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The congruence lattice of a combinatorial strict inverse semigroup is shown to be isomorphic to a complete
subdirect product of congruence lattices of semilattices preserving pseudocomplements.
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1. Introduction

Congruence lattices of semilattices admit several remarkable properties. Let Sf denote
the class of all semilattices, let Ye£f and #(7) be the congruence lattice of Y. By Papert
[11], <g(Y) is completely (meet-)semidistributive, (weakly) relatively pseudocomple-
mented and thus also pseudocomplemented, and each non universal congruence
pe^(Y) is the intersection of coatoms (which are also characterized). Hall [5] proved
that %>(Y) is semimodular (and thus satisfies the Jordan-Dedekind chain condition), and
described the atoms of #(Y). Jones [9] has shown that <#(Y) is M-symmetric. Freese
and Nation [2] proved that the class W{Sf) = {<g(Y)\Ye£r} of all congruence lattices of
semilattices does not satisfy any non trivial lattice identity. Finally, Zhitomirskij [13]
gave a characterization of all lattices which are isomorphic to congruence lattices of
semilattices. Quite recently, Freese and Nation [3] have again considered congruence
lattices of finite semilattices from a more lattice theoretic point of view. They have
shown, for instance, that the congruence lattice of a finite semilattice (in fact, of a finite
combinatorial inverse semigroup) is upper bounded (which is stronger than
meet-semidistributivity).

A combinatorial strict inverse semigroup S is an (inverse) subdirect product of
combinatorial Brandt semigroups (and possibly the trivial group) (see Petrich [12]).
This class forms a variety of inverse semigroups and will be denoted by &. It is well
known that 36 is the unique combinatorial cover of Sf in the lattice of inverse
semigroup varieties [12]. The purpose of this note is to establish several of the above
mentioned properties for congruence lattices of combinatorial strict inverse semigroups.
Let Te@. We shall describe atoms and coatoms in < (̂T) and show that each non
universal congruence pe#(T) is the intersection of coatoms. Further, we shall prove
that ^{T) is a complete subdirect product of congruence lattices of semilattices. We infer
that each lattice implication which holds <€(?) also holds in <g(@) = {<&{T)\Te@}. In

25

https://doi.org/10.1017/S0013091500018654 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018654


26 K. AUINGER

particular, ^(T) is completely semidistributive. In addition, ^(T) is M-symmetric (which
in fact has been already shown by Jones [9]). Furthermore, it is proved that the
mentioned subdirect decomposition of <g{T) preserves (weak) relative pseudocomple-
ments and hence <#(T) is pseudocomplemented for any Te3S. Finally, an example shows
that the classes #(.$0 and <€(&) do not coincide.

2. Preliminaries: combinatorial strict inverse semigroups

For undefined notions, the reader is referred to the books of Howie [7] (general
semigroups), Petrich [12] (inverse semigroups) and Gratzer [4] (lattices). For an
arbitrary semigroup S let #(S) denote the (complete) lattice of all congruences on S.
Join and meet are denoted by v and n (or \J and Q). The lattice of all equivalence
relations on a set X is denoted by S(X). The identical and universal relations on the set
X are denoted by e = ex and (o = cox, respectively.

Combinatorial strict inverse semigroups admit the following description (see Petrich
[12, XIV] or Nambooripad [10]).

Theorem 2.1. Let X be a partially ordered set, for each aeX let I* be the non zero
part of a combinatorial Brandt semigroup Ia such that I* n /J = 0 whenever a#/f. For
a^P let fa,fi'-1* -* If be a partial homomorphism subject to the following conditions

(1) fa,a = idi:fora
(2) fa.fifp,y=fa,y whenever cc^P^y,
(3) for any x e I*, y e 1%, a, /? e X, the set

in

has a greatest element, to be denoted by 5(x, y).

Put S= \JaexI% and define a product on S by

where xel*, y e / | . Then the groupoid S, to be denoted by (X;/„,/„,/») is a combinatorial
strict inverse semigroup. Conversely, every combinatorial strict inverse semigroup can be so
constructed.

The set X in the construction above is the structure set of S=(X;Ia,fap). The
partially ordered set X in fact is the partially ordered set S/f of all ./-classes of
S=(X;Ia,fafi). In the following "structure set" will stand for "structure set of a
combinatorial strict inverse semigroup". Any structure set X satisfies the following (see
[1] or [10]).

Proposition 2*2. For any structure set X the following assertions hold:
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CONGRUENCE LATTICES 27

(1) X is downwards directed,
(2) for any two elements a,PeX having a common upper bound y^a,fl, the greatest

lower bound inf{a,/?} exists in X.

The following definitions and results are from [1] where congruences on strict regular
semigroups (that is, regular subdirect products of completely simple and/or completely
0-simple semigroups) are studied.

Definition 1. Let S=(X;Ia,fafi) be a combinatorial strict inverse semigroup and
. Fora,/?eXput

(3y ̂  <*, P) (Vx el*, ye I*) x p xfa< y,yp yffit r

An equivalent definition of p^ is:

a Pj P^^y ^ a. P, x e I*, y e I*, u, v e I*) x p u, y p v.

For aeX let (a] = {yeX|y^a} denote the principal order ideal in X generated by a.
By Proposition 2.3 in [1] we have the following.

Proposition 23. The relation pf is an equivalence relation on X satisfying:

(1) if OLpff} then xp^ypjPfor some y^a,/?,
(2) p\(oi] is a semilattice congruence on (x]for each aeX.

Definition 2. Let X be a structure set. An equivalence relation £ on X is a
congruence on X if it satisfies the conditions (1) and (2) of Proposition 2.3. The set of all
such congruences on X, ordered by inclusion, will be denoted by %>(X).

The following is also from [1] (Corollaries 3.2 and 3.4 and the observation before
Corollary 5.14).

Theorem 2.4. Let S=(X;Ia,fttfi) be a combinatorial strict inverse semigroup. Then the
following assertions hold.

(1) ^(X) is a complete lattice and a complete \J-subsemilattice of S(X).

(2) The mapping f:p*-*pj is an isomorphism between the lattices C#(S), H>\/) and

), A, V)-
Hence, on a combinatorial strict inverse semigroup S=(X;Ia,faifi), any congruence p

is uniquely determined by the relation pf. This will be essentially used in the following.
Notice that <&(X) in general is not a n-subsemilattice of S(X).

3. Atoms and coatoms A congruence p covering the identical relation e in #(S) is an
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28 K. AUINGER

atom. Dually, each congruence p covered by the universal relation w is a coatom. Since
for S=(X;Ia,faJI), #(S) and <&(X) are isomorphic, a congruence p is a (co)atom in <tf(S)
if and only if pf is a (co)atom in #(X). We start with coatoms. The following is a
reformulation of the analogue for semilattices obtained by Papert [11].

Definition 3. Let X be a structure set. A non empty subset F g l i s a c-filter if:

(1) F is an order filter in X, that is, a eF implies /?eF for each /?^<x,
(2) F is downwards directed, that is, for any a, jSeF there is some yeF such that

Definition 4. Let X be a structure set and F^X be a c-filter. For a,fieX let

apF/?oa, J?eF or a,

That is, pF = F x F u X\F x X\F.
It is easy to prove that pF is a congruence on X for each c-filter F.

Theorem 3.1. Let X be a structure set. Then the following assertions hold.

(1) A congruence p on X is a coatom if and only if p = pFfor some c-filter

(2) Each non universal congruence p on X is the intersection of some (non empty) set of
coatoms. In particular, each non universal congruence p is contained in some
coatom.

Proof. (1) For each c-filter F#X, pF is a congruence on X and clearly is a coatom
since there are precisely two pF-classes. Conversely, let p be a non universal congruence
on X. At most one p-class is an ideal in X. If <xp is an ideal then for any peX there is
yeX, y^a,p\ If pp is also an ideal then yeocpnPp and therefore ppypa.. Let ap be a
p-class not being an ideal and let

F=F(ap) = {PeX\P^y for some yeap}.

It is easy to show that F is a c-filter. Since ocp is not an ideal there are /?e<xp, yeX\ccp
such that y<p. Then y$F for if there would be a dectp such that S^y then bpP and

imply xpdpy since p|(/T| is a congruence on the semilattice (/?]. Consequently,
and pF is a coatom. Let /3eF, yeX\F. If P>y then there is <5gp\ y such that

Ppdpy. Now there is eeap, e^p. Since p|(/Tj is a semilattice congruence we observe
e = P A ep<5 A e and thus 5 A eeap. Since y^d^d A e we infer that yeF, a contradic-
tion. Consequently, p <=, pF. Hence, if we assume in addition that p is a coatom then
P=PF-

— PF) anc^ therefore
p^pF} is not empty.

(2) Let p be a non universal congruence. Then clearly p £ O ( P F
also p £ / \ { p F | p £ p F } . Note that by the proof of (1), the set {pF
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We only have to show that for any non p-related elements a.,fleX there is some pF

containing p and separating a and /?. Let a.,PeX be such that (<x,/?)£p. Suppose there
are ye up, ve/?p such that y^v. Let y'eap; then there is d^y, y' such that Seap. Now
p|(y] is a semilattice congruence so that yp5 implies v = y A vp5 A v^y'. Therefore,
either ap^F(Pp) or apnF(/?p)=0. If there are y,deap, /z,ve/Jp> such that y^n and
v^<5 then by [1, Lemma 2.6.(2)] we observe that ap = Pp. Hence if txp^Pp then
ixpnF(Pp) = 0 or f}pr>F(<xp) = 0 (or both) hold. Consequently, the elements a and /? are
separated either by pF(ap) or by pF(fip) and thus p = f){pF{al)}\apeX/p} = /\{pF(xp)\apeX/p}.

a
From the description of the coatom pF in ^(X) one can easily reconstruct the

corresponding coatom Oe^S) for which 9^ = pF. A congruence p on X is a coatom if
and only if there are precisely two p-classes. This is not true for the coatoms in ^(S). A
trivial example is any combinatorial Brandt semigroup S having more than two
elements. The corresponding structure set is the two element chain. The only coatom in
#(S) is the identical relation es which has exactly \S\ classes. Less trivial examples can
be provided easily.

Next we give a description of the atoms in ^(X). It is similar to Hall's description [5]
of the atoms in the congruence lattice of a semilattice.

Theorem 3.2. Let X be a structure set, let a, /? e X be such that /? < a and if y < a. for
some yeX then y^p. Define an equivalence relation 0(a,/?) on X by

y 0(a, p) So {y, 5} s {a, /?} or y = <5.

Then 0(a, /?) is an atom in ^(X). Conversely, every atom in ^(X) can be so constructed.

Proof. Let a,PeX be as in the theorem. Then 0(a,/S) is obviously an atom in S(X).
Let yeX. Then 0(a,P)\(y] = eM or %,)5)|(y] is an atom in #((y]) by Hall [5] and thus
0(<x,/?)|(y] is a congruence on (y]. Hence 6(a,P) is a congruence on X and thus is an
atom in ^{X). Conversely, let p be an atom in <g(X). Since p^ex there are a, PeX, /?<a
such that a.pp. Let X{*\ denote the "Rees congruence" with respect to the principal ideal
(a]. That is,

It is easily verified that XM a nd PnX(«] a r e congruences on X. In particular,
PnXM = P A Xw- Since £ # p n j ; w and p is an atom we observe that pSx( a ] . Hence
P=p\(<*]vex. Now p|(a] is an atom in ^"((a]) for if there is some te^((a]) such that
T#e(a] and T is strictly contained in p|(a] then t u t j is a non identical congruence on
X, strictly contained in p. By Hall's characterization of the atoms in ^"((a]), p|(a] admits
the description as p\{a\ = fraX<i,P) (the upper index denoting the domain of the relation
under consideration). Since p = p|(a] KJ ex = Oi'](<x,P)<uex = 0x(tx,P) the assertion follows.

D
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30 K. AUINGER

Reconstructing the corresponding atom in #(S) we obtain the following description.

Corollary 33. Let S=(X; Ia,fa p) be a combinatorial strict inverse semigroup. Then
pe^(S) is an atom if and only if there are a,fieX, f}<a such that y<a implies y^/J and

P=( fa.fi u£s)(/«riues)

(the product denoting the usual composition of binary relations on S). That is, for
xel*,yel* we have xpy if and only if one of the following holds

(1) x=y
(2) y = <x,5 =
(3) S = a,y = fi

(4) y = 5 = a and xfa> p = yfa< „.

A congruence p on the structure set X is an atom if and only if p has precisely one
class containing two elements, the other p-classes being singletons. Similarly as for the
case of coatoms the analogue does not hold for the corresponding atoms in #(S). A
trivial example is again any combinatorial Brandt semigroup containing more than two
elements, and less trivial examples can be provided easily.

4. A subdirect decomposition of ^(S)

For the combinatorial strict inverse semigroup S we provide a decomposition of #(S)
into a subdirect product of congruence lattices of semilattices. As in the previous
section, we consider the structure set X of S as a partial semilattice by setting
a A /?=inf{a, /?}, provided this greatest lower bound exists.

Definition 4. A subset Z £ X of a structure set X is a subsemilattice of X if for any
a, /} e Z, their infimum in X infx {a, /?} exists and is contained in Z. That is, Z is a
subsemilattice of X if the partial operation A , when restricted to Z, provides a total
operation on Z.

Remark. A subset Z^X, endowed with the induced partial order may be a
semilattice but not a subsemilattice of X.

Let X be a structure set. By Proposition 2.3, each principal ideal (a] in X is a
subsemilattice of X. A subsemilattice Y of X is a maximal subsemilattice if there is no
subsemilattice A of X strictly containing Y.

Lemma 4.1. Each maximal subsemilattice Y of X is an (order) ideal of X.

Proof. Let Z be a subsemilattice of X and let aeZ. Let /?eZ and ye (a]. Since Z is
a subsemilattice, inf{a,/?} exists and is contained in (a]. Since (a] is a subsemilattice,
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inf{y,inf{a,/3}}=inf{a,/3,y} = inf{/?,y} exists and is contained in (a]. Consequently,
Z u ( a ] is a subsemilattice of X for any aeZ. We infer that for any maximal
subsemilattice Y of X, Y= \JaeY(a]. D

The existence of maximal subsemilattices of X follows by a usual Zorn's Lemma
argument. Denote by <W{X) = {Yi\iel) the collection of all maximal subsemilattices of X.

Lemma 4.2. Let p be a congruence on the structure set X and Y be a subsemilattice of
X. Then p\Y is a semilattice congruence on Y.

Proof. Let a, p\ye Y and app\ By hypothesis, a A ft exists. There is some d^P
such that apdpfi. Since p|(a] is a semilattice congruence on (a] we have
a A /?=a A (a A f$)pd A (a A /?) = <5. We infer that a p a A ftpfl. The meet a A y exists
since Y is a subsemilattice of X. Hence a A y = a A (a A y) p (a A /?) A (a A y) =
inf {a,P,y} and dually also /? A ypinf{a,p\y} so that <x A y p fi A y. •

Corollary 4J. / / X is a semilattice then the congruences on X are precisely the
semilattice congruences.

We now are able to prove the main result. The idea is similar to Hamilton's idea to
decompose the congruence lattice of a tree into a subdirect product of the congruence
lattices of the maximal subchains (see [6]).

Theorem 4.4. Let X be the structure set of a combinatorial strict inverse semigroup
and let {Y^iel} be the collection of all maximal subsemilattices of X. Then the mapping

iel

is a lattice isomorphism between ^(X) and the complete subdirect product

Proof. Let iel be a fixed element and let {pt|feeX} be a collection of congruences
on X. By Theorem 2.4 it follows that /\keKPk=(C\keKPk)°> l h a t is> the greatest
congruence on X contained in p)»6jfpt. In the following we shall omit the subscript
"*«=«"• First we observe that (APt) | y i s ( f lP*) | y i = nPt | y i - F o r e a c h k Pu t P* =

pk\YiKjEx. Then p'k is a congruence on X and piSp». Now C\p'k = f](Pk\Yi^ex) —
(C\Pk\ Yi) u ex which is a congruence on X. Hence f\p'k = f]p'k £ /\pk since p'k £ pk for all
k. Restricting to Y, we get {/Sp'^YMftptyrMnp^vt^Y^Pip^Y, and hence

Yi^(APk)\Yr Consequently, (AP*)|yi=(V*lyi a n d t h u s t h e mapping
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32 K. AUINGER

is a complete /\-homomorphism. For the join we observe that the inclusion \ / |
(VP*) | ^ I ' S trivial. To show the converse, let a,fie Yt be such that a\Jpk p. There exist
<xo,...,aneX and pu...,pne{pk\keK} such that a = <xopta1...an-lpnan=p. For each j ,
l^j^n there is /?J^a/_i,a;- such that aLi_vpi$ipia.i. Since /Ji,/?2^ai> the meet
y2 = inf{/31,)52} exists. By induction, y,=y;-i A PJ=inf{pi,p2...pj} exists and y7-̂
ao,...,a,-. The relation ajpJ+ipJ+l yields V;=ay A ^ p i + 1 ^ + 1 A y;=yi+1. Since the
maximal subsemilattice Y, is an ideal (Lemma 4.1), y,e Yt for all y. Put yn = y then y^a,j3
and a\Zpt|Yjy. By the same argument there is some S^ix,P such that p\Jpk\Yid. Now
a ^ « A ^ y and ^ O I A J S ^ ^ imply a \/P*|^i a A /? V^*!^ 0- ^n particular, \/Pt| *i=
(\/pt) I Fj and thus the mapping

is a complete \/-homomorphism. For p,e#(Yj) the relation p = pt^Ex is a congruence
on X such that p|Yj=pf. Hence the homomorphism p\-+p\Y{ is surjective. Now let
p,f/e#(.Y) be such that p^f. We may assume that there are a,PeX such that txpfi and
(a,/?)^f/. By a Zorn's Lemma argument there are maximal subsemilattices Yh Yj of X
such that (a] £ Yj and (/?] ^ Yy Now there is yga,/? such that txpypfi. Then either
(a,y)£»7 or {P,y)$r\ and hence either p|Yf 5̂  7̂1>0 or p|y,#f/|y,-. It follows that the
mapping <tf(X)-• ]]<$(Yt), p*->{p\ Yi)isI is injective. Finally, let (p.Oef]^^) be such that
for all ijel, pi\YinYj=pj\YinY:. Put p;=p,uex . Then p'i6^(X) for each iel. Let
p = Vp'i. We obviously have PiSpfyj. Choose a fixed j e / and let a, /?e Y, be such ap/f.
There are a o , . . . , a B e I and p'l,...,p'ne{p'i\iel} such that a = aop'1a1...an_1p;an = /?.
Similarly as above there are p\ PneX such that a^/?j^-••^/?B^p> and Pk-iP'kPk.
Since (a] £ Y, we have fteY, for all k. Since pi|Y,n Y» = p}| Y}n Yk = pj\ Yjn Yk we
obtain pk-ipjpk for all k and thus apjPn, that is, apj-y for some y^a,/?. Dually also
/?P;<5 for some S^<x,p, and therefore, as above, ccpj a A p pjP. Consequently, p\Yj^pj
and thus p\ Yj = pj. This holds for each jel and thus the proof is complete. •

We have thus shown that the congruence lattice of a combinatorial strict inverse
semigroup is a subdirect product of congruence lattices of semilattices.

Definition 5. A (complete) lattice L is

(1) completely semidistributive if for any a, pteL, iel such that p, A a = p} A a for all
i, jel, then ( V P . ) A ° = \/(Pi A <*)•

(2) M-symmetric if the modularity relation M on L, defined by pMo if and only if
T=(T v p) A a for all xe[p A <T,CT], is a symmetric relation.

It has been shown by Papert [11] that the congruence lattice of any semilattice is
completely semidistributive, and by Jones [9, Theorem 3.3] that the congruence lattice
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of a semilattice is M-symmetric. By Jones [8, Proposition 5.1], M-symmetry is preserved
by subdirect products. Theorem 4.4 therefore yields the following:

Corollary 43. Let TeSS. Then the following assertions hold:

(1) #(T) is completely semidistributive,

(2) #(T) is M-symmetric.

Furthermore, the classes ̂ {SS) and ^(6^) generate the same quasivariety of lattices.

Notice that M-symmetry of #(T) also follows from the result of Jones [9, Theorem
3.3] by taking into account that for any p, ne^T), p = n if and only p |£ = f/|£, E
denoting the set of idempotents of T.

5. Weak relative pseudocomplements and pseudocomplements

Let L be a lattice, p,<reL, p^a. If there is a greatest element xsL such that T A a = p
then T is a weak relative pseudocomplement of p and a, to be denoted by a * p. If a* p
exists for all pairs p ̂  a in L then L is weakly relatively pseudocomplemented. If L has a
least element 0 then for any a e L the weak relative pseudocomplement a * 0 is called the
pseudocomplement of a (provided it exists). An important result of Papert [11] asserts
that the congruence lattice ^(Y) of any semilattice Y is weakly relatively pseudocomple-
mented and hence also is pseudocomplemented. We shall extend this result to
congruence lattices of combinatorial strict inverse semigroups. As in the previous
section, for a combinatorial strict inverse semigroup S, the congruence lattice ^(S) will
be realized as the lattice ^{X) of all congruences on the structure set X of S and thus as
a subdirect product of the congruence lattices of the maximal subsemilattices Yt of X as
described in Theorem 4.4.

Let X be a structure set, <W{X) = {Yi\iel} be the collection of all maximal subsemilat-
tices of X. For each pe<tf(X), iel let p, = p| y^e"^^). Let p,oe<g(X), p^a. Then pf £ a{

for all iel. Further, if zna = p for some te^KX) then T,ncr1=pj for each i and hence
T.Cff.^iP,, *i denoting the weak relative pseudocomplement in

Lemma 5.1. Let Y be a semilattice, Z be an ideal {and thus a subsemilattice) of Y,
p,aeC(Y), p£«r. Then o\Z*zp\Z = <j*Yp\Z (*z respectively *Y denoting weak relative
pseudocomplementation in #(Z) respectively <#( Y)).

Proof. Put p' = p\Z and a' = a\Z. Then p'^a' and thus a'*zp' exists. Now
an(a*Yp)\Z = a' n(<j*rp\Z) = ez so that o*rp \Z^o' *zp'. By [11, Theorem 2], for
a,PeZ we have

ao' *zp' f}o((V5,yeZ)d(r'y=>(a. A dp' a. A yo P A dp' ft Ay)).

We intend to prove that <x o*yp ft whenever a a1 *zp' fi. Let <x,PeZ and a a' *zp'P- We
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have to prove that a a*Yp ft, that is, a A < 5 p a A y o / ? A < 5 p / ? A y f o r any y,8e Ysuch
that Say. Let y,SeY be such that Say. Since Z is an ideal, a A 5, a A y, /? A 5,
/? A y G Z, and a A <5 a* a A y, P A <5 & P A y. By a <r' *z p' /? we have

a A 5 = a A (a A 8) p' a A (a A y) = a A y o p A (a A S) p' /? A (a A y)

and

/? A 5 = /? A (P A 5) p' j? A (P A y) = 0 A 7 <* a A (0 A 5) p' a A (0 A y).

Since a A (/? A <5) = /3 A (a A 5) and a A (/} A y) = ^ A (a A y) we infer that a A 5 p' a A
y-e>/?A<5p'j?Ay, that is, aA<5pocAyo/?A<5p/?Ay. Consequently, (xo*Yp P and
the assertion is proved. •

Using Theorem 4.4 it is now easy to obtain the mentioned result.

Theorem 5.2. The congruence lattice of a combinatorial strict inverse semigroup S is
isomorphic to a subdirect product of congruence lattices of semilattices closed under
componentwise formation of weak relative pseudocomplements and pseudocomplements. In
particular, #(S) is pseudocomplemented.

Proof. Let X be the structure set of S and { Y( \ i e 1} be the collection of all maximal
subsemilattices of S. By Theorem 4.4, ^(X) is isomorphic to

Let p,aeC(X), p<=,a. Then p.-Sff,- and hence <7j*(Pj exists for each i, *( denoting the
weak relative pseudocomplements in *i?(Yj). By Lemma 5.1,

<x,•1pi | Y, n y, = (ff,| Y, n 7,) *(p(| 7f n y;)

• denoting the weak relative pseudocomplement in ^(YjO Y}). Hence (<T1*1pI)ie/6O and
thus o*p = \/ieIai*ipi<jEx is the weak relative pseudocomplement of p and a in ^(X).

•
6. An example

In [1], it is shown that there is a (finite) combinatorial strict inverse semigroup S
whose structure set X consists of five elements and is depicted by Fig. 1.
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In particular, X is not a semilattice. All congruences on X are listed below (by
denoting the corresponding partitions, and only the non singleton classes are
mentioned):

Po'ex

p4: fay), {8,0}

ps:{n,y,6]

p8:{(i,y},{ocj,d}

p9:{n,y,a,5}

Pi I:

The lattice <#(X) is depicted by Fig. 2. The Boolean elements in <£(X), that is, those
elements p in ^(X) which are pseudocomplements of elements of ^(X) are precisely the
elements p0, p8, plu pl2. If ^(X) was isomorphic to the congruence lattice of some
semilattice Y then by [11, Theorem 5], Y could be embedded into the (lattice of the)
Boolean elements of <g(Y) s ^(X). But no subsemilattice of the four element diamond
lattice has a congruence lattice isomorphic to ^(X). Hence ^(X) and thus also <#(S)
cannot be isomorphic to the congruence lattice of any semilattice.
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