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Some Adjunction Properties of Ample
Vector Bundles
Hironobu Ishihara

Abstract. Let E be an ample vector bundle of rank r on a projective variety X with only log-terminal
singularities. We consider the nefness of adjoint divisors KX + (t− r) detE when t ≥ dim X and t > r.
As an application, we classify pairs (X,E) with cr-sectional genus zero.

1 Introduction

Let X be a smooth projective variety and KX the canonical bundle of X. For the study
of X, it is useful to consider adjoint bundles KX + tL, where t is a positive integer and
L is an ample line bundle on X. We refer to the books [BS] and [F0] for the properties
of KX + tL; it is powerful when t is close to dim X.

Recently, as a natural generalization of adjoint bundles, many authors have con-
sidered KX + det E, where E is an ample vector bundle on X. (We say that a vector
bundle E is ample if OP(E)(1) is ample on P(E).) In particular, Ye and Zhang [YZ]
have given a classification for pairs (X,E) when rank E ≥ n− 1 and KX + det E is not
nef. Many other results on KX + det E are obtained when rank E is close to dim X.
It seems to be difficult to study the nefness of KX + det E when rank E is small as
compared with dim X.

To overcome this difficulty, in the present paper, we consider the nefness of KX +
(t − r) det E when t ≥ n = dim X and t > r = rank E. We mainly use vanishing
theorems and an estimate of the length of extremal rays, hence our argument works
on projective varieties X with at worst log-terminal singularities. Our main result
is Theorem 2.5 in which we show that KX + (n − r) det E is nef unless (X,E) ∼=(

P4,O(1)⊕2
)

when 1 < r < n− 1.
As an application, we see that the cr-sectional genus of the pairs (X,E) is non-

negative and we obtain the classification of (X,E) with cr-sectional genus zero in the
case that X is log-terminal. We note that cr-sectional genus is introduced in [I] and
studied in the case that X is smooth (see also [FuI]).

2 Preliminaries

We work over the complex number field C. Varieties are always irreducible and re-
duced. The tensor products of line bundles are denoted additively, while we use mul-
tiplicative notation for intersection products. The numerical equivalence is denoted

Received by the editors October 14, 1999.
The author is a Research Fellow of the Japan Society for the Promotion of Science.
AMS subject classification: Primary 14J60; secondary 14C20, 14F05, 14J40.
Keywords: ample vector bundle, adjunction, sectional genus.
c©Canadian Mathematical Society 2001.

452

https://doi.org/10.4153/CMB-2001-045-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-045-7


Ample Vector Bundles 453

by≡. We denote by L⊕n the direct sum of n-copies of a line bundle L. The restriction
L|Y of L to a variety Y is often written as LY . We denote by Qn a (possibly singular)
hyperquadric in Pn+1. A polarized variety (X, L) is said to be a scroll over a variety
W if (X, L) ∼=

(
PW (E),OP(E)(1)

)
for some vector bundle E on W . The number

∆(X, L) := dim X + Ldim X − h0(X, L) is called the ∆-genus of a polarized variety
(X, L).

The following facts are main tools of our argument.

Proposition 1.1 ([K, Theorem 1]) Let Y be a projective variety with only log-terminal
singularities and f : Y → Z a contraction morphism of an extremal ray of Y . Let
E be an irreducible component of Exc( f ) := {y ∈ Y | f is not isomorphic at y}.
Then E is covered by a family of rational curves {Ci} such that f (Ci) are points and
−KY · Ci ≤ 2

(
dim E − dim f (E)

)
. Moreover, if f is birational, we have −KY · Ci <

2
(

dim E − dim f (E)
)

.

Proposition 1.2 ([Z1, Lemma 1]; see also [Z2, Lemma 1]) Let Y be as in Proposi-
tion 1.1 and f : Y → Z a birational contraction morphism of an extremal ray R. Let F
be an irreducible component of some positive-dimensional fiber of f . By taking a desin-
gularization ϕ : V → F of F, we get Hq

(
V, ϕ∗(−HF)

)
= 0 for any H ∈ PicY with

(KY + H)R ≤ 0 and q = dim F.

3 Adjunction Properties

Throughout this section, let X be a projective variety with at worst log-terminal sin-
gularities, n = dim X ≥ 2, and let E be an ample vector bundle of rank r on X.

Theorem 2.1 When r ≤ n + 1, KX + (n + 2 − r) det E is always nef. Moreover,
KX + (t − r) det E is always nef when t ≥ n + 2 and r ≤ t − 1.

Theorem 2.2 When r ≤ n, KX + (n + 1− r) det E is nef unless (X,E) ∼=
(

Pn,O(1)
)

or
(

Pn,O(1)⊕n
)

.

These theorems are proved later; now we consider the nefness of KX +(n− r) det E

when r ≤ n− 1.

Theorem 2.3 (cf. [F2, Theorem 3.4]) When r = 1, KX + (n − 1)E is nef unless
∆(X,E) = 0 or (X,E) is a scroll over a smooth curve.

Proof The following argument is almost due to Fujita [F2], Andreatta and Wiśniew-
ski [AW]. By the proof of [F2, Theorem 3.4], we find that Theorem 2.3 is true except
the following case (we set L := E since r = 1):

(∗) there exists a birational contraction morphism f : X → Z of an extremal ray R
such that

(
KX + (n− 1)L

)
R < 0 and (F ′, LF ′) ∼=

(
Pn−1,O(1)

)
for the normal-

ization F ′ of an irreducible component F of some fiber of f .
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We show that the case (∗) does not occur. We consider the structure of f locally in a
neighborhood of F. Since dim F = n− 1 and KX + (n− 1)L is not nef, the evaluation
morphism f ∗ f∗L → L is surjective at every point of F by relative spannedness [AW,
Theorem 5.1]. Hence we have (F, LF) ∼=

(
Pn−1,O(1)

)
. Applying horizontal slicing

[AW, Lemma 2.6] repeatedly, we get a birational morphism ϕ : S→W such that S is
a surface with only log-terminal singularities and (KS + LS)C < 0 for an irreducible
component C ∼= P1 of some fiber of ϕ. Let π : S ′ → S be a minimal resolution of S
and let C ′ be the strict transform of C . Then KS ′ ·C ′ < −1 and C ′ deforms in an at
least 1-dimensional family, which derives a contradiction.

Remark 2.3.1 Polarized varieties (X, L) with ∆(X, L) = 0 have been classified in
[F1].

Theorem 2.4 (cf. [Me, Theorem 2]) When r = n− 1, KX + det E is nef unless (X,E)
is one of the following:

(i)
(

Pn,O(1)⊕(n−1)
)

;

(ii)
(

Pn,O(1)⊕(n−2) ⊕ O(2)
)

;

(iii)
(

Qn,O(1)⊕(n−1)
)

;
(iv) X ∼= PC (F) for a vector bundle F of rank n on a smooth curve C and E|F =

OPn−1 (1)⊕(n−1) for every fiber F ∼= Pn−1 of the bundle projection X → C;
(v) There exists a very ample line bundle L on X such that (X, L) is a generalized cone

on
(

P2,O(2)
)

or
(

P1,O(e)
)

(e ≥ 3), and E = L⊕(n−1).

Remark 2.4.1 The case (v) is overlooked in [Me, Theorem 2], but we can recover it.
We refer to [BS, (1.1.8)] for generalized cones.

Theorem 2.5 When 1 < r < n − 1, KX + (n − r) det E is nef unless (X,E) ∼=(
P4,O(1)⊕2

)
.

Remark 2.5.1 This theorem is proved by [I] in the case that X is smooth.

Proof of Theorems 2.1, 2.2 and 2.5 Suppose that t ≥ n and r ≤ t − 1 and KX +
(t − r) det E is not nef. When r = 1, we have t ≥ n and KX + (t − 1) det E is not nef.
Then we are done by [M1, Proposition 2.1] and Theorem 2.3. When r = t − 1, we
have r ≥ n− 1 and KX + det E is not nef. Then we are done by [Z2, Theorem 1] and
Theroem 2.4. Thus we may suppose that 1 < r < t − 1 in the following.

Let p : PX(E) → X be the bundle projection. We set Y := PX(E) and denote by
L the tautological line bundle of Y . We can take an extremal ray R of Y such that
p∗
(

KX + (t − r) det E
)
· R < 0 by an argument similar to that in [Z1, Claim IV]. Let

f : Y → Z be a contraction morphism of R and let E be an irreducible component of
Exc( f ). By Proposition 1.1, there exists a rational curve C ⊂ E belonging to R such
that

−KY ·C ≤ 2
(

dim E − dim f (E)
)
≤ 2n
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since p|F : F → X is a finite morphism for every fiber F of E → f (E). On the other
hand, we have

−KY ·C =
(

rL− p∗(KX + det E)
)

C

= r · LC − p∗
(

KX + (t − r) det E
)
·C + (t − r − 1)(p∗ det E) ·C

> r + (t − r − 1)r

= (t − r)r

≥ 2(t − 2),

hence t = n or n + 1, and LC = 1 or 2. If LC = 2, we see that t = n and dim E −
dim f (E) = n.

Case 2.6 LC = 1. We have (KY +sL)C < 0 for s ≤ t . We use Zhang’s idea in [Z1] and
[Z2]. If f is birational, by Proposition 1.2, Hq

(
V, ϕ∗(−sLF)

)
= 0 for s ≤ t , where

ϕ : V → F is a desingularization of an irreducible component F of some positive-
dimensional fiber of f and q = dim F. We get χ

(
V, ϕ∗(−sLF)

)
= 0 for 1 ≤ s ≤ t

by Kawamata-Viehweg vanishing theorem. Then it follows that q = n = t . Let
µ : W → F be the normalization that factors ϕ. We get

(
W, µ∗(LF)

)
∼=
(

Pn,O(1)
)

by using [F2, Theorem 2.2]. Set λ := (p|F) ◦µ. Then λ : W → X is a finite surjective
morphism. We can write λ∗

(
KX +(n−r) det E

)
= OPn (m). Let l be a line in W ∼= Pn

such that λ(l) ⊂ X \ Sing X. Then we have m = λ∗
(

KX + (n− r) det E
)
· l ∈ Z. Set

C ′ := µ∗l as a 1-cycle. We find that

(KY + sL)C ′ = µ∗[(s− r)L + p∗(KX + det E)]F · l

≤ (s− r) + m− (n− r − 1)r

≤ 0

for s ≤ n + 1. Since C ′ ≡ αC for some α > 0, we get (KY + sL)C ≤ 0 for s ≤ n + 1.
Then we infer that χ

(
V, ϕ∗(−sLF)

)
= 0 for 1 ≤ s ≤ n + 1 as before. This is a

contradiction, thus f is of fiber type.
Let F be a general fiber of f . Since (KY + tL)C < 0, we see that KF + tLF is not nef.

Then t = n and (F, LF) ∼=
(

Pn,O(1)
)

by [M1, Proposition 2.1]. Let U be a smooth
open subset of Z such that f−1(z) ∼= Pn for every z ∈ U . Set V := f−1(U ). We see
that f |V : V → U is a smooth morphism. It follows that V is smooth and so is X.
Then we obtain that (X,E) ∼=

(
P4,O(1)⊕2

)
by Remark 2.5.1.

Case 2.7 LC = 2. We have (KY + sL)C < 0 for s ≤ n − 1. If f is of fiber type,
then −

(
KF + (n − 1)LF

)
is ample for a general fiber F of f . Note that dim F =

dim E − dim f (E) = n. Using Vanishing theorem, we get χ(s) := χ(F, sLF) = 0 for
−(n− 1) ≤ s ≤ −1, χ(0) = h0(F,OF) = 1 and χ(1) = h0(F, LF). Then we find that
∆(F, LF) = 0 by Riemann-Roch theorem. Hence (F, LF) is one of the following [F1]:

(a)
(

Pn,O(1)
)

;
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(b)
(

Qn,O(1)
)

;
(c) a scroll over P1;
(d) a generalized cone over a smooth subvariety V ⊂ F with∆(V, LV ) = 0.

Then there exists a rational curve l ⊂ F such that LF · l = 1. We see that C ≡ 2l and
we get

2n ≥ −KY ·C > 2r(n− r) ≥ 4(n− 2),

a contradiction. Thus f is birational. Since

2n > −KY ·C > (n− r + 1)r ≥ 2(n− 1),

we find that r = 2 or (r, n) = (3, 5). If (r, n) = (3, 5), then we have (p∗ det E) ·C = 3.
Set A := 2L − p∗ det E. Since AC = 1, A is an f -ample line bundle on Y and we
have (KY + sA)C < 0 for s ≤ 2n − 2 = 8. Then we get a contradiction by using
Proposition 1.2 as in Case 2.6. Thus we see that r = 2. Since dim E − dim f (E) = n,
there exists an n-dimensional irreducible component F of some fiber of f . Since
dim Y = n + 1 and KY + (n − 1)L is not nef, we infer that ∆(F, LF) = 0 from the
argument in the proof of [A, Theorem 2.1]. Then we get a contradiction by the same
argument that is used when f is of fiber type.

4 An Application on cr-Sectional Genus

Definition 3.1 Let X be an n-dimensional normal projective variety and E an ample
vector bundle of rank r < n on X. The cr-sectional genus g(X,E) of a pair (X,E) is
defined by the formula

2g(X,E)− 2 :=
(

KX + (n− r)c1(E)
)

c1(E)n−r−1cr(E),

where KX is the canonical divisor of X.

Remark 3.1.1 Let (X,E) be as above. When r = 1, g(X,E) is called the sectional
genus of a polarized variety (X,E). We refer to [F0] for the general properties of
sectional genus. When r = n − 1, g(X,E) is called the curve genus of a generalized
polarized variety (X,E). We refer to [Ba], [LMS], [LM] and [M2] for the properties
of curve genus in the case that X is smooth. We have good properties of g(X,E) for
general r < n in the case that X is smooth (see [I] and [FuI]).

Lemma 3.2 Let (X,E) be as in Definition 3.1. Then g(X,E) is an integer.

Proof Let π : X ′ → X be a desingularization of X. We get g(X ′, π∗E) ∈ Z by an
argument in [I]. We have

2g(X ′, π∗E)− 2 =
(

KX ′ + (n− r)π∗c1(E)
)(
π∗c1(E)

) n−r−1
π∗cr(E)

=
(
π∗KX ′ + (n− r)c1(E)

)
c1(E)n−r−1cr(E)

= 2g(X,E)− 2,
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hence g(X,E) = g(X ′, π∗E) ∈ Z.

As corollaries of Theorems 2.3, 2.4 and 2.5, we obtain the following theorems.

Theorem 3.3 (cf. [F2, Corollary 3.8]) Let L be an ample line bundle on a projective
variety X with only log-terminal singularities. Then g(X, L) ≥ 0, and g(X, L) = 0 if
and only if∆(X, L) = 0.

Proof First we note that ∆(X, L) = 0 implies g(X, L) = 0 (see [F1]). Assume that
g(X, L) ≤ 0. Then KX + (n− 1)L is not nef and it follows that g(X, L) = ∆(X, L) = 0
by Theorem 2.3.

Theorem 3.4 Let (X,E) be as in Definition 3.1. Suppose that 2 ≤ r = n − 1 and X
has at worst log-terminal singularities. Then g(X,E) ≥ 0, and g(X,E) = 0 if and only
if (X,E) is one of the following:

(i)
(

Pn,O(1)⊕(n−1)
)

;

(ii)
(

Pn,O(1)⊕(n−2) ⊕ O(2)
)

;

(iii)
(

Qn,O(1)⊕(n−1)
)

;
(iv) X ∼= PP1 (F) for a vector bundle F of rank n on P1 and E|F = OPn−1 (1)⊕(n−1) for

every fiber F ∼= Pn−1 of the bundle projection X → P1;
(v) There exists a very ample line bundle L on X such that (X, L) is a generalized cone

on
(

P2,O(2)
)

or
(

P1,O(e)
)

(e ≥ 3), and E = L⊕(n−1).

Proof Assume that g(X,E) ≤ 0. Then KX + det E is not nef and (X,E) is one of
the cases in Theroem 2.4. In the cases (i), (ii), (iii) and (v) of Theorem 2.4, we
have g(X,E) = 0. In the case (iv) of Theorem 2.4, we have g(X,E) = g(C), hence
g(X,E) = 0 and C ∼= P1 by assumption.

Theorem 3.5 Let (X,E) be as in Definition 3.1. Suppose that 1 < r < n − 1 and X
has at worst log-terminal singularities. Then g(X,E) ≥ 0, and g(X,E) = 0 if and only
if (X,E) ∼=

(
P4,O(1)⊕2

)
.

This is shown as in the proof of Theorem 3.4 by using Theorem 2.5.
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