ELEVEN NONEQUIVALENT CONDITIONS
ON A COMMUTATIVE RING

ROBERT W. GILMER, JR.

1. Introdaction. We consider in this paper eleven conditions on a com-
mutative ring R. The first of these is that R contains an identity. It is well
known that each of the other properties is a consequence of the first condition.
This paper considers other relations which exist between these properties. A
complete diagram of all simple implications which exist between the eleven
properties, together with proof of these implications, is given in section 3.
Examples illustrating simple implications which do not hold are presented in
section 4. The notation and terminology is that of [10] with one exception :
< denotes containment and C denotes proper containment. All rings considered
will be assumed to be commutative and nonzero.

The eleven conditions considered on R, a commutative ring are:

A: R contains an identity.

B: R is generated by idempotent elements.

C: If A is a nonzero ideal of R such that YA %R, then R/A has an
identity.

: If xe R, there exists y € R such that x=xy.

: If Ais a proper ideal of R, VA % R.

R is idempotent.

Maximal ideals of R are prime.

If P is a nonzero prime ideal of R, R/P contains an identity.

: An ideal A such that Vv A is maximal is primary.

: Each proper ideal of R is contained in a maximal ideal.

na\'ggwa

: If A and B are comaximal proper ideals of R, then AB=ANB.

It is well-known that properties B— L follow from A. Further, each of
these properties is preserved under homomorphisms. . Rings satisfying E have
arisen naturally in [2], [3], and [4], and according to the terminology used
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there, will be called u-rings. We shall need some preliminary results before
establishing other relationships between these eleven properties.

2. Preliminary Results. One of our most frequent tools in this paper will
be the passage from a commutative ring R to R*, where R* is obtained by

adjoining an identity to R. [7; 831.

TureoreM 1. Suppose S is a commutative -ring with identity e and R is a
subring of S such that S = Rlel. Then

(@) a subset A of R is an ideal of R if and only if it is an ideal of S. (b)
if A is an ideal of S and if ANR is a finitely generated ideal of R, then A isa
finitely generated ideal of S. (c) R is Noetherian if and only if S is Noetherian.

Proof. (a) is immediate.

To prove (b), let a;,. .., ar be a basis for the ideal ANR. ° Then let G
be the set of integers m such that v + me< A for some ve R. G is a subgroup
of the additive group of integers and is therefore cyclic, generated by some
integer g. Let v Rbesuchthatv + g¢e=ac A. We show that {ay, . . . , a, a}
generates A in S. Thus if ¢'=«+ses A, then s=mqeG. Hence a' —ma
=u—-mve ANR so that a'—ma = > r;a; for some ;€ R. It follows that
{aj, . .., ar, a} generates A in R.

(c): apply (a) and (b).

TuEOREM 2. Suppose A, B, C are ideals of a ring R such that A has a basis
{ai, . .., ar} of k elements and AB= AC. Then given b < B*, there is an element
ce C such that ab=ac for all ac A. In particular, if A contains a regular
element B*<C.

Proof. Let R* be a ring obtained by adjoining an identity to R. Theorem
1 shows that the hypotheses of Theorem 2 still hold if “R” is replaced by
“R*’. Hence we may assume R contains an idehtity.

We first note that since {ai, . .., a} generates A and since B* is generated
by all products » =b,b;- + b where b; € B, it suffices to prove the existence of
a ¢ such that aic=va; for i=1,2, ...,k This we proceed to do.

We have BA = 3)Baj=CA = >)Caj. Thus if 1<i<k, bia; = > %-.cija), for
some b,-,-e C. We therefore obtain a homogeneous system

(*) >(8ijbi — cij) aj =0
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of k equations linear in a, .. ., ar and having coefficients in R. If 4 is the
determinant of the system (*), a;id=0. for i=1,2, ...,k It is easily seen,

however, that d =v — ¢ for some ce C. Theorem 2 now follows.

CoroLLARY 1V. Let A and B be ideals of a ring R such that A is finitely
generated and such that AB=A. Then there exists b= B such that ab=a for
all ae A.

Proof. As in the proof of Theorem 2, we may assume R has an identity
element e, so that AB= AR. Suppose A is generated by %k elements. Then
by Theorem 2, given e R*, there exists b < B such that for all a< A, ab = ae

=da.

CoroLLARY 27. A finitely generated idempotent ideal B of a ring R is principal

and is generated by an idempotent element.

Proof. Apply Corollary 1.

CoroLLARY 3. Suppose {%i, ..., %n, ¥1,...,9s) is @ collection of elements
of a ving R such that xiyi=x for each i. There exists an element y< R such

that xiy = x; for each i.

Proof. Let A be the ideal of R generated by {x, ..., z»} and B the ideal
of R generated by {y,...,ys}. The hypothesis on x; and y; imply AB= A.
Corollary 3 now follows from Corollary 1.

3. Relations Between the Eleven Properties. The following diagram de-
scribes completely the simple implications which exist between these properties.

In particular, no two of the eleven properties are equivalent.

K
T/L
/B ‘l‘) >FE E >G
A H

SN

1 Corollary 1 is proved in [10; 215], for rings with identity.
2 Corollary 2 was first proved by Mori in [8; 174-175].
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Before proving that these twelve implications hold, we first give equivalent
statements of properties C, D, E, and H.

ProrosiTioN 1. C is equivalent to C';
C': If A is a nonzero principal ideal of R such that Y A C R, then R/ A has

an identity.

ProrosITION 2. D is equivalent to each of D', D", D'':

D' . For each ideal A of R, RA=A.

D" . If {x, ..., %} is a finite set of elements of R, there exists yE R such
that x;y = x; for each i.

D": If A and B are comaximal ideals of R, then AN B= AB.

Proof. That D implies D" follows from Corollary 3. It is clear that D"
implies D’ and D' implies D" by the usual proof. [9; 40].

If D' holds in R and x R, then (x) and R are comaximal so that (x) =
RN (x) = Rx. Hence x€ Rx and D holds.

ProrosiTioN 3. E is equivalent to E':
E': Each proper tdeal of R is contained in a proper prime ideal.

Proof. This follows immediately from the fact that the radical of an ideal
is the intersection of the prime ideals containing it. [7; 1041

ProrosiTion 4. H is equivalent to H':
H': If Q is a nonzero primary ideal with radical Px R, R/Q contains an
identity element.

Proof. See Lemma 3 of [2].

We now prove the implications of our chart. That A-»B, A-C, E-F,
and C- H are immediate.

That B- D follows immediately from Corollary 3.

Note that a domain in which D holds has an identity. Hence D- H.

That D » L follows from Proposition 2.

D-E: Suppose ACR and x€ R— A. If y is such that x=xy, then for
any »n, x=xy". Hence y"¢ A and Vv A C R so that E holds.

Note that the ideal M of R is maximal if and only if R/M is a ring having
exactly two ideals. By [10; 1331, the ring S has exactly two ideals if and
only if S is a field or the additive groupk of S is cyclic of prime order and
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multiplication in S is trivial (the product of any two elements in zero). Hence
if M is a maximal ideal of R, M is not prime if and only if M2R® Equi-
valently, M is prime if and only if v M % R. From these observations it is
clear that F>G.

The following lemma shows that C- /.

LemMa 1. Let A be an ideal of a ring R such that N\ A is maximal in R.
Then A is primary if and only if R|/A has an identity element.

Proof. If R/A has an identity, then A/A is primary in R/A since yA/A
=yA/A is maximal. Hence A is primary in R [10; 148-153].

Conversely, if A is primary, then v A is prime and maximal. OQur previous
observations show R/y A is a field. Lemma 3 of [2] now shows R/A has an
identity.

D-K: If WCR, W is contained in a proper prime ideal P since D> E<« E'.
But D also implies H so that K/P contains an identity. Thus P/P is contained
in M/P, a maximal ideal of R/P. Then AcPcM and M is maximal in R
(Note that we have actually shown E and H imply K. Theorem 3 shows E
and H are equivalent to D.).

We delay for the present the proof that E—J.

4. Examples. The following series of examples shows that the only simple
implications which exist between our eleven properties are those shown in the
diagram in section 3. It can be checked that these examples are sufficient to
show no other simple implication exists, though we shall not enumerate those
illustrated by most examples.

ExampLE 1. Let @ be a nonzero additive abelian group. @ becomes a ring
R if multiplication is defined trivially. For any such @, F does not hold in R,
while C holds vacuously.

If Q is cyclic of order 12, K holds in R while G and L do not.

If @ is cyclic of order 6, K and L hold in R but G does not.

Finally, if @ is the additive group of rationals, then G holds in R while
L and K do not.

These examples show, for instance, that H and J are the only properties
implied by C.

ExampLE 2. We let R be the ring of all finite subsets of Z. B holds in
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R but C does not.

ExampLe 3. We let R be the ring of even integers.” R is a one- dimeilsienal
Noetherian domain in which K and H hold, but G, J, and L do not. G fails
because (4) is maximal but not prime. (12) has radical (6) a max1mal 1dea1
but (12) is not primary in R so that J fails also. L fails because (43 and (6)
are comaximal but (4) N (6) = (12) D (24) = (4) (6).

ExampLe 4. Let @ be a valuation ring whose maximal ideal M is the union
of the prime ideals properly contained in M and such' that Q=%+ M where
k=GF(p) for some prime p (for example, see [5, section 5P::+ If W is an
ideal of Q such that WcC M, then given m = M — W, m ‘is in some ‘prime ideal
PcM so that WS(m)SPCM and so YW CSPCM.” Now consider -R= M.
Because Q =k+ M, R and @ have exactly the same ideals (= R) by Thebrem
1. Hence the ideals of R are linearly ordered and the obsérvation just'made
shows that R is a #-domain. Also, L holds vacuously in“R. We have already
shown K fails in R and a subsequent result (Theorém’3) shows that ‘H" also

fails in R, for clearly R does not have an identity.

ExampLe 5. Let & be a field and let {X;}7-, be a set of elements from an
extension field of 2 which are algebraically mdependent over k. Let M be the
ideal of @ = E[{X;}] generated by {X;} and let N be the ‘ideal of @ generated
by {Xi— X:X;}i<;. Then define R=M/N. That D holds:in R is shown by
Corollary 3. In [1] it is shown that R contains no idempotent element, and

hence B fails in R. Theorem 3 then implies C does not hold in- R.:

ExampLe 6. Suppose R is the principal ideal generated by X' in the poly-
nomial domain S=Z[X]. Since S=Z+ R, R is a’' Noetherian domain by
Corollary 3. Hence K holds in R. If V is the idealiof S:'generated by 2X
and X + X? and if W is the ideal of S generated by 3X-and X% V and W are
comaximal maximal ideals of R, W is not prime, and 6Xe& VN W—«(VW).
Hence G and L fail in R.  Also 2XS+ (X*+ X% S has radical ¥ but-is not
primary in R so that J does not hold in R. Finally [2X+ X*]S is prime in
R but R/[2X+ X*1S does not have an identity so that H is invalid in R.

ExampLe 7. For k a positive integer, let 6, =*VZ and let Sp = Z[0:1. S
is the integral closure of Z in I'(6x), I the field of rationals. Let Tk = {240 +

k_ .. . .
a0+ -+ - +aw_103% 'Ja;e Z). Because Sk is integral over Z, there is-a:maximal
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ideal My of Si such that M NZ=(3). If E denotes the ring of even integers,
we have MreNE=(6). Hence Pr=MrN T, is a maximal ideal of Tk (Sk is
integral over T%) such that P, N E = (6).

Next we note that T2 "NE=(4). For 4=0, " T¢" andifd, ..., dw
& T, then for each 7, br=d;/0r= Tr. Therefore dids* * ~dor+r =4 by* + - barns
so that ENTY" = (4) as asserted. Consequently, if We=P:N T3 ", Wi has
maximal radical Pr in 7% and WrNE = (12).

We observe that having chosen M, we may choose M+ in Si+1 so that

. . . I
M+ NSy = My, because Sk.q is integral over Si. Since also TxSTi1, 15 "o

T3, 1t follows then that Wi Wisr. Now let T= U Tk, P= UPi, W= U Ws.
The following facts concerning 7 are easily checked: T is an idempotent one-
dimensional domain, P is maximal in 7 and PNE = (6), and YW = P, WNE
= (12). Consequently, W is not primary in T; 2.6 W, 6& W, and 2¢ P.

Hence F holds in T but J does not.

ExampLE 8. Let S=Z[Xy, X,,...,{U;}] be a polynomial domain over Z,
let M be the ideal of S generated by {2X:, 2Xs, ...} and let N be the ideal
of S generated by {2X; - 2" U;; XI*1} for all positive integers i and j. Let
R=M/N. Let x; be the N-residue of x;, u;; the N-residue of U;;. = We have,
for any 7 and j, 2xi = (2ui;%i+1) (2%i+1)’.  Hence if W is an ideal of R having
radical R, then for any ¢, W contains some power of 2x;+; and therefore con-
tains 2x;. Therefore W=R and R is a #-ring. Yet L does not hold in R.
If 7 is the ideal of S generated by (6%, 6%,...} and if V is the ideal of &
generated by {10x, 10x,, ...}, then A+ 7/A and A+ V/A are comaximal

ideals of R whose intersection properly contains their product.

ExamrLe 9. If R=2Z/12Z, L holds in R but J does not.

5. Other Relations between the Eleven Properties. The examples of the
previous section serve to point out that properties C and H may be satisfied
vacuously in a ring and are therefore not generally strong properties. In this
section we show that C and H are rather strong properties in a #-ring. In
fact we show that if C holds in an idempotent ring R, then R has an identity
and we show that E and G are equivalent to D. We also investigate relations
between our eleven properties in the case when R is Noetherian or, less

restrictively, finitely generated. We first consider a lemma.
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LEMMA 2. Let V be a proper ideal of a commutative ring R and let P be a
minimal prime ideal of V such that R|/P has an identity e=0. If W=
{x€ Rltx—x< V for some tc R}, then W is an ideal of R and V< WEP.

Proof. If eixi—x€V for i=1,2 and if t=e,+e;—e¢1e: then tx;—x =
(e1x1—11) —es(e,x1—x) € V and similarly ¢ —x, € V so that £(%;—x%) — (xi—x) € V
and x—xme W. Further, if = R, then él roy —rvi=rlex,—x) €V so that
rxie A. Hence W is an ideal. Obviously VC W.

Now if @ is the isolated primary component of V belonging to P, R/Q has
an identity S. Thus if yE R, sy—y< Q so that (sy— vy, =s(yvy) — (yv,) €V
for some vy& P. This implies yvy = W. In particular, if y& P, then ywye W-P.

TueoreM 3. D« E and H.

Proof. By the results of section 3, we need only show that if H holds in
the #-ring R, then so does D.

Since R = R*x (0), there is an element x€ R such that Rxx (0). We let
Wi={y< Rlyt —y< Rx for some ¢t= R} and we let Wo= {ze Rlzs—z& W, for
some s€ R}. Now WL W, by Lemma 2. But if z& W, and zs —ze W;, then
(zs—2)t— (2s—2) = (st —t—s)z—z< Rx so that z& W,. Hence W;= W.. But
(0) € Rx< W, so any minimal prime of W, is nonzero. Lemma 2 then implies
that R is a minimal prime of W, so that W; =R since R is a »-ring. In par-
ticular, then, x€ W) so that fx—x< Rx and x< Rx.

Now let Vi ={ve R|tv=v for some tc R}. As just shown, (0) C(x) V.
Let Va={we Rlsw—-we V; for some s€ R}. A repetition of the argument

in the preceding paragraph shows Vi= V.= R so that D holds in R.

CoroLLARY 4. Suppose the ascending chain condition for prime ideals holds
in the u-ring R. Then D holds in R.

Proof. We show that H holds in R. Thus let P be prime in R and maximal
with respect to the property that R/P does not have an identity. Then R/P
is a #-domain in which H holds. By Theofem 3, Dholds in R/P. As previously
observed, this implies R/P contains an identity. Hence there is no prime ideal
P of R such that A does not hold in R/P. That is, H holds in R. Corollary
4 then follows from Theorem 3.

ProrosiTiON 5. Suppose W is an ideal of a u-ring R such that YW =M, a
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maximal ideal. If x, yE R are such that xy e W and y& M, then RxS W.

Proof. Since y&M, M+ (y) = R. Hence, if g R, there exists m, v € R,
a € Z such that g=m +vy+ay. For some integer t, m'e W. Hence ¢’ =
m' +v'y+a'y and xg' =m'x+ v'xy+a’'xye W. This shows that VW:x = R.
Since R is a #-ring, R= W : x so that RxC W as asserted.

TueoreM 4. [ holds in the u-ring R.

Proof. Suppose the ideal W of R has maximal radical M, that xy= W and
y&M. By proposition 5, Rxc W. Now R/W is a #-ring in which H holds
since M/W is the only proper prime ideal of R/W. By Theorem 3, D holds
in R/W. Whence x=% (R/W) =xR+ W/W=W/W so that r€ W. Hence W

is primary.

TueOREM 5. An idempotent ring R in which C holds contains an identity

element.

Proof. Since R =R*=x (0), there exists x€ R such that Rxx0. Let W, =
{y € R|yt —y € Rx for some t=R}. Now (0) € RxC W, so that R/W, has an
identity 2. Then ex —x< Rx and x = Rx. This shows that if We={ye Rly =yt
for some ¢ R}, then (0) C (x) < W: so that R/ W; has an identity #. Thus if
re R, ru—re W, and hence ru — r= (ru—r)t for some t€ R. It follows that
r= (u+t—urr so that r€ Wo—that is, Wo = R and D holds in R.

We suppose R does not contain an identity. Then R contains no regular
element. Then let x= R and let y be such that x==xy. Since yis a zero divisor,
yz=0 for some z2%0. We note that (x) N (2) = (0) for if rx=sz, then rxy =rx
=szy=0. Finally, R/(x) and R/(z) have identities e, & respectively—that is
et—te(x) and et —te (2) for all te R. Now if e=e¢,+ e;: — eie, then for all
teR e—t=et—t—elet—t) =at—t—elet—e @ N()=(0). Hence eis

an identity of R, contrary to our assumption. Therefore R has an identity.

ExampLE 10. Let @ be a nondiscrete rank one valuation ring with maximal
ideal M such that @ = = + M for some field = = GF(p). Consider R=M. Ris
an idempotent ring and H holds vacuously in R. But clearly D does not hold
in R. Hence H and F do not imply D.

We now consider the case of a finitely generated ring R. In any such
ring K holds, for if {P.} is a chain of proper ideals of R, then U P, is also a
proper ideal.
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TueoreM 6. If G holds in the finitely generated ring R, then R has an
identity.

Proof. If W is a proper ideal of R, W is contained in a maximal ideal M
since K holds in R. Since G holds, M is prime so that R is a #-ring by Pro-
position 3. In particular, R is finitely generated and idempotent so that Corollary
2 shows that R contains an identity.

In the course of the proof of Theorem 6 we have observed that K and G
imply E. Examples 1, 3, 6, and 9 show that if simple implications other than
those of the form X - K and those given in section 3 exist under the additional
hypothesis that R is Noetherian, then these other implications are among J—- H and
L~ H. We shall see at once that the first of these two implications does not
hold.

ExampLe 11. Let S=Z[X] be a polynomial domain over Z, let M = (2, X)
and let T=Sy. We note that if «€ T— MT, then a = 1€ MT so that T =
Z+ MT. Hence MT is a Noetherian ring. We let R= MT/X?T. Then R is
also Noetherian. X7/X?T is the only proper prime ideal of R, and it is easily
checked that MT/XT is not idempotent, and thus has no identity. Therefore
H does not hold in R. But J holds vacuously; no ideal of R has maximal

radical.
The next example shows that H need not hold in a finitely generated ring
R in which J and L hold.

ExampLE 12. Let S be a rank two valuation ring whose maximal ideal M
is principal and S is such that S=#=+ M where = = GF(p) for some prime p
(such an S may be constructed in (X, Y, Z)). Let R=M. As in example

10, J holds vacuously. Because the ideals of R are linearly ordered, L is also
vacuously satisfied. R is finitely generated because M is principal and S=

m+ M. Yet H does not holdin R. If P is the nonzero prime ideal of S properly
contained in M, [M/PY = M*+ P/P=M?/PC M/P so that M/P does not have
an identity.

We are unable to determine whether H holds in a Noetherian ring satisfying
L. The best result obtained in this direction is Theorem 7. The proof uses

the following lemma.
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Lemma 3. Suppose L holds in the finitely generated domain Q and that Q
does not contain an identity. Then Q is principal. If Q is Noetherian, if K is
the quotient field of Q, and if Q* = Qlel is the subring of K generated by Q and
the identity element e, Q* is a one-dimensional local domain and each ideal of Q*

contains a power of Q.

Proof. Theorem 6 implies there is a maximal ideal M of @ such that M
is not prime. Hence Q*CM so that if x, y€ Q- M, then M+ (x) =@, but
xyEMN (%), xyEM(x). Since L holds in @, we must have Q = (x).

Suppose now that @ is Noetherian and Q* is not a local domain. Then
there exist distinct maximal ideals M, M. and elements m; < M; such that
mi+me.=1. Then m;Q and m,Q are proper comaximal ideals of Q. Hence
mQmQ = miQ N m2Q = L(my) N (m;)]Q, since Q is principal, =mm:Q. But Q*
is a domain, and hence e= Q. This contradiction shows that Q* is a local
domain. Hence Q*/Q is also local. Since Q*/Q is a homomorphic image of
Z, Q*/Q=Z/(p") for some prime p and some integer #>1. Hence Q is primary
for the maximal ideal M of Q*; in fact M =@ + (pe) and pkee Q. Because
Q is principal, the principal ideal theorem [10; 238] shows M is a minimal
prime of Q*. Consequently, Q™ is one-dimensional. That each ideal of Q*

contains a power of @ now follows simply because @* is Noetherian.

TueoreM 7. If L holds in the finitely generated ring R, then R is principal
or H holds in R. If R is Noetherian and P is a proper prime ideal of R which

is not both a maximal prime and a minimal prime of R, then R/P contains an

identity.

Proof. Suppose R is finitely generated and H does not hold in R. Let P
be a prime ideal of R such that R/P does not have an identity. By Lemma 3,
R/P is principal. R =P+ (x) for some x. Then also R =[P+ (x*)]+ () and
because R/P does not have an identity x& P+ (x®) and x*& P+ (°) 2 P(x) + (x%).
Since x*<[P+ (#®)1N (x) and L holds in R, R= (x).

To prove the last assertion, it suffices to show that if P; and P, are prime
in the Noetherian ring R satisfying L with P,C P,C R, then R/P; has an
identity. But this follows immediately from Lemma 3; since P:/P; contains

no power of R/Py, R/P;, has an identity.
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