > k, otherwise the B-splines of degree p − k will be zero
everywhere.

Figure 2.12 shows an example for a sample of 1,000 boys from the data set
boys7482 in the R package AGD. Note that the growth speed does not go to zero
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Figure 2.12 Height against age of 1,000 Dutch boys. Top panel: observations and
fitted trend (50 cubic segments, λ = 100). Bottom panel: first derivative of the
trend. R code in f-slope-height.R

at age 20, as one would expect for human height. In Section 8.7 we show how
an extra penalty can force the slope to be zero from a specified age.

2.6 The Effective Dimension

For standard (unpenalized) regression models, we have the estimated mean
μ̂ =Bα̂ =Hy, where the least squares solution for α is α̂ = (B ′WB)−1B ′Wy.
The “hat” matrix is defined as

H = B(B ′WB)−1B ′W, (2.13)

such that μ̂ = Hy. For a general (full rank) regressor matrix B of dimension
m × n, we have the trace(H) = trace((B ′WB)−1B ′WB) = trace(I ) = n

because the identity matrix is of dimension n. This result holds due to the
invariance of the trace operator under cyclical permutation, i.e., trace(AB) =
trace(BA) for general matrices A and B of proper dimension. Thus, for standard
multiple regression, the trace(H) yields the exact dimension of the fit. This
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22 2 Bases, Penalties, and Likelihoods

result is developed further and extended by Hastie and Tibshirani (1990) in a
manner to compute the effective dimension of a smooth fit μ̂ = Hy, where H

is a general smoother matrix and the effective dimension, ED = trace(H).
A more principled proposal comes from Ye (1998). This work states that the

effective model dimension is

ED =
∑

i

∂ŷi/∂yi . (2.14)

In the linear case, this gives again ED = ∑
i hii = trace(H). At first, this

definition of ED may not look impressive, but in fact it is powerful. The partial
derivatives can be decomposed into separate and quantifiable contributions of
individual components within larger models. Examples are the mixed models
presented in Chapter 3 and the additive models found in Chapter 4.

This definition of the effective dimension also applies to P-splines, now with
H = B(B ′WB + λD′D)−1B ′W . Using cyclic permutation, we find

ED = trace(H) = trace(G) = trace(B ′WB(B ′WB + λD′D)−1). (2.15)

Because G is an n by n matrix and generally much smaller than H , the latter
definition is computationally more attractive.

There is also a monotone relationship between ED and λ. When λ approaches
zero, ED approaches n (assuming support for all B-splines). The limit
for increasing λ is ED = d . We see this relationship more completely in
Figure 2.13. Note that y does not occur in the definition of ED; it is purely a
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Figure 2.13 ED versus log10(λ), by penalty order using 20 segments on the basis.
R code in f-Peffdim.R
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2.7 Standard Errors 23

property of the design of the model (basis plus penalty for given λ). We will
find in Section 2.8, that for large λ, the fitted curve approaches a polynomial
of degree d − 1.

2.7 Standard Errors

The covariance matrix of α̂ = (B ′WB + λD′D)−1B ′Wy, or that of the
estimated coefficients, is

Ĉ = cov(α̂) = σ̂ 2(B ′WB + λD′D)−1, (2.16)

where σ̂ 2 = ||y − Bα̂||2/(m − ED). This is sometimes called the Bayesian
covariance matrix. Its derivation is outlined in Appendix F, where it is also
compared to an alternative, the sandwich estimate.

The diagonal of BĈB ′ gives the variance of the fitted values, μ̂ = Bα̂.
From its square root, we can construct error bands.

The underlying assumption in these equations is that we fill in the true
λ, which is of course unknown. One hopes that “optimal smoothing” (see
Chapter 3) will give a good estimate. Figure 2.14 displays an “optimal”
P-spline fit (as determined by leave-one-out cross-validation) with twice
standard error bands for the motorcycle data.
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Figure 2.14 P-spline fit to the motorcycle helmet data, with twice standard error
bands (20 cubic segments, second-order penalty). R code in f-se.R
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24 2 Bases, Penalties, and Likelihoods

2.8 Heavy Smoothing and Polynomial Limits

In the penalized least squares objective

Q = S + λR = (y − Bα)′W(y − Bα) + λ||Dα||2,

the second term becomes dominant for large λ, which essentially forces
Dα ≈ 0.

If αj = ∑d−1
k=0 γj j

k , i.e., when the coefficients follow a polynomial of degree
d − 1, then ||Dα||2 = 0 exactly. This is easy to prove when αj = a + bj . It
follows

�αj+1 = αj+1 − αj = a + b(j + 1) − (a + bj) = b, (2.17)

for any j , and �2αj+1 = �b = 0. Generalizations to higher-order differences
are straightforward.

As λ increases, α̂ approaches a polynomial, and so will Bα̂. The limiting
polynomial is not arbitrary: it minimizes the sum of squares in the first term
of the objective, hence the fit is the least squares polynomial. This bridge
between P-splines and polynomials can be useful: sometimes strong smoothing
is indicated by the data, and the P-splines can be replaced by a simple parametric
model.

2.9 P-splines as a Parametric Model

A polynomial fit to data is commonly called a parametric model. A handful of
coefficients fully determines the curve. Often it is suggested that a parametric
model is desirable because one knows “what the parameters stand for.” Yet,
beyond a cubic polynomial this is dubious: it is almost impossible to relate the
value of one coefficient of a higher power of x directly to the shape of the curve.

On the other hand, smoothing methods often are termed non-parametric or
semi-parametric models, implying that there are no (or very few) parameters
with a clear interpretation. This is certainly true for kernel smoothers and local
likelihood methods. Truncated polynomials have clearly defined parameters,
but they cannot be precisely interpreted (Eilers and Marx, 2010).

P-splines are different. As illustrated for cubic P-splines in Figure 2.15, the
values of the coefficients are close to the value of the fitted curve directly above
the peak of the corresponding B-spline. The interpretation of the parameters
is easy: they closely predict the fitted curve at the center of the corresponding
B-spline.
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2.9 P-splines as a Parametric Model 25

Figure 2.15 The values of the coefficients of the B-splines (red dots) lie close to
the fitted curve (blue line). The smoother the curve, the closer the coefficients are
to each other. R code in f-bcoeff.R

Figure 2.16 The values of the coefficients of linear B-splines (red dots) lie on the
fitted curve (blue line). R code in f-bcoeff-lin.R

Linear P-splines have an almost perfect interpretation of the coefficients,
as Figure 2.16 shows. The fitted curve linearly interpolates the coefficients.
A piecewise linear curve with many knots can be acceptable in many
applications, especially for visualization. A basis of linear B-splines can be
computed in a few line of R code, as shown in Appendix C.1.

In view of the excellent interpretability of explicit coefficients, we should
call P-splines a “proper parametric” model.
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26 2 Bases, Penalties, and Likelihoods

2.10 Whittaker: P-splines without B-splines

We obtain interesting and useful results when we replace B by an identity
matrix, leading to μ̂ = (I +D′D)−1y. This is only meaningful if the locations
of the observations are evenly spaced, and if we are interested in fitted values
only on those locations. The number of coefficients will be equal to the number
of observations (missing data can be handled with zero weights).

What results is the Whittaker smoother, originally designed for smoothing
(“graduation”) of life tables (Whittaker, 1923). The original algorithm used
third-order differences. This smoother gradually became less used as the
popularity of the smoothing spline was rising. P-splines can be considered
as “Whittaker on steroids,” with a skeleton defined by a discrete penalty, on
which B-splines lay the muscles.

An advantage of the Whittaker smoother, when the application allows its
use, is the extreme simplicity of the basis. There is neither the need to choose
the number of knots nor the degree of the splines. All the pleasant properties of
the penalty remain. Interpolation and extrapolation are automatic, and strong
smoothing leads to polynomials, among other properties.

The equations for the Whittaker smoother are extremely sparse. Using sparse
matrix algorithms (Eilers, 2003), extremely long data series can be smoothed
in a fraction of a second. Unfortunately, calculation of the full hat matrix,
H = (I +λD′D)−1, is not efficient because the inverse is large and not sparse.
For computing its diagonal, Frasso and Eilers (2015) provides efficient R code
(for d = 2), based on an algorithm by Hutchinson and de Hoog (1986). Its
computation time and memory use only grow linearly with the length of the
data series. It can also be used to compute standard errors, as the covariance
matrix of μ̂ is σ̂ 2H , so the square root of its diagonal gives the standard errors
of the fitted μ̂.

The B-spline basis is reduced to a minimum and replaced by the identity
matrix. The choice of number and degree of the splines do not play any role.
This is what makes the Whittaker smoother a good vehicle for studying discrete
penalties.

2.11 Equivalent Kernels

Hastie and Tibshirani (1990) show that linear smoothers can be better
understood and more directly comparable if they are expressed as equivalent
kernels. An equivalent kernel shows in detail how individual values in the input
vector contribute to the smooth output. Consider the P-spline “hat” matrix

https://doi.org/10.1017/9781108610247.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108610247.003


2.11 Equivalent Kernels 27

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200

l = 1

0.0

0.1

0.2

0.3

0 50 100 150 200

l = 100

0.00

0.05

0.10

0 50 100 150 200

l = 10,000

0.00

0.01

0.02

0.03

0.04

0 50 100 150 200

l = 1e + 06

Figure 2.17 Illustration of equivalent kernels. The differently colored curves show
the values in rows 1, 51, 101, 151, and 201 of the 201 by 201 hat matrix of the
Whittaker smoother with penalty order 2. The titles of the panels show the value
of λ. R code in f-eff-kernels.R

H = B(B ′B + λD′D)−1B ′ and how it transforms y into ŷ = Hy. Row i of H

tells us how ŷi = ∑
j hij yj is formed as a weighted sum of all observations. The

elements in row i form the equivalent kernel. Figure 2.17 shows, for different
values of λ, the equivalent kernels in selected rows (1, 51, 101, 151, and 201)
of a 201 by 201 hat matrix. It is based on the Whittaker smoother.

When λ is small, most of the elements in a row of H are close to zero,
indicating that any element of ŷ is only influenced by a few observations close
to it. When λ is large, almost all observations contribute to each ŷi . It easy to
see that

∑
j hij = 1 for all i, because if e is defined as an m vector of all ones,

then e = He. Hence ŷi is a proper weighted mean of y, with the weights in the
ith row of H . Borrowing from systems theory, we can interpret ŷ = Hy as the
description of a linear system, with y as input, and H as describing how it is
transformed to the output ŷ.

Note that at the boundaries the equivalent kernels get a strongly asymmetrical
shape, but they do not cross the boundaries. This is simply impossible. The
vanilla kernel smoother is different. All equivalent kernels have the same shape,
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implying that those near the boundaries spread out beyond them. See also the
discussion of boundary effects in density estimation in Section 3.3.

From its definition follows that H is symmetric. Consider the special case
that y consists of all zeros, except for one yj = 1, which is often called an
impulse signal. In such a case, Hy is equal to column j of H . Previously, we
looked at rows of H that told us how all observations contribute to one element
of ŷ; we now look at how one element of the input vector is distributed over
the whole output vector.

In Section 8.5, we will present variations of the penalty and show their
effects on equivalent kernels for some of them.

2.12 Smoothing of a Non-normal Response

In many applications, the response will not be normal. Common examples
include Poisson distributed counts or binomial responses. P-splines can be
directly transplanted into the generalized linear model (GLM) framework.
For an introduction to GLM, we recommend Dobson and Barnett (2018) and
Fahrmeir and Tutz (2001).

The GLM introduces three parts: the random component, the linear predictor,
and the link function. The random component specifies the probability
distribution of y. It can be any member of the exponential family, with mean
μ= E(y), but we will restrict ourselves to the Poisson and binomial. The second
component is the linear predictor, which we model with B-splines, η = Bα.
The last component is the link function g: η = g(μ). Common (canonical)
link functions include the logarithmic link (for Poisson) and the logit link (for
binomial), which will be our choices throughout this book.

Maximum likelihood estimation is standard for the GLM. Because we want
to introduce a penalty, we find it convenient to switch from maximizing the
log-likelihood to minimizing the deviance, which is essentially (apart from a
constant) minus two times the log-likelihood. We use Poisson smoothing to
explain this idea.

2.12.1 Poisson Smoothing

Assuming independent observations, the Poisson likelihood is

L =
m∏

i=1

e−μi μ
yi

i

yi!
.
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Neglecting the (constant) contribution from yi!, the log-likelihood is


(μ;y) = log(L) =
m∑

i=1

(yi log(μi) − μi). (2.18)

For convenience, we choose to work with the deviance, which is dev(μ;y) =
−2
(μ;y) + 2
(y;y). Using deviance, a penalty can be attached in a similar
way as it was to the sum of squares of residuals in (2.6). We now have an
objective function in the form

Q = dev(μ;y) + λ||Dα||2

= 2
m∑

i=1

(yi log(yi/μi) − (yi − μi)) + λ||Dα||2, (2.19)

which for Poisson responses and the log link becomes a function of α through
μ = exp(η) = exp (Bα). The goal is to minimize Q with respect to α, which
is the solution to ∂Q/∂α = 0. Re-expressing with the chain rule, we find

0 = ∂Q

∂α
= ∂Q

∂μ

∂μ

∂η

∂η

∂α
.

Note that the third term simplifies to B = ∂η/∂α, and for Poisson (log link)
the second term is μ = ∂μ/∂η. The partial derivatives then yield the penalized
likelihood equations

B ′(y − μ) = λD′Dα, (2.20)

which remain nonlinear in α. The Newton–Raphson method applies a first-
order Taylor approximation to the derivative on the left-hand side of (2.20)
(about α̃),

B ′(y − μ) ≈ B ′(y − μ̃) − B ′W̃B(α − α̃),

with η̃ = Bα̃, μ̃ = exp(η̃), and W̃ = diag(μ̃), effectively providing a second-
order approximation at a first-order price. The matrix H = −B ′WB is the so-
called Hessian matrix, which is H = −B ′∂μ/∂α′. Here the Newton–Raphson
is equivalent to the Method of Scoring because E(H) = H . This finally gives
the linear system of equations

(B ′W̃tB + λD′D)α̃t+1 = B ′W̃t (η̃t + W̃−1
t (y − μ̃t )). (2.21)

This system has to be solved iteratively. The subscript t indicates the iteration
number. Starting values are only needed for the linear predictor η, which set
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Figure 2.18 Yearly counts of British coal mining disasters, smoothed with a
Poisson model. P-spline fits with a cubic B-spline basis with 20 segments and
a second-order penalty, for both λ = 1 and λ = 100 (left). The corresponding
linear predictors and the B-spline coefficients are also shown (right). R code in
f-coal-smooth.R

up the GLM weights and working vector to initialize the iterations. We set
η̃0 = log(y + 1), giving

α̃t+1 = (B ′W̃tB + λD′D)−1B ′W̃t z̃t, (2.22)

with z̃t = η̃t +W̃−1
t (y − μ̃t ) as a working dependent vector. We find that (2.22)

reflects an iterative re-weighted (penalized) least squares solution. Usually
convergence is quick, needing only a handful of iterations. The working vector
is a foundational to effective dimension, standard error bands, among other
things, as outlined in Section 2.12.3 ahead.

The stage is now set to fit a smooth curve through a series of counts. We
use data on the annual number of major accidents in British coal mines, from
1851 to 1962. They are based on the data set coal in R. The observations,
the fitted values, and the linear predictors are plotted in Figure 2.18, for both
light and heavy penalization. The coefficients of the B-splines are plotted
too, emphasizing again how they form the skeleton of the smooth linear
predictor.

The generalized linear P-spline smoother is ideal for histograms, which are
also a series of counts. See Section 3.3 for details, including the choice of
domain, the influence of the bin width, and the optimal choice of λ.

P-splines have a property that we call the conservation of moments, which
is of great value for density estimation. Let c be the vector of counts in the bins
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of a histogram of length m, and let μ̂ be the smooth fit. Given the penalty of
order d, it holds for all λ ≥ 0:

• For d = 1,
∑m

i=1 yi = ∑m
i=1 μ̂i (proper density);

• For d = 2, the above holds and also
∑m

i=1 xici = ∑m
i=1 xiμ̂i (same mean);

• For d = 3, the above hold and also
∑m

i=1 x2
i ci = ∑m

i=1 x2
i μ̂i (same

variance).

The conservation property can be extended to higher moments using higher-
order penalties. Notice that d = 3 is especially useful because both the variance
and mean of the smoothed histogram are the same as those of the raw histogram,
even with strong smoothing. Most other algorithms would increase the variance.
Moreover, the polynomial limits for large λ have a clear interpretation: when
d = 2, the linear predictor becomes linear in x, and we get an exponential
distribution. For d = 3, the smooth approaches the normal distribution.

Even with narrow bins, the counts in histograms generally do not form a
long data series. The length may be around 100 or so. This is small enough
to use the identity matrix as the P-spline basis, as described for the Whittaker
smoother in Section 2.10.

In some hazard modeling applications, the goal of smoothing of counts is
not to get a smooth estimate of μ itself, but rather of a smooth hazard (or
intensity), say h. Then E(yi) = μi = hiui , where u is the exposure, usually
a population size. The smoothing of the hazard can be achieved by taking
h = exp(Bα) and U = diag(u), which leads to μ = U exp(Bα). The classical
approach is to use μ = exp(Bα + log u), where log(u) is called the offset.
This clearly runs into problems when some elements of u are zero. It can occur
that both y and u are zero in some places. A typical example is extrapolation.
Multiplication by U avoids logarithms of zeros.

2.12.2 Binomial Smoothing

For binomial responses,y denotes the number of successes among t independent
trials (0 ≤ y ≤ t). We estimate a smooth curve for the binomial parameter π ,
which represents the probability of observing a success for any given trial. It
follows that μ = tπ . The same statements hold true for Bernoulli responses,
but now with the restrictions y = 0 or 1 and t = 1, and P(y = 1) = π = μ. In
the GLM framework, the response distribution is now set to the binomial, and
we choose the (canonical) link function to be the logit. The model is

g(μ) = log

(
π

1 − π

)
= η = Bα, (2.23)
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where π is the binomial “success” probability. Equivalently,

π = 1

1 + exp(−Bα)
,

and for m independent binomials, each with ti trials (i = 1 : m)

Q = 2
m∑

i=1

(
yi log

[
yi

μi

]
+ (ti − yi) log

[
ti − yi

ti − μi

])
+ λ||Dα||2. (2.24)

Neglecting the parts of Q that do not depend on μ, the following simplification
results

Q = −2
m∑

i=1

[yi log μi + (ti − yi) log(ti − μi)] + λ||Dα||2, (2.25)

which further simplifies in the (ungrouped) Bernoulli setting. Using the same
linearization technique that was presented for Poisson smoothing, we arrive at
equations similar to (2.21), but now with W = diag(μ(1 − π)). A convenient
choice for starting values is π̃0 = (yi + 1)/(ti + 2) or η̃0 = log(π̃0/(1 − π̃0)).

We revisit the kyphosis case study presented in Hastie and Tibshirani (1990)
(data set kyphosis in R). The binary response is presence (1) or absence (0)
of postoperative spinal deformity in children. There are 81 observations (17
present, 64 absent). We model the probability of occurrence as a function
of age. The data and the fitted curves for the probabilities are plotted in
Figure 2.19 (left panel) for two levels of smoothing (λ = 1 and λ = 100). The
corresponding linear predictors are also displayed in the right panel.

2.12.3 GLM Effective Dimension and Standard Errors

Upon convergence, it is useful to view (2.21) as weighted linear smoothing of
the working dependent variable ẑ = η̂+ Ŵ−1(y − μ̂), with weights Ŵ . We can
then interpret

H = B(B ′ŴB + λD′D)−1B ′Ŵ (2.26)

as the “effective” hat matrix and

ED = trace(H) = trace((B ′ŴB + λD′D)−1B ′ŴB)

as the effective dimension. For the covariance matrix of α̂, we find the Bayesian
form to yield

cov(α̂) = φ(B ′ŴB + λD′D)−1, (2.27)

where φ denotes a scale parameter. With normal responses (and the identity
link function), a scale parameter, φ = σ 2 was presented. For the binomial and

https://doi.org/10.1017/9781108610247.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108610247.003


2.12 Smoothing of a Non-normal Response 33

● ●

●

●●● ●● ●

● ●

●●● ●● ● ●●●●

●●

●

●

●● ●● ●● ●●● ●●●

●

●

●●

● ●● ●

●

●●

●

●●●

●

● ●●●

●

● ●

●●

● ●●● ●●●● ●●● ●● ●

●

● ●

●

●0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Age (months)

P(
pr

es
en

ce
)

Binomial P-spline fits

−6

−4

−2

0 50 100 150 200
Age (months)

lo
gi

t(p
)

Linear predictor

Figure 2.19 Kyphosis binomial response fit with basis using 20 segments (left).
The dashed (solid) line indicates light (heavy) penalization using λ = 1 and 100,
respectively. The corresponding linear predictor, and the P-spline coefficients are
also shown (right). R code in f-kypho-smooth.R

Poisson forms – that are generally associated with the exponential family – we
find φ = 1 (see table 2.1 of Fahrmeir and Tutz [2001]). A common problem
with Poisson modeling is the presence of overdispersion or φ > 1. In such
cases, we can estimate the scale parameter with φ̂ = Dev(μ̂;y)/(m − ED).
Other estimators of φ replace deviance with the Pearson chi-square
statistic.

The covariance of η̂ follows immediately as  = Bcov(α̂)B ′, and approxi-
mate standard errors for the linear predictor can be constructed using the square
root of the diagonal elements of . Thus, twice lower and upper bounds for η

follow from η̂±2se(η̂). Representing these limits as (L, U), the corresponding
limits for μ̂ follow as (h(L), h(U)), where h(·) denotes the inverse link function.

In addition to the inherent GLM weights, prior weights can also be useful
in generalized linear smoothing. Assuming that such prior weights are now
provided in the vector v and V = diag(v), then V W̃ should replace W̃

everywhere in the fitting algorithm, and V Ŵ should replace Ŵ in the effective
hat matrix and derived results.

On the scale of the linear predictor, the features of automatic interpolation
and extrapolation, as well as polynomial limits for large λ, follow for the
GLM as they did for normal responses on the linear predictor. For example,
when smoothing binomial data with the logit link function and a second-order
penalty, the limiting result with heavy smoothing is the same as linear logistic
regression.
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2.13 Notes and Details

This chapter lays the foundation for the rest of the book. P-splines combine
a rich and evenly spaced B-spline basis with a simple difference penalty
on the coefficients. Smoothing becomes an extension of (generalized) linear
regression, with a single tuning parameter, avoiding tinkering with the size and
number of B-splines. Interpolation and extrapolation are essentially automatic.

The difference penalty of P-splines is a simplification of the work of
O’Sullivan (1986). He derived a matrix, very similar to our discrete difference
matrix D, based on the integrated square of the second derivative of the fitted
curve. Whereas pure differences are trivial to construct, O’Sullivan’s approach
is complicated for higher-order derivatives. Recently published algorithms
simplify the computations (Wand and Ormerod, 2008; Wood, 2017). As long
as knots are evenly spaced, we do not see any advantages in these works. Wand
and Ormerod (2008) claim better performance of what they termed O-splines,
but Eilers et al. (2015) show that a wrong B-spline basis had been used for their
comparisons.

We emphasize that the discrete difference penalty is not meant at all to be
an approximation to a continuous penalty. It is simple, and it is powerful, and it
is all we need. It also puts no demands on the degree of the B-spline. To base a
penalty on, say, fourth derivatives of the fitted curve, the B-splines should have
at least degree 4, or else the derivative disappears. P-splines do not have this
limitation. In the next chapter we will see for histogram smoothing that splines
of zero order combine perfectly with a third-order difference penalty.

The penalty can be interpreted as the condition that the B-spline parameters α

closely obey a linear difference equation. The coefficients of the equation form
rows of the Pascal triangle with alternating signs. Many specialized variations
are possible; some of them are discussed in Chapter 8.

A few years after we published our paper on P-splines, Ruppert and Carroll
(2000) proposed to use a mixed model with truncated power functions (TPF) for
smoothing, an approach that is extended by Ruppert et al. (2003). Quantiles of x

are used for the knots. This approach underestimates the power of a (difference)
penalty. Indeed, if there is no penalty, quantiles as knots guarantee support for
all basis functions, which is a good thing. A penalty is a more elegant solution.
In Eilers and Marx (2010), we show that evenly spaced knots are to be preferred
for TPF.

In many publications we noticed the temptation to optimize the number of
splines. Based on the TPF model with quantile-based knots, Ruppert (2002)
and Ruppert et al. (2003) present formulas that boil down to one spline per four
unique x, with a certain maximum. This advice has been cited many times for
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guidance on penalized B-splines. We propose to simply forget optimizing the
number of splines and just take a large number of them.

Asymptotic results on P-splines have been obtained by Hall and Opsomer
(2005), Kauermann et al. (2009), Li and Ruppert (2008), and Claeskens et al.
(2009). They all consider the limited situation in which more data become
available on the same domain. A more realistic setting is smoothing of (seasonal)
time series, that grow in length as more observations are collected. It is clear
that the number of P-splines must then grow too.

The R function lsfit() finds the solution of B ′WBα̂ = B ′Wy for given B,
y and W = diag(w). It can also be used for penalized regression through data
augmentation, i.e., α̂ = (B ′+W+B+)−1B ′+W+y+, where

B+ =
[

B√
λD

]
y+ =

[
y

0

]
and w+ =

[
w

1

]
.

In this way, standard and widely available fitting algorithms that only accept B,
y, and w can be tricked into solving penalized regression, including P-splines.
If there are multiple penalties or additive structures, they too can be handled
by additional augmentations. In this book, we have used lsfit() with data
augmentation in some of our programs.
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