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Summary

This paper extends some earlier work by Woods [8] on the transient forces
caused by unsteady transverse motions of a rigid cascade of aerofoils to the
case when the inlet velocity is varying in magnitude. The flow is incom-
pressible and two-dimensional. Expressions for the growth of lift and moment
on a member of the cascade with increasing inlet velocity are evaluated and
shown to be generalizations of Wagner's classical results for an isolated
aerofoil.

1. Introduction

Suppose that an unstaggered cascade of thin aerofoils or blades is set at
a small incidence a to an inlet stream of incompressible fluid and that the
velocity of this stream is increased or decreased in magnitude. One result
will be a corresponding variation in the pressure distribution over a typical
blade. It is this variation and the consequent variation in the force and
moment acting on the blade that we shall calculate in this paper.

This type of unsteady flow is always present to some extent under normal
operating conditions in turbo-machinery, for each ring of rotor blades must
move through the wake (depressions in velocity magnitude) of the blades of
the upstream stator. The induced fluctuating loads on each blade, even if
small, will contribute to the fatigue and eventual failure of the blade.

More serious are the extreme fluctuations that may occur through
turbo-machinery, e.g. the surges that arise in some compressors under
abnormal operating conditions.

Woods [8] studied the loads produced on cascade blades by transverse
unsteady motions of the cascade as a rigid group, or equivalently due to
small changes in the inlet angle a. This work is extended here to allow for
variations in the magnitude U of the inlet velocity; the earlier work is thus a
special case of that presented below.

A generalisation is found for Wagner's growth of lift function. This
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generalisation lends itself to series expansions in terms of the chord: gap
ratio of the cascade. The special case of constant acceleration of the cascade
(relative to the inlet fluid) also receives some attention.

2. General Theory

As we shall restrict attention to the problem of finding the induced
loading on an unstaggered cascade of thin aerofoils, distance h apart, we can
employ the usual linearization of boundary shape and apply the boundary
conditions on the family of slits — \c < x < \c, y = -±_nh, » = 0,1, 2 . . . .
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It is easily verified that these slits are mapped on to — n < y < n, r\
in the C-plane (£ = y + irj) shown in figure 1 by

= 0

(1)

where

(2)

(2rz\
cosh r + sinh r cos £ = exp — I 1,

\ c 1

nc

The point upstream at infinity, i.e. x = — oo, maps onto rj = oo, while
the points x = oo, y > 0 and x = oo, y < 0 map onto £ = n + ty* a11^
£ = — n + ifi respectively, where from (1)

(3) cosh ii = coth r.

The upper, and lower surfaces of the vortex sheet extending behind each
aerofoil of the cascade map onto y = n, 0 ^ i\ < /i, and y = — n,
0 ^rj < n respectively. On the surface of an aerofoil of the cascade (1)
becomes

https://doi.org/10.1017/S144678870002557X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002557X


222 A. H. Low and L. C. Woods [3]

(2rx\
(4) cosh r + sinh r cos y — exp — I — I •

The general theory developed by Woods [8] for a flow consisting of small
unsteady perturbations about a steady mean flow is readily adapted to the
problem now being considered, namely that of small perturbations about
an unsteady mean flow. The difference in the two theories, of course, lies in
the fact that, where as the inlet velocity U was previously constant, in the
flow now being considered U is a function of time.

Let (q,B) denote the velocity vector in polar coordinates; then the
function

(5) / - l n ( £ )
where Q = in.{U/q}, is an analytic function of z and hence of £. As one side of
the vortex sheet becomes the left-hand side of £ = n + irj while the other
becomes the right-hand side of £ = — n + iv> where 0 5̂  rj ̂  fi, the jump
in Q across the vortex sheet may be written

(6) a> = Q{n + «? — 0) — Q{— n + irj + 0).

The solution of the boundary value problem in which
(a) 6 is known on r\ = 0, — n ^ y ^ n, and
(b) aJ is known on y = ± n, 0 < r\ < oo,

is given by [7]

r
Jo

1 % ) c o t i \ d y + r , y
2n J-n Kr ' \ 2 / r 2n Jo cosh rj* + cos

Assuming Joukowski's condition that the rear stagnation point remains
fixed in position, we have, on the aerofoil surface (by "the" aerofoil we
mean the typical aerofoil lying on y = 0).

(8) 0 = 0g + ^ - a + nXd(y)

where 08 is the slope of the surface, n is the normal velocity of the surface,
a is the angle of incidence of the aerofoil (measured from the negative a;-axis),
X is a number initially unknown and due to the small movement of the front
stagnation point away from its mean position y = 0 (the value of A is fixed
by the condition that the unsteady motion can have no influence on the
flow direction, assumed parallel to a:-axis, at infinity upstream), and d(y)
is the delta function.

In fact, the last term on the right-hand side of (8) is due to the flow direc-
tion being reversed for points on the aerofoil surface between the mean
stagnation point (y = 0) and the perturbed stagnation point (y == X, say).
This effect can be accounted for by a term
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n{H{y - A ) - H(y)}

where H(y) is the Heaviside unit function. As d/dy{#(y)} = d(y) this term
can be written as nld{y), on the assumption that y — X is small.

Upstream at infinity, i.e. at r\ = oo, 0 = 0 and it follows from (5) that
f(y -\- too) = 0. Kelvin's circulation theorem and the assumption there is no
circulation before the commencement of the unsteady motion, yields the
same result downstream at infinity (cf. [8]); thus f{y + iju) = 0. Substitut-
ing these limits in (7) we obtain

(9) T 0(y*)dy* + PaJfo*)d»?* = 0,
J-n JO

J- cosh fi + cos y*
and

r °w r
J-n cosh a + cos y* Jc

cosh /i + cos y* Jo cosh ?7* — cosh fj,
= 0.

Let x = £/«>, then — ^ is the strength of the vorticity sheet in the aerofoil
wake and, by the persistence of vorticity, satisfies

VT + I - °'
ox otor

By 2 BY
(12) * + _ * 0,

Bx c 9j

where j is the "reduced time",

2 C*
(13) J = — ^ &.

c Jo
This "time" equals the total length of the vortex sheet, in units of half chord
length, for an unsteady motion that commenced at t == 0. The solution of
(12) is

which relates j at any point and time to its value at the trailing edge
x = c/2 at an earlier time. Let

2x
(15) • f = —.

c
then (14) can be written

(16) %{t. J) = Z(l. J + 1 - I).
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In the next section we shall use the above expressions to obtain an explicit
equation for %- Apart from the fact that U is now a function of time, the
calculation is similar to that given in Woods [8].

3. The Strength of Trailing Vortex Sheets

In the special case of steady flow at zero incidence, there is no trailing
vortex sheet and equation (8) reduces to

so that, from equations (9) and (11)

(17) f" BB(y*) dy* = 0
J—n

and

(18) ^-1 dy* = 0.
j - n cosh pi -f cos y*

For the general case of unsteady flow about an aerofoil at some small
incidence we have from equations (9), (10) and (11), using (8), (17) and (18)

(19) XU = 2OLU-~ f n(y*, ])dy* - - f°°X(V*, j)dr,*;
n j - . n n Jo

Cw sin v* dv* Cn sin v*
(20) 0 = U\ 0,(y*) I V y . + « ( v \ j) , ? dy*;k 7 ] - w

 V' ' cosh^ + cosy* J ^ Kr ""cosh^-f -cosy* r*cosh pi -f- cos y"
uid

XU 2oJJ 1 f* «(y*, j)= I dy*
1 + cosh pi sinh /J n J_» cosh ^ -f- cos y*

7T Jo cosh rj* — cosh pi

Equation (19) fixes the value of X; equation (20) is a (physical) restriction
>n the unsteady perturbations while (21) is an integral equation for the
rortex sheet strength —%.

Equations (19) and (21) may be rewritten, using equations (3) and (15),
a the form

XU = 2<xtf - — f* »(y*, j)dy*
22)

00f r
-oo Lvcoshr( j — v + 1) — coshr

nd
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1 + cosh^ 1 + coshya f» n{y*, ])dy*
XU = — 2cdJ —

cosh fj, C

sinh fj, 7t J-n cosh fi + cos y*

cosh^sinh,e-fr f

X , =dv
Vcosh r(j — v + 1) — cosh r

where
(24) v == J + 1 - £.

Equations (22) and (23) can be solved by the Laplace Transform method.
The notations used for the transform and its inverse will be as follows [3]:

(25) ^{/(j) , p} ̂  &{}} = / (p ) = p P e-PJ/(j)dj, a ̂

1 fCo+iOO ^ p

(26) jgr-i{F(p)f j} s — eJPi^(p)-^ a<co<b
Zni J Co-ioo p

where the restrictions on the real numbers c0 and ^(p) are chosen so that
convergence of the integral is ensured. Use is also made of the transform rules

(27) A P / ( T ) F ( J - r)dr, p) = -=S?{/(j), p}^{F(j), p}
I J -oo / p

and

(28)
On writing

(29)

(30)

(31) «O(J) = - f* " ( A
7T «/—w

and

(32) M D - - r ;(y;>j) .
7T J-n cosh ^ + cos y*

we find, from equations (3), (22), (23), (25) and (27) that
(33) { } {) {0]

n
and

er ep + r

(34) &{A) ^{5} i m l ^^K}
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where the argument, cosh r, of the Legendre function of the second kind
@m(cosh r) (see p. 319 of [6]) has been omitted.

With the result
y

(35) (?<p-r)/r(cosh r) = c o s n K?p/r(cosh r) sinh r <?J/r(cosh r),

where Q\ir is an associated Legendre function of the first order, equations
(33) and (34) yield

(36) <£{A) = #{D} -J?{a0] + g

and

where

(er — 1)B -\- a0 — zrax cosech r
g== e^shmT •

By (28), equation (36) may be written in the form

= SriAJ&ig} + &{B - a0}

where the dot denotes differentiation with respect to j . Therefore, from
(25), (27) and (29)

(39) A » X(])U(]) = f ^ ^ j - r)g(r)dr + B - a,
Jo

where
J /•C0+tOO

J Jr P

Similarly, from (37),

(41)

where

(42) A,XJI

2 Jc0-ioo y p / r —
Equations (39), (40), (41) and (42) determine the values of A and %,

i.e. the movement of the front stagnation point and the strength of the vortex
sheet respectively, in the unsteady flow.

1
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4. Series Expansions of Ax(j)

In §5 it will be seen that, in order to calculate the pressure, and hence the
lift and moment, on an aerofoil of the cascade, it is sufficient to be able to
evaluate A^j). To do this, it is found convenient to expand in series the
integral by which the function is defined.

Thus, from equation (40), we first rewrite ^ ( j ) in the form
7 1 i\J ' ') — "^

where

(43) Ai(P.r)= —

Using a result obtained by S. Rosenblat [2] for the transformation of
Legendre functions of the second kind into hypergeometric functions,
namely

(44)

X F l f i + 1 \; n + fX F l f i + 1 , \; n + f; - 7 =

equation (43) becomes

One of the Gauss relations between contiguous functions of the hyper-
geometric function gives

(46) cF{a - 1, b; c; z) — (c — b)zF{a, b; c + 1; z) = c(l - z)F(a, b; c; z)

which, on letting

yields

(f + i)F(L, h I + J; e-) - L^F(L + l, J; Z + *; e-)

= (7 + i) (i - e-2')f(7 + 1, i; Z +
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so that from (45)

(47) A&.r)
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1 r r

r r

From the series expansion of the hypergeometric function we have,
for r > 0, to the second order in e~2r,

1

~2

1

~~~2

(48)

Thus, using (26), and the additional transform rules [3]

P
, P) = (a -

(0t{v) > - 1, 0 < < oo)

and

we have

(49)

Substitution of (49) in (39) allows, for r > 0, the determination of XU.
An alternative expansion to (49), applicable to small values of r, may be

obtained in the following manner. Using the Laplacian integral form for the
Legendre function of the second kind (see p. 319 of [6]), equation (43)
is written

_ ^ [(17 - 4r2 j2) - 8e-rJ - 9e~2rJ]

(50)
J°°{1 + tanh r cosh

I {1 -f cosh <f>}{! + tanh r cosh d<f>

Since the derivatives, of any order with respect to r, of Ax{\>, r) are
uniformly convergent at r = 0, we may write

I
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(51) ^(P, r) = ̂ (P, o) + r {|:^I(P, r ) } 0 + ^ { ^ ^ L
where the order of the integration and differentiation of the integrals defining
J[1(p, r) may be interchanged.

Thus, from (50)

(52) AJv, 0) =

i.e.

(53) ^i(P,O) = -

where Km(p) is a modified Bessel function of the second kind (see p. 181 of
[5]). Use of the relation

2m

gives

and

(55)

where the argument, p, of Km(p) has been omitted for convenience.
Hence, neglecting higher order than r, equations (51), (53), and (54) give

=

where ^x(j) is Wagner's [4] "growth of lift" function. From (56) and (2)

(57) ^ ( j ) = H{j) [(1 - *x(j)) + ^ | ( i -

Thus, ^x(j) is the generalisation of Wagner's [4] "growth of lift"
function. For small values of r, equations (39) and (57) may be used to
determine XU.
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5. The Lift and Moment acting on an Aerofoil of the Cascade

From Bernoulli's equation and the fact that U is a function of t only,
we have, using equation (13) and the approximations consistent with linear
perturbation theory, that the pressure distribution p on an aerofoil surface
is given by

2x dU 2 Cx d
PU — + —PU — (UQ)dx.

C 0] C J-CI2 0J

(58)

d] c J-ci2 dj

Following the procedure of Woods [8], this equation yields

. x pU2 Cn V — y
p(y> j ) = G(j) _ 2PUU f- — 0(y') cot -dy '

c 2TZ J—7i 2

sin y* cot (y' — y*)/2

Jo I cos y* + cosh [x

sinhV
}dy*)dy'.

(cos y* + cosh ju) (COS y' -f- cosh

Integration by parts and substitution for d from (8), yields

. x y
P{y> J) = Pa(y) + 2/OC/C7 fpAf/2 cot —

c 2
(59) . ̂  r
where

; r Jo cos y* + cosh ^

and PB(y) is the mean steady pressure.
Hence, we find that the lift, L, and the moment, M, about the chord

mid-point are given by

(61)

and

M =

L - T

c

~~2r

s

X
—

c

2r

iP
n

i
v —TT

- P .

(p —
cos y

) s m ',
cos

In sinh (x.

if S/ /

+ cosh /i

y ln (cos y

y + cosh

dy

- + cosh /ul±dy
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6. Accelerated Motion

(7) General Case

Consider a particular rigid aerofoil of the cascade at a fixed incidence a and
accelerating in an arbitrary fashion. Under these conditions

(63) n(y, j) = 0

so that from (31) and (32)

ao = a1 = 0.

Equations (39) and (41) then give, by (29), (30) and (38)

(64) XU = 2a [u - - J L _ £ 0 ( ^ ( 1 _ T)dr],
and

(65) z ^ f J C
er -j- 1 Jo

Also, from (59), (60), (61) and (62)

(66) L = LB + p (1 - tanh — | - 2P - In (1 -
2 \ 2 / nc

and
h2Ul)h2U2X I u\ h2Ul)

(67) M = MB-P 1 + tanh— In (1-e"2") - 2p In (1 -e"*) .
4JT \ 2 / TIC

If the aerofoil is suddenly given a velocity Uo, from rest, at t = 0 then

U(l) = U0H(j)

so that

Hence, (64) and (66) give

( 6 8 )
 ^ - ^ (

just after the start of the motion.

(II) Uniform acceleration

In the case of constant acceleration, we write

U = ut

where u is a constant. Equation (13) then gives

ut2
T i

C

https://doi.org/10.1017/S144678870002557X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002557X


232 A. H. Low and L. C. Woods [13]

so that

and

Equations (64) to (66) then become

/ ^/Z7 n \
(69) XU = 2a {Vcuj r-^AM — T) dr ,

I er + 1 Jo I

(70)

and

n \ \c I er -{- JLJQ I

{III) Single Aerofoil

The results for a single aerofoil are obtained by taking the limit h -*• oo.
For example, from equations (57),

i

while equations (64) and (68) yield

j - r)dr

and
CL = 1(j)

These results are in agreement with the classical results for a single
aerofoil (e.g. see [1]),
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