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1. In the theory of self-adjoint operators in Hilbert space and of formally self-adjoint
linear differential equations there are many situations involving analytic functions on the
complex plane whose singularities are confined to the real axis and where the growth of the
function at such singular points is strictly limited.

In this note we give an inequality for such functions which is useful in the neighbourhood
of points on the real axis. There is also an application to an elementary proof of a known
result concerning the bound of the resolvent of a self-adjoint operator in Hilbert space.

2. C denotes the complex plane, R the real line and R+ the non-negative real numbers.
Let / ( • ) be analytic on the complex plane C and regular at least in the half-planes

iraz > 0 and imz < 0 with z = x+iy; thus the singularities of/(-) are confined to the real
axis although the function may be regular at some real points.

Suppose that there is a real number M such that 0 < M < oo and

M
|/(z)|<j|—;, for all zeC with y = imz ,* 0. (1)

Let D be the domain of C in which/(•) is regular and put F= C—D = Dc; thus D is an open
set of the plane and Fis a closed subset of the real line. An argument based on the maximum
modulus theorem shows that (1) implies that/(-) cannot be an integral function on C unless
it is the null function; for this argument see Section 3 below. Thus, taking/(•) not to be
null, it follows that the set F cannot be the empty set $.

Let the distance mapping d( •) be denned by d( •): Z> -> R+ with

d(z) = inf {\z-w\:weF}, for all zeD. (2)

Since F is closed it follows that

0 < d{z) < oo, for all z eD. (3)

THEOREM 1. Let / ( • ) . D ond F be defined as above and suppose the inequality (1) to be
satisfied;

then

and this result is best possible.

2M
\f(z)\Z~, forallzeD, (4)
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If, in addition, the set F is bounded below {above), say b = inf {F} > — oo (say
b = sup {F} < oo), then

for all zeD with rez < b (rez > b); this result is also best possible.

Note. The inequality (4) is best seen as a bound for the values of/(•) on or near the real
axis, particularly when/(-) has points of regularity on the axis. For large values of y = imz,
it is clear that (1) is a better inequality than (4), but that, if £eDnR, then (4) gives a better
bound for |/(z) | when z is in the neighbourhood of ^ than (1) would give. On the other hand
(5) is, for the half-plane, a better inequality than (1).

Proof. Let z be any point of D. Without loss of generality we can suppose that re z = 0,
since the inequality (1) is invariant under translation along the real axis; i.e., if E,eR, then

M
\f(z + ?)\Sr—\, for all zeC with imz # 0.

Thus it is sufficient to prove the inequality (4) for any point on the imaginary axis including the
origin if that point should belong to D.

Suppose firstly that OeF. Then (1) implies (4) for all points iy on the imaginary axis with
y ^ 0; for in this case the origin is the nearest point of F and d(iy) = |y |, so that, from (1),

M 2M 2M

Now suppose that OeD. Then since D is open there is a positive number/? such that the
open interval (—p,p) <=• D but at least one of the points ±p belongs to F. If | y | ^ p/y/3, then
d(iy) ^ 21 y | and, again from (1),

which is the required result for this range of y. Now let the number r satisfy 0 < r < p and
consider the functionf gr(-) defined by gr{z) = (z2-r2)f{z) for \z\ <p. Clearly gr(') is
regular in this domain and so, by the maximum modulus theorem (see [5], Section 5.1),

| g£z) | g sup {| r2e2">-r21. \f(re">) \ : 0 ^ d g 2n) (8)

for | z | g r. A calculation shows that | e2ie— 11 = 21 sin 91 and from (1) we obtain

| im {re'8} .f(reie) \£M ( 0 ^ 0 ^ 2n).

t The use of this function is suggested by the proof of Lemma 2.11 of [4].
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Thus (8) now gives

|0r(z)|^sup{2r2|sin0./(re' '9)| : 0 g 0 g 2TT}

^sup{2r|im(rei9)./(rei8)| : 0 g 0 g 2n)

^ 2Mr for | z | ^ r,

and so

Since this last result is true for all r <p, let r-*p — 0 to give

In (9) put z = iy with | y \ < p to obtain

. . . . x l ^ 2MP P 2M
1 n~y2+p2 (/+,

^ 2 M
 e i i

= 5o7) for M < p -
Together (7) and (10) prove the inequality (4) in the case when OeZ).

The inequality (4) is now seen to be true for all zeD.
It may be seen that this inequality is best possible by considering the example

/(z) = (z2-p2)~1 for all zeCwith z±±p,

where/) is some positive number. A calculation shows that \imz.(z2—p2)~i \ ̂  (2p)~l for
all ze C with z # ±p, so that this example satisfies the hypothesis (1) with M = (2p)~l. Now

1 2M 2M

which is a case of equality in (4). Actually the derivation of (10) above shows that equality in
(4) can only occur at points on the real axis.

Now consider the second inequality (5) and suppose that Fis bounded below; the proof
when F is bounded above is similar.

Without loss of generality we can consider the case when b, the lower bound of F, is zero
(translating the origin if necessary), i.e. OeF but xeD if x < 0.

Let p > 0 and consider the domain of C determined by |z+/>| <p\ using the same
argument above which gave the inequality (9) we see that
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and this is valid for all p > 0 since/(•) is regular for the half-plane re z < 0. Now let p -> oo
in this last result to give

M M
|/(z) | g p j = — for all z with re z < 0, (11)

since for points with re z < 0 it is clear, from the definition in (2), that d(z) = | z |; this estab-
lishes the inequality (5).

It may be seen that the inequality (11) is best possible on considering the simple example
/(z) = z" 1 onC.

3. Note that if the inequality (1) holds not over the whole plane C but only in the domain
{z: |z—p\ < r}, where p, r e R and r > 0, then .F and Das subsets of this domain can be defined
as before; in this case the inequality (4) can be reformulated.

I f / 0 ) satisfies (1) over C and is also an integral function, then the inequality (9) holds
for all p > 0; letting p -» oo shows that/( •) must be the null function. Thus if/( •) is not null,
the set F defined in Section 2 cannot be the empty set (f>.

4. Let H be a complex Hilbert space with / the identity operator and let T, with domain
D(T), be a self-adjoint operator in H (see [1], Section 41). Let C be the complex plane and
write k = n + iv.

The resolvent set p(T) of T is the set of all points of the complex plane C for which the
inverse operator (T— kl)~i exists, is bounded and defined on the whole space H; the spectrum
a(T) of the operator Tis the complement of p{T) in C. It is known that p(T) is an open set of
C and a(T) is closed and is a subset of the real line R. For these definitions and results see
[1], Section 43.

If we put RX(T) = (T— XI)'1, then this operator is defined for k ep(T) and has the following
properties:

\\RX(T)\\ ^ H " 1 for AeC with v ^ m A ^ O , (1)

RX(T)* = RX(T) foralUepCT), (2)

where * denotes the adjoint operator; for (1) see [1], Theorem 3 of Section 43 and for (2) see
[1], Section 44. Also for any elements / , g eH the function (Rx(T)f,g), defined from the inner
product on H, is an analytic function of k regular in the set p(T); see [1], Section 65.

For any kep(T) define the distance function d(-,o(T)) on p(T) by

| | (3)

so that 0 < d(X,o(T)) < oo, for all kep(T).

THEOREM 2. Let T, p{T) and d{-,a(T)) be defined as above; then

forallksp{T). (4)

Note. For a proof of this Theorem depending on the spectral radius of RX{T) see [3],
Chapter V, Section 3.5.

L
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Proof. If T is self-adjoint, then for all real n the operator T—y.1 on the domain D(T) is
also self-adjoint; thus we can, without loss of generality, prove (4) in the case re A = 0 and it
will then be true in general, i.e. it is sufficient to prove that (4) holds on the imaginary axis.

Suppose firstly that Oe<r(!T). Then from (3) we have d(iv,a(T)) = | v | and in view of
(1) above it is sufficient to prove that || Riv(T) \\ < \ v | ~1 is impossible. Suppose to the contrary
that | i? , v ( r ) | | = (| v | + e ) - 1 , where e > 0. Then we have.(| v| + e) || Rh(T)g || ^ \g ||, for all
g e H. Given any fe D(T), define g = (T- ivl)f to give

S\\9\\2 = UT-ivI)f\\\ (5)

valid for all feD(T). Now by expressing | • ||2 as the inner product (,) we have (see also [1],
Section 43, proof of Theorem 3), for all feD(T),

|| | | | + v2 | | / | | 2 . (6)

Together (5) and (6) give

> e 2 | | / j | 2 , for all feD{T). (7)

However, as in the proof of [1], Section 43, Theorem 4, this last result shows that T is regular
at 0, i.e. that Oep(T). This contradiction shows that || Rh(T) \\ = | v | - 1 and (4) is then estab-
lished in this case.

Suppose secondly that 0ep(T). Then since this set is open, there is p > 0 such that the
open internal (-p,p) <= p{T) but at least one of the points ±p belongs to o{T). Assume for
the moment that the theorem is true for R0{T), i.e. that

<8)

which will be established later; then, as above, p2 \\ R0(.T)g | 2 ^ ||^ | 2 for all geH and this
implies tha t / ) 2 1 / | | 2 ^ | Tf\\2, for all/e£>(r). This gives from (6) above

for a l l / e D(T). Since T is regular at iv the range of T— ivl is H and so this last result may be
recast as

and so
1. (9)
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If, for v # 0, we had strict inequality in this last result, i.e. | Riv(T) || = {(p2 + v2)+* + e}~' for
some e > 0, then

or

[{0>2 + v2)*+e}2-v2]*| | / | | £ || r / | | = \\(T±PI)fTpf\\ ^

i.e.

which is valid for all/eD(7"). This last expression yields || (T±pl)f\ > e \\f\\, which, as before,
would imply that T is regular at both points ±p, i.e. that ±p both belong to p(T). This
contradiction establishes equality in (9).

Thus it remains to prove (8). The inequality || R0(T) || ^ p~1 may be established as above
by assuming the contrary, which then implies that T is regular at both points ±p. Thus (8)
will be established if we can prove || R0(T) || ^ p " 1 and for this we use the inequality (5) of
Theorem 1.

Consider the operator T2 defined by D(T2) = {feD(T); TfeD(T)} and then J 2 / = T{Tf)
for all/e£»(r2). It is known that T2 is self-adjoint (see [1], Section 46, Theorem 2) and the
spectrum of T2 is determined by a{T2) = {p2;pea{T)}. In the case of T above this implies
thatp2ea(T2) but (-oo,p2) c p(J2).

Let f,geH. Consider the function <£( •) defined by

(«A(r2)/,0), for all A ep(T).

Then <f>{ •) is analytic on C and regular on p{T2).
We have

\<KX)\^\\Rx{T

||, for all AeC with i ,

on using (1) of this section. Thus $(•) satisfies the conditions of Theorem 1, with

M| . D = p(T2), F=a(T2)

and Fis bounded below by p2; in this case d(k) = d{X,a[T2)). From (5) of Theorem 1 we
thus obtain

| | | | || for all X with re A < p\

and so in particular

| 0 ( O ) | S - 2 ||/|| \\9 |.
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In this last result put g = R0(T)f, as we may do since/and g are arbitrary, to give

i.e.

||*0(r2)/||£p-2||/||, for all

i.e.

\\R0(T
2)\\<p-2. (10)

Now it is not difficult to see that R0(T
2) = R0(T)2 and so from (2) above that

R0(T
2) = R0(T)R0(T)*.

From [2], Section 22, Theorem 4 we have || R0(T
2) \\ = \\ R0(T)R0(T)* \\ = || R0(T) \\2, so that

(10) implies

\\R0(T)\\2Zp-2 or \\R0(T)l^p-\ (11)

This completes the proof of the theorem.

5. The referee has pointed out that there is some overlap between the result given above
in Section 4 and the paper by R. G. Bartle entitled " Spectral localization of operators in
Banach spaces ", Math. Annalen 153 (1964), 261-9. See in particular pp. 261-5.
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