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Graphene possesses high electrical 
conductivity, mechanical flexibil-

ity, and chemical and thermal stability. It 
offers significant advantages for a wide 
range of applications, including flexible 
electronics, sensors, supercapacitors, and 
batteries. For low-cost and high-through-
put manufacturing of graphene-based 
devices, liquid-phase printing technolo-
gies provide considerable advantages 
in efficiency and versatility compared 
to conventional microfabrication meth-
ods based on photolithography and 
etching. Solution-based graphene inks 
have begun to accelerate the develop-
ment of this promising two-dimensional 
(2D) sp2-bonded carbon nanomaterial for 
practical technologies.
	 Pristine graphene inks commonly 
employ polymer additives to maintain col-
loidal stability and controlled viscosity. A 
particularly versatile polymer additive is 
ethyl cellulose (EC), which concurrently 
acts as an exfoliation aid, dispersant, vis-
cosity modifier, and binder in addition 
to facilitating charge transport between 
graphene flakes in percolating films fol-
lowing thermal or photonic annealing.1  

Using EC, high-yield exfoliation of 
graphene is achieved by ultrasonication 
or shear mixing of graphite in inexpen-
sive, environmentally benign solvents 
such as ethanol.2 This exfoliation pro-
cess produces few-layer graphene flakes 
with typical thicknesses of 1–5 nm and 
lateral dimensions of 100–500 nm, which 
are suitable for high-resolution printing 
methods. In contrast to oxidative exfo-
liation methods, EC-based exfoliation 
produces pristine graphene from graphite 
without chemically intensive processing 

or intermediate graphene oxides, which 
implies a simplified process flow, well-
defined structure and chemistry, and high 
electrical conductivity. Furthermore, the 
EC stabilizer enables the exfoliated pris-
tine graphene to be readily dispersed in 
diverse organic solvents with high solid 
content, thereby allowing control over 
ink rheology for a range of patterning 
and coating methods. 
	 Graphene/EC inks have been devel-
oped for several printing techniques by 
controlling solvents and solid loading 
(Figure 1a); several of these inks are 
now available from MilliporeSigma.3 
Two graphene/EC inks have been spe-
cifically developed for inkjet printing, 
a versatile digital, noncontact printing 
method, including a standard ink that 
requires thermal curing at 250°C,2 and 

one tailored for rapid photonic annealing 
for applications  involving temperature-
sensitive substrates.4 Higher viscos-
ity graphene/EC inks have also been 
designed for higher throughput gravure 
and screen-printing methods,5,6 which 
offer improved scalability for additive 
manufacturing. In addition, a graphene/
EC ink has been formulated for common 
laboratory coating methods such as spin 
coating and spray coating, providing a 
straightforward pathway to conductive 
graphene films. Table I summarizes the 
breadth of ink properties and deposi-
tion methods that can be used with the 
graphene/EC system.3 The graphene/
EC system supports ink viscosities span-
ning four orders of magnitude and solid 
loadings as high as 20 wt%, demonstrat-
ing its versatility. Pristine graphene/EC 
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Figure 1.  Properties of graphene/ethyl cellulose (EC) inks. (a) Schematic showing an atomic 
force microscope image of graphene flakes, a photograph of a graphene/EC ink vial (inset), and 
a printed graphene pattern. Adapted with permission from Reference 4. © 2015 Wiley-VCH. 
(b) Scanning electron microscope image of a printed graphene film. Adapted with permission 
from Reference 6. © 2014 Wiley-VCH. (c–d) Electrical response of graphene patterns to mechani-
cal stresses, showing invariant electrical resistance following (c) repeated bending cycles and 
(d) during bending. Adapted with permission from Reference 2. © 2013 American Chemical Society.

MilliporeSigma 
The MRS Corporate Partner Program supports  
the Materials Research Society Foundation.

ca

a

b dc

https://doi.org/10.1557/mrs.2018.241 Published online by Cambridge University Press

http://www.mrs.org/bulletin
https://doi.org/10.1557/mrs.2018.241


731MRS BULLETIN • VOLUME 43 • OCTOBER 2018 • www.mrs.org/bulletin

NEWS & ANALYSIS MATERIALS NEWS

inks have also been utilized for emerging 
scalable additive manufacturing methods, 
including self-aligned capillarity-assisted 
lithography,7 selective dewetting-based 
transfer printing,8 and liquid bridge-medi-
ated transfer printing.9 
	 Following deposition, the graphene/
EC pattern is thermally or photonically 
cured, which decomposes the EC into 
volatile products, and a sp2-rich amor-
phous carbon residue that results in a 
dense, conductive graphene film (Figure 
1b). Conventional thermal annealing at 
250°C for 30 minutes yields a high con-
ductivity of ~2.5 × 104 S/m (resistivity 
of 4.0 × 10–3 Ω∙cm) and excellent toler-
ance to bending stresses.2 For applications 
using thermally sensitive substrates such 
as poly(ethylene terephthalate) and paper, 
rapid photonic annealing can also be used. 
Photonic annealing involves irradiation 
with a pulsed, high-intensity light source, 
such as a xenon flash lamp, locally heat-
ing the strongly absorbing graphene/EC 
patterns while mitigating thermal damage 
to the underlying substrate, resulting in 
comparable electrical performance with 
millisecond processing times.4 Graphene 
films printed from these inks can repeat-
edly withstand high bending strains of 

1%, corresponding to a radius of curva-
ture of 2.5 mm on a 50-µm-thick plastic 
film (Figure 1c–d).
	 The superlative electrical and mechani-
cal performance of graphene/EC inks has 
been exploited in numerous printed elec-
tronic applications. In many cases, printed 
graphene structures have been utilized for 
high-performance electrodes and inter-
facial contacts. Poly(3-hexylthiophene) 
thin-film transistors (TFTs) have been fab-
ricated on plastic and paper substrates on 

which screen printable graphene/EC inks 
were used to fabricate graphene electrodes 
(Figure 2a).6,10 The excellent mechanical 
durability of the printed graphene elec-
trodes enables reliable TFT performance 
even after severe substrate deformation, 
including bending and folding. Indium-
gallium-zinc-oxide TFTs have been dem-
onstrated using inkjet printable graphene/
EC inks for source and drain electrodes.11 
In this case, the chemically inert graphene 
electrodes provide robust TFT stability 

at processing temperatures 
in excess of 300°C in addi-
tion to long-term stability in 
ambient conditions for more 
than one year. Inkjet printable 
graphene/EC inks have also 
been used to fabricate an 
interfacial layer to stabilize 
electrical contacts between 
eutectic gallium-indium 
(eGaIn) and silver electrodes 
(Figure 2b).12 By serving as 
a physical barrier, the printed 
graphene layer between eGaIn 
and silver prevents alloy for-
mation, yielding stable elec-
trical contacts and improved 
materials compatibility for 
eGaIn-based reconfigurable 
electronic applications.
    The high surface area and 
electrochemical stability of 
graphene also motivate appli-
cations of graphene/EC inks 
in energy-storage devices. 

Figure 2.  Applications of graphene/ethyl cellulose (EC) inks. (a) Schematic showing screen-printed graphene 
electrodes for organic thin-film transistors. Adapted with permission from Reference 6. © 2014 Wiley-VCH. 
(b) Optical microscope image of graphene as an interfacial barrier between eutectic gallium-indium (eGaIn) 
and silver. Adapted with permission from Reference 12. © 2017 Wiley-VCH. (c) Photograph of and capaci-
tance-current density plot for inkjet-printed graphene microsupercapacitors. Adapted with permission from 
Reference 13. © 2016 Wiley-VCH. (d) Transmission electron microscope images of lithium manganese oxide 
nanoparticles coated with graphene/EC at different magnifications. Reprinted with permission from Reference 
14. © 2017 American Chemical Society.
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Table I. Summary of graphene/ethyl cellulose ink properties.

    Ink/Method  
Solid 

Content 
(wt%)

Solvents Viscosity 
(mPa∙s)

Resolution 
(µm)

Thickness 
(nm)

MilliporeSigma 
Cat. No.

Inkjet Printing 1.5–2.5 Cyclohexanone, 
terpineol 8–15 50–80 50–200 793663

Inkjet Printing/ 
Photonic 
Annealing

2.2–3.4

Cyclohexanone, 
terpineol, 

diethylene glycol 
methyl ether

7–14 50–80 50–400 900695

Gravure 
Printing 8.0–12 Terpineol, 

ethanol (trace) 750–3000 30–60 50–200 796115

 Screen 
Printing/ 

Blade Coating
13–20 Terpineol, 

ethanol (trace)
5000–
50,000 40–100 200–2000 798983

Spin Coating/
Spray Coating 1.8–3.0 Ethyl lactate, 

ethanol 2–4 — 50–200 900960
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Solid-state graphene microsupercapaci-
tors have been fabricated using inkjet-
printable graphene/EC inks (Figure 2c), 
 resulting in high volumetric capacitance 
(9.3 F/cm3 at a current density of 0.25 A/
cm3), promising energy and power den-
sities (1.29 mWh/cm3 and 278 W/cm3, 
respectively), and excellent capacitance 
retention over 10,000 cycles.13 In addi-
tion, high performance, nanostructured 
lithium manganese oxide (nano-LMO) 
cathodes for lithium-ion batteries have 
been demonstrated using graphene/EC as 
a conductive additive.14 By conformally 
coating the surface of nano-LMO parti-
cles (Figure 2d), graphene/EC improves 
packing density and chemical stability. 
Due to enhanced charge transfer result-
ing from the highly conductive graphene 
coating, lithium-ion batteries employing 
these cathode materials possess extraor-
dinary performance under extreme oper-
ating conditions, such as 75% capacity 
retention at a 20C cycling rate at room 
temperature and nearly full capacity 
retention at –20°C.
	 The excellent electrical, chemical, 
and mechanical properties of pristine 
graphene, coupled with EC to enhance 
colloidal stability, tailor viscosity, and 

facilitate processing, provide a favorable 
material system for accelerating research 
and device prototype development. The 
scalability of the graphene/EC ink pro-
duction methodology in combination with 
the compatibility with diverse printing 
and coating methods provides opportu-
nities for efficiently transitioning research 
developments to large-scale additive 
manufacturing. The likely extrapolation 
of the EC-based exfoliation and stabiliza-
tion approach to other 2D materials (e.g., 
transition-metal dichalcogenides and hex-
agonal boron nitride) further suggests that 
this technology will enable a wide range 
of additional technologies in the future, 
including optoelectronics, sensors, radio-
frequency identification antennas, and 
electromagnetic interference shielding.15
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Applications of lithium-ion batteries 
(LIBs) extend from modern electronics 
to automobiles. Order ready-to-use 
electrolyte solutions and electrode 
sheets in battery grade to fabricate 
your LIB.
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