THE CONGRUENCE LATTICE OF A COMBINATORIAL STRICT INVERSE SEMIGROUP

by KARL AUINGER

(Received 27th February 1992)

The congruence lattice of a combinatorial strict inverse semigroup is shown to be isomorphic to a complete subdirect product of congruence lattices of semilattices preserving pseudocomplements.

1991 Mathematics subject classification. 20M10, 08A30.

1. Introduction

Congruence lattices of semilattices admit several remarkable properties. Let \mathcal{S} denote the class of all semilattices, let $Y \in \mathcal{S}$ and $\mathcal{C}(Y)$ be the congruence lattice of Y. By Papert [11], $\mathcal{C}(Y)$ is completely (meet-)semidistributive, (weakly) relatively pseudocomplemented and thus also pseudocomplemented, and each non universal congruence $\rho \in \mathcal{C}(Y)$ is the intersection of coatoms (which are also characterized). Hall [5] proved that $\mathcal{C}(Y)$ is semimodular (and thus satisfies the Jordan-Dedekind chain condition), and described the atoms of $\mathcal{C}(Y)$. Jones [9] has shown that $\mathcal{C}(Y)$ is M-symmetric. Freese and Nation [2] proved that the class $\mathcal{C}(\mathcal{S}) = \{\mathcal{C}(Y) | Y \in \mathcal{S}\}$ of all congruence lattices of semilattices does not satisfy any non trivial lattice identity. Finally, Zhitomirskij [13] gave a characterization of all lattices which are isomorphic to congruence lattices of semilattices. Quite recently, Freese and Nation [3] have again considered congruence lattices of finite semilattices from a more lattice theoretic point of view. They have shown, for instance, that the congruence lattice of a finite semilattice (in fact, of a finite combinatorial inverse semigroup) is upper bounded (which is stronger than meet-semidistributivity).

A combinatorial strict inverse semigroup S is an (inverse) subdirect product of combinatorial Brandt semigroups (and possibly the trivial group) (see Petrich [12]). This class forms a variety of inverse semigroups and will be denoted by \mathcal{B} . It is well known that \mathcal{B} is the unique combinatorial cover of \mathcal{S} in the lattice of inverse semigroup varieties [12]. The purpose of this note is to establish several of the above mentioned properties for congruence lattices of combinatorial strict inverse semigroups. Let $T \in \mathcal{B}$. We shall describe atoms and coatoms in $\mathcal{C}(T)$ and show that each non universal congruence $\rho \in \mathcal{C}(T)$ is the intersection of coatoms. Further, we shall prove that $\mathcal{C}(T)$ is a complete subdirect product of congruence lattices of semilattices. We infer that each lattice implication which holds $\mathcal{C}(\mathcal{S})$ also holds in $\mathcal{C}(\mathcal{B}) = \{\mathcal{C}(T) | T \in \mathcal{B}\}$. In

particular, $\mathscr{C}(T)$ is completely semidistributive. In addition, $\mathscr{C}(T)$ is M-symmetric (which in fact has been already shown by Jones [9]). Furthermore, it is proved that the mentioned subdirect decomposition of $\mathscr{C}(T)$ preserves (weak) relative pseudocomplements and hence $\mathscr{C}(T)$ is pseudocomplemented for any $T \in \mathscr{B}$. Finally, an example shows that the classes $\mathscr{C}(\mathscr{S})$ and $\mathscr{C}(\mathscr{B})$ do not coincide.

2. Preliminaries: combinatorial strict inverse semigroups

For undefined notions, the reader is referred to the books of Howie [7] (general semigroups), Petrich [12] (inverse semigroups) and Grätzer [4] (lattices). For an arbitrary semigroup S let $\mathscr{C}(S)$ denote the (complete) lattice of all congruences on S. Join and meet are denoted by \vee and \cap (or \bigvee and \bigcap). The lattice of all equivalence relations on a set X is denoted by $\mathscr{E}(X)$. The identical and universal relations on the set X are denoted by $\varepsilon = \varepsilon_X$ and $\omega = \omega_X$, respectively.

Combinatorial strict inverse semigroups admit the following description (see Petrich [12, XIV] or Nambooripad [10]).

Theorem 2.1. Let X be a partially ordered set, for each $\alpha \in X$ let I_{α}^* be the non zero part of a combinatorial Brandt semigroup I_{α} such that $I_{\alpha}^* \cap I_{\beta}^* = \emptyset$ whenever $\alpha \neq \beta$. For $\alpha \geq \beta$ let $f_{\alpha,\beta}: I_{\alpha}^* \to I_{\beta}^*$ be a partial homomorphism subject to the following conditions

- (1) $f_{\alpha,\alpha} = \operatorname{id}_{I_{\bullet}^{*}} for \ all \ \alpha \in X$,
- (2) $f_{\alpha,\beta}f_{\beta,\gamma} = f_{\alpha,\gamma}$ whenever $\alpha \ge \beta \ge \gamma$,
- (3) for any $x \in I_{\alpha}^{*}$, $y \in I_{\beta}^{*}$, $\alpha, \beta \in X$, the set

$$D(x, y) = \{ \gamma \leq \alpha, \beta | (x f_{\alpha, y}) (y f_{\beta, y}) \neq 0 \text{ in } I_{\gamma} \}$$

has a greatest element, to be denoted by $\delta(x, y)$.

Put $S = \bigcup_{\alpha \in X} I_{\alpha}^*$ and define a product on S by

$$xy = (x f_{\alpha, \delta(x, y)}) (y f_{\beta, \delta(x, y)})$$

where $x \in I_a^*$, $y \in I_\beta^*$. Then the groupoid S, to be denoted by $(X; I_a, f_{a,\beta})$ is a combinatorial strict inverse semigroup. Conversely, every combinatorial strict inverse semigroup can be so constructed.

The set X in the construction above is the *structure set* of $S = (X; I_a, f_{a,\beta})$. The partially ordered set X in fact is the partially ordered set S/\mathscr{J} of all \mathscr{J} -classes of $S = (X; I_a, f_{a,\beta})$. In the following "structure set" will stand for "structure set of a combinatorial strict inverse semigroup". Any structure set X satisfies the following (see [1] or [10]).

Proposition 2.2. For any structure set X the following assertions hold:

- (1) X is downwards directed,
- (2) for any two elements $\alpha, \beta \in X$ having a common upper bound $\gamma \ge \alpha, \beta$, the greatest lower bound inf $\{\alpha, \beta\}$ exists in X.

The following definitions and results are from [1] where congruences on strict regular semigroups (that is, regular subdirect products of completely simple and/or completely 0-simple semigroups) are studied.

Definition 1. Let $S = (X; I_{\alpha}, f_{\alpha, \beta})$ be a combinatorial strict inverse semigroup and $\rho \in \mathscr{C}(S)$. For $\alpha, \beta \in X$ put

$$\alpha \rho \circ \beta \Leftrightarrow (\exists \gamma \leq \alpha, \beta) (\forall x \in I_{\alpha}^*, y \in I_{\beta}^*) \times \rho \times f_{\alpha, \gamma}, y \rho y f_{\beta, \gamma}.$$

An equivalent definition of $\rho_{\mathcal{J}}$ is:

$$\alpha \rho_{\mathfrak{I}} \beta \Leftrightarrow (\exists \gamma \leq \alpha, \beta, x \in I_{\alpha}^*, y \in I_{\beta}^*, u, v \in I_{\gamma}^*) \times \rho u, y \rho v.$$

For $\alpha \in X$ let $(\alpha] = \{ \gamma \in X | \gamma \le \alpha \}$ denote the principal order ideal in X generated by α . By Proposition 2.3 in [1] we have the following.

Proposition 2.3. The relation $\rho_{\mathfrak{g}}$ is an equivalence relation on X satisfying:

- (1) if $\alpha \rho_{\mathfrak{g}} \beta$ then $\alpha \rho_{\mathfrak{g}} \gamma \rho_{\mathfrak{g}} \beta$ for some $\gamma \leq \alpha, \beta$,
- (2) $\rho(\alpha)$ is a semilattice congruence on α for each $\alpha \in X$.

Definition 2. Let X be a structure set. An equivalence relation ξ on X is a congruence on X if it satisfies the conditions (1) and (2) of Proposition 2.3. The set of all such congruences on X, ordered by inclusion, will be denoted by $\mathscr{C}(X)$.

The following is also from [1] (Corollaries 3.2 and 3.4 and the observation before Corollary 5.14).

Theorem 2.4. Let $S = (X; I_{\alpha}, f_{\alpha, \beta})$ be a combinatorial strict inverse semigroup. Then the following assertions hold.

- (1) $\mathscr{C}(X)$ is a complete lattice and a complete \bigvee -subsemilattice of $\mathscr{E}(X)$.
- (2) The mapping $_{\mathfrak{g}}: \rho \mapsto \rho_{\mathfrak{g}}$ is an isomorphism between the lattices $(\mathscr{C}(S), \bigcap, \bigvee)$ and $(\mathscr{C}(X), \bigwedge, \bigvee)$.

Hence, on a combinatorial strict inverse semigroup $S = (X; I_{\alpha}, f_{\alpha, \beta})$, any congruence ρ is uniquely determined by the relation $\rho_{\mathcal{J}}$. This will be essentially used in the following. Notice that $\mathscr{C}(X)$ in general is not a \cap -subsemilattice of $\mathscr{E}(X)$.

3. Atoms and coatoms A congruence ρ covering the identical relation ε in $\mathscr{C}(S)$ is an

atom. Dually, each congruence ρ covered by the universal relation ω is a coatom. Since for $S = (X; I_{\alpha}, f_{\alpha, \beta})$, $\mathscr{C}(S)$ and $\mathscr{C}(X)$ are isomorphic, a congruence ρ is a (co)atom in $\mathscr{C}(S)$ if and only if $\rho_{\mathfrak{f}}$ is a (co)atom in $\mathscr{C}(X)$. We start with coatoms. The following is a reformulation of the analogue for semilattices obtained by Papert [11].

Definition 3. Let X be a structure set. A non empty subset $F \subseteq X$ is a c-filter if:

- (1) F is an order filter in X, that is, $\alpha \in F$ implies $\beta \in F$ for each $\beta \ge \alpha$,
- (2) F is downwards directed, that is, for any $\alpha, \beta \in F$ there is some $\gamma \in F$ such that $\gamma \leq \alpha, \beta$.

Definition 4. Let X be a structure set and $F \subseteq X$ be a c-filter. For $\alpha, \beta \in X$ let

$$\alpha \rho_F \beta \Leftrightarrow \alpha, \beta \in F \text{ or } \alpha, \beta \notin F.$$

That is, $\rho_F = F \times F \cup X \setminus F \times X \setminus F$.

It is easy to prove that ρ_F is a congruence on X for each c-filter F.

Theorem 3.1. Let X be a structure set. Then the following assertions hold.

- (1) A congruence ρ on X is a coatom if and only if $\rho = \rho_F$ for some c-filter $F \neq X$.
- (2) Each non universal congruence ρ on X is the intersection of some (non empty) set of coatoms. In particular, each non universal congruence ρ is contained in some coatom.

Proof. (1) For each c-filter $F \neq X$, ρ_F is a congruence on X and clearly is a coatom since there are precisely two ρ_F -classes. Conversely, let ρ be a non universal congruence on X. At most one ρ -class is an ideal in X. If $\alpha\rho$ is an ideal then for any $\beta \in X$ there is $\gamma \in X$, $\gamma \leq \alpha$, β . If $\beta\rho$ is also an ideal then $\gamma \in \alpha\rho \cap \beta\rho$ and therefore $\beta \rho \gamma \rho \alpha$. Let $\alpha\rho$ be a ρ -class not being an ideal and let

$$F = F(\alpha \rho) = \{ \beta \in X | \beta \ge \gamma \text{ for some } \gamma \in \alpha \rho \}.$$

It is easy to show that F is a c-filter. Since $\alpha \rho$ is not an ideal there are $\beta \in \alpha \rho$, $\gamma \in X \setminus \alpha \rho$ such that $\gamma < \beta$. Then $\gamma \notin F$ for if there would be a $\delta \in \alpha \rho$ such that $\delta \leq \gamma$ then $\delta \rho \beta$ and $\delta \leq \gamma < \beta$ imply $\alpha \rho \delta \rho \gamma$ since $\rho \mid (\beta]$ is a congruence on the semilattice $(\beta]$. Consequently, $F \neq X$ and ρ_F is a coatom. Let $\beta \in F$, $\gamma \in X \setminus F$. If $\beta \rho \gamma$ then there is $\delta \leq \beta$, γ such that $\beta \rho \delta \rho \gamma$. Now there is $\varepsilon \in \alpha \rho$, $\varepsilon \leq \beta$. Since $\rho \mid (\beta]$ is a semilattice congruence we observe $\varepsilon = \beta \wedge \varepsilon \rho \delta \wedge \varepsilon$ and thus $\delta \wedge \varepsilon \in \alpha \rho$. Since $\gamma \geq \delta \geq \delta \wedge \varepsilon$ we infer that $\gamma \in F$, a contradiction. Consequently, $\rho \subseteq \rho_F$. Hence, if we assume in addition that ρ is a coatom then $\rho = \rho_F$.

(2) Let ρ be a non universal congruence. Then clearly $\rho \subseteq \bigcap \{\rho_F | \rho \subseteq \rho_F\}$ and therefore also $\rho \subseteq \bigcap \{\rho_F | \rho \subseteq \rho_F\}$. Note that by the proof of (1), the set $\{\rho_F | \rho \subseteq \rho_F\}$ is not empty.

We only have to show that for any non ρ -related elements $\alpha, \beta \in X$ there is some ρ_F containing ρ and separating α and β . Let $\alpha, \beta \in X$ be such that $(\alpha, \beta) \notin \rho$. Suppose there are $\gamma \in \alpha \rho$, $v \in \beta \rho$ such that $\gamma \geq v$. Let $\gamma' \in \alpha \rho$; then there is $\delta \leq \gamma, \gamma'$ such that $\delta \in \alpha \rho$. Now $\rho \mid (\gamma) \mid$ is a semilattice congruence so that $\gamma \rho \delta$ implies $v = \gamma \wedge v \rho \delta \wedge v \leq \gamma'$. Therefore, either $\alpha \rho \subseteq F(\beta \rho)$ or $\alpha \rho \cap F(\beta \rho) = \emptyset$. If there are $\gamma, \delta \in \alpha \rho$, $\mu, v \in \beta \rho$ such that $\gamma \geq \mu$ and $v \geq \delta$ then by [1, Lemma 2.6.(2)] we observe that $\alpha \rho = \beta \rho$. Hence if $\alpha \rho \neq \beta \rho$ then $\alpha \rho \cap F(\beta \rho) = \emptyset$ or $\beta \rho \cap F(\alpha \rho) = \emptyset$ (or both) hold. Consequently, the elements α and β are separated either by $\rho_{F(\alpha \rho)}$ or by $\rho_{F(\beta \rho)}$ and thus $\rho = \bigcap \{\rho_{F(\alpha \rho)} | \alpha \rho \in X/\rho\} = \bigcap \{\rho_{F(\alpha \rho)} | \alpha \rho \in X/\rho\}$.

From the description of the coatom ρ_F in $\mathscr{C}(X)$ one can easily reconstruct the corresponding coatom $\theta \in \mathscr{C}(S)$ for which $\theta_{\mathfrak{g}} = \rho_F$. A congruence ρ on X is a coatom if and only if there are precisely two ρ -classes. This is not true for the coatoms in $\mathscr{C}(S)$. A trivial example is any combinatorial Brandt semigroup S having more than two elements. The corresponding structure set is the two element chain. The only coatom in $\mathscr{C}(S)$ is the identical relation ε_S which has exactly |S| classes. Less trivial examples can be provided easily.

Next we give a description of the atoms in $\mathcal{C}(X)$. It is similar to Hall's description [5] of the atoms in the congruence lattice of a semilattice.

Theorem 3.2. Let X be a structure set, let $\alpha, \beta \in X$ be such that $\beta < \alpha$ and if $\gamma < \alpha$ for some $\gamma \in X$ then $\gamma \leq \beta$. Define an equivalence relation $\theta(\alpha, \beta)$ on X by

$$\gamma \theta(\alpha, \beta) \delta \Leftrightarrow {\gamma, \delta} \subseteq {\alpha, \beta} \text{ or } \gamma = \delta.$$

Then $\theta(\alpha, \beta)$ is an atom in $\mathcal{C}(X)$. Conversely, every atom in $\mathcal{C}(X)$ can be so constructed.

Proof. Let $\alpha, \beta \in X$ be as in the theorem. Then $\theta(\alpha, \beta)$ is obviously an atom in $\mathscr{E}(X)$. Let $\gamma \in X$. Then $\theta(\alpha, \beta)|(\gamma] = \varepsilon_{(\gamma)}$ or $\theta(\alpha, \beta)|(\gamma]$ is an atom in $\mathscr{E}((\gamma))$ by Hall [5] and thus $\theta(\alpha, \beta)|(\gamma)$ is a congruence on (γ) . Hence $\theta(\alpha, \beta)$ is a congruence on X and thus is an atom in $\mathscr{E}(X)$. Conversely, let ρ be an atom in $\mathscr{E}(X)$. Since $\rho \neq \varepsilon_X$ there are $\alpha, \beta \in X$, $\beta < \alpha$ such that $\alpha \rho \beta$. Let $\chi_{(\alpha)}$ denote the "Rees congruence" with respect to the principal ideal (α) . That is,

$$\gamma \chi_{(\alpha)} \delta \Leftrightarrow \gamma = \delta \text{ or } \gamma, \ \delta \in (\alpha].$$

It is easily verified that $\chi_{(a)}$ and $\rho \cap \chi_{(a)}$ are congruences on X. In particular, $\rho \cap \chi_{(a)} = \rho \wedge \chi_{(a)}$. Since $\varepsilon \neq \rho \cap \chi_{(a)}$ and ρ is an atom we observe that $\rho \subseteq \chi_{(a)}$. Hence $\rho = \rho \mid (\alpha] \cup \varepsilon_X$. Now $\rho \mid (\alpha]$ is an atom in $\mathscr{C}((\alpha])$ for if there is some $\tau \in \mathscr{C}((\alpha])$ such that $\tau \neq \varepsilon_{(a)}$ and τ is strictly contained in $\rho \mid (\alpha]$ then $\tau \cup \varepsilon_X$ is a non identical congruence on X, strictly contained in ρ . By Hall's characterization of the atoms in $\mathscr{C}((\alpha])$, $\rho \mid (\alpha]$ admits the description as $\rho \mid (\alpha] = \theta^{(a)}(\alpha, \beta)$ (the upper index denoting the domain of the relation under consideration). Since $\rho = \rho \mid (\alpha] \cup \varepsilon_X = \theta^{(a)}(\alpha, \beta) \cup \varepsilon_X = \theta^X(\alpha, \beta)$ the assertion follows.

Reconstructing the corresponding atom in $\mathscr{C}(S)$ we obtain the following description.

Corollary 3.3. Let $S = (X; I_{\alpha}, f_{\alpha, \beta})$ be a combinatorial strict inverse semigroup. Then $\rho \in \mathcal{C}(S)$ is an atom if and only if there are $\alpha, \beta \in X$, $\beta < \alpha$ such that $\gamma < \alpha$ implies $\gamma \leq \beta$ and

$$\rho = (f_{\alpha,\beta} \cup \varepsilon_S)(f_{\alpha,\beta}^{-1} \cup \varepsilon_S)$$

(the product denoting the usual composition of binary relations on S). That is, for $x \in I_*^*$, $y \in I_b^*$ we have $x \rho y$ if and only if one of the following holds

- (1) x = y
- (2) $\gamma = \alpha$, $\delta = \beta$ and $y = x f_{\alpha, \beta}$
- (3) $\delta = \alpha$, $\gamma = \beta$ and $x = y f_{\alpha, \beta}$
- (4) $\gamma = \delta = \alpha$ and $x f_{\alpha, \beta} = y f_{\alpha, \beta}$.

A congruence ρ on the structure set X is an atom if and only if ρ has precisely one class containing two elements, the other ρ -classes being singletons. Similarly as for the case of coatoms the analogue does not hold for the corresponding atoms in $\mathcal{C}(S)$. A trivial example is again any combinatorial Brandt semigroup containing more than two elements, and less trivial examples can be provided easily.

4. A subdirect decomposition of $\mathscr{C}(S)$

For the combinatorial strict inverse semigroup S we provide a decomposition of $\mathscr{C}(S)$ into a subdirect product of congruence lattices of semilattices. As in the previous section, we consider the structure set X of S as a partial semilattice by setting $\alpha \wedge \beta = \inf \{\alpha, \beta\}$, provided this greatest lower bound exists.

Definition 4. A subset $Z \subseteq X$ of a structure set X is a *subsemilattice* of X if for any $\alpha, \beta \in Z$, their infimum in $X \inf_X \{\alpha, \beta\}$ exists and is contained in Z. That is, Z is a subsemilattice of X if the partial operation \wedge , when restricted to Z, provides a total operation on Z.

Remark. A subset $Z \subseteq X$, endowed with the induced partial order may be a semilattice but not a subsemilattice of X.

Let X be a structure set. By Proposition 2.3, each principal ideal (α] in X is a subsemilattice of X. A subsemilattice Y of X is a maximal subsemilattice if there is no subsemilattice A of X strictly containing Y.

Lemma 4.1. Each maximal subsemilattice Y of X is an (order) ideal of X.

Proof. Let Z be a subsemilattice of X and let $\alpha \in Z$. Let $\beta \in Z$ and $\gamma \in (\alpha]$. Since Z is a subsemilattice, inf $\{\alpha, \beta\}$ exists and is contained in $(\alpha]$. Since $(\alpha]$ is a subsemilattice,

inf $\{\gamma, \inf\{\alpha, \beta\}\} = \inf\{\alpha, \beta, \gamma\} = \inf\{\beta, \gamma\}$ exists and is contained in $(\alpha]$. Consequently, $Z \cup (\alpha]$ is a subsemilattice of X for any $\alpha \in Z$. We infer that for any maximal subsemilattice Y of X, $Y = \bigcup_{\alpha \in Y} (\alpha]$.

The existence of maximal subsemilattices of X follows by a usual Zorn's Lemma argument. Denote by $\mathcal{Y}(X) = \{Y_i | i \in I\}$ the collection of all maximal subsemilattices of X.

Lemma 4.2. Let ρ be a congruence on the structure set X and Y be a subsemilattice of X. Then $\rho \mid Y$ is a semilattice congruence on Y.

Proof. Let $\alpha, \beta, \gamma \in Y$ and $\alpha \rho \beta$. By hypothesis, $\alpha \wedge \beta$ exists. There is some $\delta \leq \alpha, \beta$ such that $\alpha \rho \delta \rho \beta$. Since $\rho[\alpha]$ is a semilattice congruence on α we have $\alpha \wedge \beta = \alpha \wedge (\alpha \wedge \beta) \rho \delta \wedge (\alpha \wedge \beta) = \delta$. We infer that $\alpha \rho \alpha \wedge \beta \rho \beta$. The meet $\alpha \wedge \gamma$ exists since Y is a subsemilattice of X. Hence $\alpha \wedge \gamma = \alpha \wedge (\alpha \wedge \gamma) \rho (\alpha \wedge \beta) \wedge (\alpha \wedge \gamma) = \inf \{\alpha, \beta, \gamma\}$ and dually also $\beta \wedge \gamma \rho \inf \{\alpha, \beta, \gamma\}$ so that $\alpha \wedge \gamma \rho \beta \wedge \gamma$.

Corollary 4.3. If X is a semilattice then the congruences on X are precisely the semilattice congruences.

We now are able to prove the main result. The idea is similar to Hamilton's idea to decompose the congruence lattice of a tree into a subdirect product of the congruence lattices of the maximal subchains (see [6]).

Theorem 4.4. Let X be the structure set of a combinatorial strict inverse semigroup and let $\{Y_i | i \in I\}$ be the collection of all maximal subsemilattices of X. Then the mapping

$$\mathcal{C}(X) \to \prod_{i \in I} \mathcal{C}(Y_i), \quad \rho \mapsto (\rho \mid Y_i)_{i \in I}$$

is a lattice isomorphism between $\mathscr{C}(X)$ and the complete subdirect product

$$\Phi = \left\{ (\rho_i)_{i \in I} \in \prod_{i \in I} \mathscr{C}(Y_i) \mid \rho_i \mid Y_i \cap Y_j = \rho_j \mid Y_i \cap Y_j, i, j \in I \right\}.$$

Proof. Let $i \in I$ be a fixed element and let $\{\rho_k | k \in K\}$ be a collection of congruences on X. By Theorem 2.4 it follows that $\bigwedge_{k \in K} \rho_k = (\bigcap_{k \in K} \rho_k)^0$, that is, the greatest congruence on X contained in $\bigcap_{k \in K} \rho_k$. In the following we shall omit the subscript " $_{k \in K}$ ". First we observe that $(\bigwedge \rho_k) | Y_i \subseteq (\bigcap \rho_k) | Y_i = \bigcap \rho_k | Y_i$. For each k put $\rho_k' = \rho_k | Y_i \cup \varepsilon_X$. Then ρ_k' is a congruence on X and $\rho_k' \subseteq \rho_k$. Now $\bigcap \rho_k' = \bigcap (\rho_k | Y_i \cup \varepsilon_X) = (\bigcap \rho_k | Y_i) \cup \varepsilon_X$ which is a congruence on X. Hence $\bigwedge \rho_k' = \bigcap \rho_k' \subseteq \bigwedge \rho_k$ since $\rho_k' \subseteq \rho_k$ for all k. Restricting to Y_i we get $(\bigwedge \rho_k') | Y_i = (\bigcap \rho_k') | Y_i = (\bigcap \rho_k | Y_i \cup \varepsilon_X) | Y_i = \bigcap \rho_k | Y_i$ and hence $\bigcap \rho_k | Y_i \subseteq (\bigwedge \rho_k) | Y_i$. Consequently, $(\bigwedge \rho_k) | Y_i = \bigcap \rho_k | Y_i$ and thus the mapping

$$\mathscr{C}(X) \to \mathscr{C}(Y_i), \quad \rho \mapsto \rho | Y_i$$

is a complete \land -homomorphism. For the join we observe that the inclusion $\bigvee \rho_k \big| Y_i \subseteq (\bigvee \rho_k \big| Y_i$ is trivial. To show the converse, let $\alpha, \beta \in Y_i$ be such that $\alpha \bigvee \rho_k \beta$. There exist $\alpha_0, \ldots, \alpha_n \in X$ and $\rho_1, \ldots, \rho_n \in \{\rho_k \big| k \in K\}$ such that $\alpha = \alpha_0 \rho_1 \alpha_1 \ldots \alpha_{n-1} \rho_n \alpha_n = \beta$. For each j, $1 \le j \le n$ there is $\beta_j \le \alpha_{j-1}, \alpha_j$ such that $\alpha_{j-1} \rho_j \beta_j \rho_j \alpha_j$. Since $\beta_1, \beta_2 \le \alpha_1$, the meet $\gamma_2 = \inf \{\beta_1, \beta_2\}$ exists. By induction, $\gamma_j = \gamma_{j-1} \land \beta_j = \inf \{\beta_1, \beta_2 \ldots \beta_j\}$ exists and $\gamma_j \le \alpha_0, \ldots, \alpha_j$. The relation $\alpha_j \rho_{j+1} \beta_{j+1}$ yields $\gamma_j = \alpha_j \land \gamma_j \rho_{j+1} \beta_{j+1} \land \gamma_j = \gamma_{j+1}$. Since the maximal subsemilattice Y_i is an ideal (Lemma 4.1), $\gamma_j \in Y_i$ for all j. Put $\gamma_n = \gamma$ then $\gamma \le \alpha, \beta$ and $\alpha \bigvee \rho_k \big| Y_i \gamma$. By the same argument there is some $\delta \le \alpha, \beta$ such that $\beta \bigvee \rho_k \big| Y_i \delta$. Now $\alpha \ge \alpha \land \beta \ge \gamma$ and $\beta \ge \alpha \land \beta \ge \delta$ imply $\alpha \bigvee \rho_k \big| Y_i \alpha \land \beta \bigvee \rho_k \big| Y_i \beta$. In particular, $\bigvee \rho_k \big| Y_i = (\bigvee \rho_k \big| Y_i$ and thus the mapping

$$\mathscr{C}(X) \to \mathscr{C}(Y_i), \quad \rho \mapsto \rho \mid Y_i$$

is a complete \bigvee -homomorphism. For $\rho_i \in \mathscr{C}(Y_i)$ the relation $\rho = \rho_i \cup \varepsilon_X$ is a congruence on X such that $\rho \mid Y_i = \rho_i$. Hence the homomorphism $\rho \mapsto \rho \mid Y_i$ is surjective. Now let $\rho, \eta \in \mathscr{C}(X)$ be such that $\rho \neq \eta$. We may assume that there are $\alpha, \beta \in X$ such that $\alpha \rho \beta$ and $(\alpha, \beta) \notin \eta$. By a Zorn's Lemma argument there are maximal subsemilattices Y_i, Y_j of X such that $(\alpha] \subseteq Y_i$ and $(\beta] \subseteq Y_j$. Now there is $\gamma \leq \alpha, \beta$ such that $\alpha \rho \gamma \rho \beta$. Then either $(\alpha, \gamma) \notin \eta$ or $(\beta, \gamma) \notin \eta$ and hence either $\rho \mid Y_i \neq \eta \mid Y_i$ or $\rho \mid Y_j \neq \eta \mid Y_j$. It follows that the mapping $\mathscr{C}(X) \to \prod \mathscr{C}(Y_i), \ \rho \mapsto (\rho \mid Y_i)_{i \in I}$ is injective. Finally, let $(\rho_i) \in \prod \mathscr{C}(Y_i)$ be such that for all $i, j \in I$, $\rho_i \mid Y_i \cap Y_j = \rho_j \mid Y_i \cap Y_j$. Put $\rho_i' = \rho_i \cup \varepsilon_X$. Then $\rho_i' \in \mathscr{C}(X)$ for each $i \in I$. Let $\rho = \bigvee \rho_i'$. We obviously have $\rho_i \subseteq \rho \mid Y_i$. Choose a fixed $j \in I$ and let $\alpha, \beta \in Y_j$ be such $\alpha \rho \beta$. There are $\alpha_0, \ldots, \alpha_n \in X$ and $\rho_1', \ldots, \rho_n' \in \{\rho_i' \mid i \in I\}$ such that $\alpha = \alpha_0 \rho_1' \alpha_1 \ldots \alpha_{n-1} \rho_n' \alpha_n = \beta$. Similarly as above there are $\beta_1, \ldots, \beta_n \in X$ such that $\alpha \in \beta_1 \geq \cdots \geq \beta_n \leq \beta$ and $\beta_{k-1} \rho_k' \beta_k$. Since $\alpha \subseteq Y_j$ we have $\beta_k \in Y_j$ for all $\alpha \in X_j$. Since $\alpha \subseteq Y_j$ we have $\alpha \in X_j$ for all $\alpha \in X_j$ for some $\alpha \in X_j$. Dually also $\alpha \in X_j$ for some $\alpha \in X_j$. This holds for each $\alpha \in X_j$ and thus the proof is complete. $\alpha \in X_j$

We have thus shown that the congruence lattice of a combinatorial strict inverse semigroup is a subdirect product of congruence lattices of semilattices.

Definition 5. A (complete) lattice L is

- (1) completely semidistributive if for any σ , $\rho_i \in L$, $i \in I$ such that $\rho_i \wedge \sigma = \rho_j \wedge \sigma$ for all $i, j \in I$, then $(\bigvee \rho_i) \wedge \sigma = \bigvee (\rho_i \wedge \sigma)$.
- (2) *M-symmetric* if the modularity relation M on L, defined by $\rho M\sigma$ if and only if $\tau = (\tau \vee \rho) \wedge \sigma$ for all $\tau \in [\rho \wedge \sigma, \sigma]$, is a symmetric relation.

It has been shown by Papert [11] that the congruence lattice of any semilattice is completely semidistributive, and by Jones [9, Theorem 3.3] that the congruence lattice

of a semilattice is M-symmetric. By Jones [8, Proposition 5.1], M-symmetry is preserved by subdirect products. Theorem 4.4 therefore yields the following:

Corollary 4.5. Let $T \in \mathcal{B}$. Then the following assertions hold:

- (1) $\mathcal{C}(T)$ is completely semidistributive,
- (2) $\mathscr{C}(T)$ is M-symmetric.

Furthermore, the classes $\mathcal{C}(\mathcal{B})$ and $\mathcal{C}(\mathcal{S})$ generate the same quasivariety of lattices.

Notice that M-symmetry of $\mathscr{C}(T)$ also follows from the result of Jones [9, Theorem 3.3] by taking into account that for any $\rho, \eta \in \mathscr{C}(T)$, $\rho = \eta$ if and only $\rho \mid E = \eta \mid E$, E denoting the set of idempotents of T.

5. Weak relative pseudocomplements and pseudocomplements

Let L be a lattice, $\rho, \sigma \in L$, $\rho \leq \sigma$. If there is a greatest element $\tau \in L$ such that $\tau \wedge \sigma = \rho$ then τ is a weak relative pseudocomplement of ρ and σ , to be denoted by $\sigma * \rho$. If $\sigma * \rho$ exists for all pairs $\rho \leq \sigma$ in L then L is weakly relatively pseudocomplemented. If L has a least element 0 then for any $\sigma \in L$ the weak relative pseudocomplement $\sigma * 0$ is called the pseudocomplement of σ (provided it exists). An important result of Papert [11] asserts that the congruence lattice $\mathscr{C}(Y)$ of any semilattice Y is weakly relatively pseudocomplemented and hence also is pseudocomplemented. We shall extend this result to congruence lattices of combinatorial strict inverse semigroups. As in the previous section, for a combinatorial strict inverse semigroup S, the congruence lattice $\mathscr{C}(S)$ will be realized as the lattice $\mathscr{C}(X)$ of all congruences on the structure set X of S and thus as a subdirect product of the congruence lattices of the maximal subsemilattices Y_i of X as described in Theorem 4.4.

Let X be a structure set, $\mathscr{Y}(X) = \{Y_i | i \in I\}$ be the collection of all maximal subsemilattices of X. For each $\rho \in \mathscr{C}(X)$, $i \in I$ let $\rho_i = \rho \mid Y_i \in \mathscr{C}(Y_i)$. Let $\rho, \sigma \in \mathscr{C}(X)$, $\rho \subseteq \sigma$. Then $\rho_i \subseteq \sigma_i$ for all $i \in I$. Further, if $\tau \cap \sigma = \rho$ for some $\tau \in \mathscr{C}(X)$ then $\tau_i \cap \sigma_i = \rho_i$ for each i and hence $\tau_i \subseteq \sigma_i *_i \rho_i$, $*_i$ denoting the weak relative pseudocomplement in $\mathscr{C}(Y_i)$.

Lemma 5.1. Let Y be a semilattice, Z be an ideal (and thus a subsemilattice) of Y, $\rho, \sigma \in C(Y)$, $\rho \subseteq \sigma$. Then $\sigma | Z *_{Z} \rho | Z = \sigma *_{Y} \rho | Z$ (*_{Z} respectively *_{Y} denoting weak relative pseudocomplementation in $\mathscr{C}(Z)$ respectively $\mathscr{C}(Y)$).

Proof. Put $\rho' = \rho | Z$ and $\sigma' = \sigma | Z$. Then $\rho' \subseteq \sigma'$ and thus $\sigma' *_Z \rho'$ exists. Now $\sigma \cap (\sigma *_Y \rho) | Z = \sigma' \cap (\sigma *_Y \rho) | Z = \varepsilon_Z$ so that $\sigma *_Y \rho | Z \subseteq \sigma' *_Z \rho'$. By [11, Theorem 2], for $\alpha, \beta \in Z$ we have

$$\alpha \sigma' *_{Z} \rho' \beta \Leftrightarrow ((\forall \delta, \gamma \in Z) \delta \sigma' \gamma \Rightarrow (\alpha \wedge \delta \rho' \alpha \wedge \gamma \Leftrightarrow \beta \wedge \delta \rho' \beta \wedge \gamma)).$$

We intend to prove that $\alpha \sigma *_{\gamma} \rho \beta$ whenever $\alpha \sigma' *_{Z} \rho' \beta$. Let $\alpha, \beta \in \mathbb{Z}$ and $\alpha \sigma' *_{Z} \rho' \beta$. We

have to prove that $\alpha \sigma *_{Y} \rho \beta$, that is, $\alpha \wedge \delta \rho \alpha \wedge \gamma \Leftrightarrow \beta \wedge \delta \rho \beta \wedge \gamma$ for any $\gamma, \delta \in Y$ such that $\delta \sigma \gamma$. Let $\gamma, \delta \in Y$ be such that $\delta \sigma \gamma$. Since Z is an ideal, $\alpha \wedge \delta$, $\alpha \wedge \gamma$, $\beta \wedge \delta$, $\beta \wedge \gamma \in Z$, and $\alpha \wedge \delta \sigma' \alpha \wedge \gamma$, $\beta \wedge \delta \sigma' \beta \wedge \gamma$. By $\alpha \sigma' *_{Z} \rho' \beta$ we have

$$\alpha \wedge \delta = \alpha \wedge (\alpha \wedge \delta) \rho' \alpha \wedge (\alpha \wedge \gamma) = \alpha \wedge \gamma \Leftrightarrow \beta \wedge (\alpha \wedge \delta) \rho' \beta \wedge (\alpha \wedge \gamma)$$

and

$$\beta \wedge \delta = \beta \wedge (\beta \wedge \delta) \rho' \beta \wedge (\beta \wedge \gamma) = \beta \wedge \gamma \Leftrightarrow \alpha \wedge (\beta \wedge \delta) \rho' \alpha \wedge (\beta \wedge \gamma).$$

Since $\alpha \wedge (\beta \wedge \delta) = \beta \wedge (\alpha \wedge \delta)$ and $\alpha \wedge (\beta \wedge \gamma) = \beta \wedge (\alpha \wedge \gamma)$ we infer that $\alpha \wedge \delta \rho' \alpha \wedge \gamma \Leftrightarrow \beta \wedge \delta \rho' \beta \wedge \gamma$, that is, $\alpha \wedge \delta \rho \alpha \wedge \gamma \Leftrightarrow \beta \wedge \delta \rho \beta \wedge \gamma$. Consequently, $\alpha \sigma *_{\gamma} \rho \beta$ and the assertion is proved.

Using Theorem 4.4 it is now easy to obtain the mentioned result.

Theorem 5.2. The congruence lattice of a combinatorial strict inverse semigroup S is isomorphic to a subdirect product of congruence lattices of semilattices closed under componentwise formation of weak relative pseudocomplements and pseudocomplements. In particular, $\mathcal{C}(S)$ is pseudocomplemented.

Proof. Let X be the structure set of S and $\{Y_i|i\in I\}$ be the collection of all maximal subsemilattices of S. By Theorem 4.4, $\mathcal{C}(X)$ is isomorphic to

$$\Phi = \left\{ (\rho_i)_{i \in I} \in \prod_{i \in I} \mathscr{C}(Y_i) \mid \rho_i \mid Y_i \cap Y_j = \rho_j \mid Y_i \cap Y_j, i, j \in I \right\}.$$

Let $\rho, \sigma \in C(X)$, $\rho \subseteq \sigma$. Then $\rho_i \subseteq \sigma_i$ and hence $\sigma_i *_i \rho_i$ exists for each $i, *_i$ denoting the weak relative pseudocomplements in $\mathscr{C}(Y_i)$. By Lemma 5.1,

$$\sigma_{i} *_{i} \rho_{i} \mid Y_{i} \cap Y_{j} = (\sigma_{i} \mid Y_{i} \cap Y_{j}) * (\rho_{i} \mid Y_{i} \cap Y_{j})$$

$$= (\sigma_{j} \mid Y_{i} \cap Y_{j}) * (\rho_{j} \mid Y_{i} \cap Y_{j})$$

$$= \sigma_{j} *_{j} \rho_{j} \mid Y_{i} \cap Y_{j},$$

* denoting the weak relative pseudocomplement in $\mathscr{C}(Y_i \cap Y_j)$. Hence $(\sigma_i *_i \rho_i)_{i \in I} \in \Phi$ and thus $\sigma * \rho = \bigvee_{i \in I} \sigma_i *_i \rho_i \cup \varepsilon_X$ is the weak relative pseudocomplement of ρ and σ in $\mathscr{C}(X)$.

6. An example

In [1], it is shown that there is a (finite) combinatorial strict inverse semigroup S whose structure set X consists of five elements and is depicted by Fig. 1.

FIGURE 1

In particular, X is not a semilattice. All congruences on X are listed below (by denoting the corresponding partitions, and only the non singleton classes are mentioned):

$$ρ_0: ε_X$$
 $ρ_1: {μ, γ}$
 $ρ_2: {μ, δ}$
 $ρ_3: {μ, γ}, {δ, α}$
 $ρ_4: {μ, γ}, {δ, β}$
 $ρ_5: {μ, γ, δ}$
 $ρ_6: {μ, δ}, {γ, α}$
 $ρ_7: {μ, δ}, {γ, β}$
 $ρ_8: {μ, γ}, {α, β, δ}$
 $ρ_9: {μ, γ, α, δ}$
 $ρ_{10}: {μ, γ, β, δ}$
 $ρ_{11}: {μ, δ}, {α, β, γ}$

The lattice $\mathscr{C}(X)$ is depicted by Fig. 2. The Boolean elements in $\mathscr{C}(X)$, that is, those elements ρ in $\mathscr{C}(X)$ which are pseudocomplements of elements of $\mathscr{C}(X)$ are precisely the elements ρ_0 , ρ_8 , ρ_{11} , ρ_{12} . If $\mathscr{C}(X)$ was isomorphic to the congruence lattice of some semilattice Y then by [11, Theorem 5], Y could be embedded into the (lattice of the) Boolean elements of $\mathscr{C}(Y) \cong \mathscr{C}(X)$. But no subsemilattice of the four element diamond lattice has a congruence lattice isomorphic to $\mathscr{C}(X)$. Hence $\mathscr{C}(X)$ and thus also $\mathscr{C}(S)$ cannot be isomorphic to the congruence lattice of any semilattice.

REFERENCES

- 1. K. Auinger, The congruence lattice of a strict regular semigroup, J. Pure Appl. Algebra 81 (1992), 219–245.
- 2. R. Freese and J. B. Nation, Congruence lattices of semilattices, *Pacific J. Math.* 49 (1973), 51-58
 - 3. R. Freese and J. B. Nation, Congruence lattices of semilattices revisited, preprint.
 - 4. G. Grätzer, General Lattice Theory (Birkhäuser, Basel, 1978).
- 5. T. E. Hall, On the lattice of congruences on a semilattice, J. Austral. Math. Soc. 12 (1971), 456-460.
- 6. H. B. Hamilton, Semilattices whose structure lattice is distributive, Semigroup Forum 8 (1974), 245–253.

- 7. J. M. Howie, An Introduction to Semigroup Theory (Academic Press, London, 1976).
- 8. P. R. Jones, Semimodular inverse semigroups, J. London Math. Soc. 17 (1978), 446-456.
- 9. P. R. Jones, On congruence lattices of regular semigroups, J. Algebra 82 (1983), 18-39.
- 10. K. S. S. Nambooripad, Pseudo-semilattices and biordered sets III: regular locally testable semigroups, *Simon Stevin* 56 (1982), 239–256.
 - 11. D. Papert, Congruence relations in semilattices, J. London Math. Soc. 39 (1964), 723-729.
 - 12. M. Petrich, Inverse Semigroups (Wiley, New York, 1984).
- 13. G. I. Zhitomirsky, A characterization of congruence lattices of semilattices (Russian), Izv. Vyssh. Ucebn. Zaved. Dep. VINITI (1984).

Institut für Mathematik Strudlhofgasse 4 A-1090 Wien Austria

E-mail address: A8131DAT@AWIUNI11.BITNET