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Geometry and Spectra of Closed Extensions
of Elliptic Cone Operators

Juan B. Gil, Thomas Krainer, and Gerardo A. Mendoza

Abstract. 'We study the geometry of the set of closed extensions of index 0 of an elliptic differential
cone operator and its model operator in connection with the spectra of the extensions, and we give a
necessary and sufficient condition for the existence of rays of minimal growth for such operators.

1 Introduction

The purpose of this paper is to study the spectra and resolvents of the closed ex-
tensions of an elliptic differential cone operator A on a compact manifold M with
boundary and of its model operator A. It is well known that the closed extensions
of A are in one-to-one correspondence with the subspaces of a finite dimensional
space Dnax/Dmin, where the spaces Dax and Dy, are certain subpaces, determined
by A, of an L? space on M; see Lesch [5]. It is thus natural to view the extensions as
corresponding to points in the various Grassmannians associated with D .x /Dinin.
Extending this, we develop a viewpoint in which issues pertaining to spectra and re-
solvents for the closed extensions of both A and A, are expressed and examined in
(finite-dimensional) geometric terms.

Cone differential operators are generalizations of the operators that arise when
standard differential operators are written using polar coordinates. Their study is
therefore of interest in the context of manifolds with conical singularities, both in
themselves and as guiding examples in a general theory of analysis of differential
operators on manifolds with other kinds of singularities; see Schulze [11].

Our motivation for undertaking this study comes from the desirability of exe-
cuting Seeley’s program [12] in the case of elliptic cone operators. This requires a
detailed understanding of the resolvent in terms of the symbol of A and the domain
of the extension. From the pseudodifferential point of view, the symbol of A is a
pair consisting of A, and its b-symbol, or more invariantly, its cone-symbol ‘o (A)
as defined in Section 3. As in the standard theory of elliptic operators on a manifold
without boundary, the statement that a given sector A C C is a sector of minimal
growth for ‘o (A) is domain-insensitive. The operator A,, however, is a differential
operator, so the analogous statement for A, requires that a domain be specified. In
Section 4 we shall construct a natural bijection from the set of domains of closed ex-
tensions of A to that of Ax. In [3] we used pseudodifferential techniques to show that
if D is the domain of A, associated with the domain D of A, and if A is a sector
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of minimal growth for ‘o (A) and for A, with domain D, then it is also a sector of
minimal growth for A with domain D. This, of course, brings up the question of how
to determine whether a given sector, or even a ray, is a sector of minimal growth for
A, with domain D 4. In connection with this we give, in Theorem 8.3, a necessary
and sufficient condition for A to be a sector of minimal growth for A, with domain
D . The condition (8.5) of Theorem 8.3 is in principle verifiable.

Resolvents for cone-elliptic operators written as pseudodifferential operators have
been constructed by other authors in special cases, e.g., Britning—Seeley [1], Gil [2],
Mooers [9], and Schrohe-Seiler [10], the last mentioned article being the one closest
to our own aims in [3]. Also of interest is Loya [6] in the context of b-operators. Our
goal, here and in [3], is to study the problem with minimal assumptions.

A description of the paper follows. We shall be working with a fixed elliptic cone
operator A acting on sections of a Hermitian vector bundle E over a manifold M; the
latter is assumed to be compact of dimension # with nonempty boundary. The defi-
nition of cone operators is recalled in Section 2, where we also recall the definitions
of the spaces on which cone operators act. In that section we also introduce certain
strongly continuous one-parameter groups of isometries x,, one associated with M
and one with the interior pointing part of the normal bundle of OM in M (where A,
lives). These actions generally play an important role in the analysis of degenerate
elliptic operators, see Schulze [11], and they do so here as well.

The c-cotangent bundle, “T*M, is defined in Section 3. Its definition is analogous
to that of the b-tangent bundle of Melrose [7, 8]. It is a vector bundle over M which
is canonically isomorphic to T*M over the interior of M. Cone operators have in-
variantly defined symbols, ‘o (A), defined on “T*M. We also recall in this section
the definition of A, and discuss some properties inherited by A, from A. We also
briefly recall the definition of the conormal symbol.

In Section 4 we first recall known facts about the closed extensions of cone-elliptic
operators on compact manifolds, such as M, and sketch proofs of analogous results
for the operator A . Proofs are needed since A, though elliptic in the proper sense,
is not a Fredholm operator on the spaces naturally associated with it. For A, as is well
known, there is a minimal closed extension with domain D,,;,, and there is a maximal
extension with domain D,,,. Likewise, for A . there is the domain of the minimal ex-
tension D min and the maximal domain D A max. In both cases, the minimal domain
has finite codimension in the maximal domain (in fact, the same codimension). The
set of domains of closed extensions can be viewed as a Grassmannian variety, and
there is a natural map © one can use to pass from one variety to the other, cf. (4.15).
This is most relevant in [3]; indeed, the meaning of the condition that ‘o (A) admits
a ray of minimal growth is clear, but to express the analogous condition for A, re-
quires the specification of a domain for A,. This domain is the one associated by ©
with the given domain for A.

The analysis of the spectrum of a given closed extension of A is taken up in Sec-
tion 5. It is natural to classify the set of extensions of A by the index. The ones with
index 0 being the only ones relevant in the problem of studying the spectrum, we let
® be the set of domains D such that ind Ap = 0; here and elsewhere Ap means A
with domain D. The simple condition that both numbers d’’ = —indAqp,, and
d’ = ind Ap__ be nonnegative is necessary and sufficient for ® to be nonempty; see

max
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Lemma 5.1. And if this is the case, then ® can be viewed as a (complex) Grassman-

nian variety (based on D ax/Dmin). An at first surprising fact is that if dim ® > 0,

then for every A € C thereis D € ® such that A € spec Ap; see Proposition 5.5.
Letting

bg-specA = () specAp, bg-resA = C\bg-specA,
De®

we get spec Ap = bg-spec A U (spec Ap Nbg-res A), a disjoint union. It is the part of
spec Ap in bg-res A that is most amenable to study. For A € bg-res A, the dimension
of X = ker(Ap,,, — A) is constant, equal to d’, and

A€resAp <= A e€bgresAand Xy ND =0;

see Lemma 5.7. By the same lemma, if X, N D = 0, then Doy = Ky & D. Then let
T, be the projection on X according to this decomposition.

If X € bg-res A, then Ap_, — A isinjective and Ap, — A is surjective (this property
characterizes bg-res A). For such A let Byax(\) be the right inverse of Ap__ — A whose
range is orthogonal to K, with respect to the inner product

(u,v)a = (A, AV) oz + (4, V) —mip2,

and let Bpin (A) be the left inverse of Ap_,, — A with kernel the orthogonal complement
ofrg(Ap_ — \)in x‘m/zLi (M;E). Then if A € res Ap, one has the formula

min

B‘D(>\) = Bmax(/\) - (I - Bmm()\)(A - )\)) 7T-SCA.‘DBmaX()\)

for the resolvent Bp(\) = (Ap — A\) ! of Ap, cf. (5.12). This formula is evident if
one notes that the factor in front of mx, » is the identity on X,. In principle both
Bmin(A) and Biax (M) can be written as pseudodifferential operators, a purely analytic
problem, so inverting App — A is reduced to an algebraic problem, indeed, a problem
in a finite dimensional space, as follows.

Let € max be the orthogonal complement of D i, in Doy with respect to the inner
product defined above; this is a finite dimensional space. Let Tyt Dinax — Dimax be
the orthogonal projection on €. Both I — Byin(A)(A — A) and 7y, o vanish on
Dmin) SO

Bp(A) = Bmax(A) = (I = Brin(M)(A = A)) Tinax 75, D TimaxBmax(V).-
On the other hand,
A€resAp <= A € bgresAand mp Ky N TaxD = 0,
and for such A, Emax = TmaxKa ® TmaxD; see Lemma 5.7. The map Tmax Toc, D | €,

is just the projection on TmXK) according to this decomposition of €,y see
Lemma 5.9.
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Organizing the information in terms of Grassmannians turns out to be quite use-
ful. The set ® can be viewed as the Grassmannian Gry//(€nax) of d’/-dimensional
subspaces of €ax, and the spaces K (which are the fibers of a holomorphic vector
bundle over bg-res A) give a holomorphic map A — TnmiXKy € Gra(Emax). The
condition that A € bg-res A N spec Ap is that my. K belongs to the set

%’D = {V € Grd’(gmax) :VN 7Tmax(®) 7é 0}

This is a complex analytic variety in Grg/(Emax) of codimension 1. The condition
that, for some nonzero A\ € bg-res A, the ray {r\o : r > R} contains no point of
spec Ap is that the curve in Gry/ (Emay) given by 1 —= Tmax X, has no point in Bp
whenr > R. And if V € Gry/ (Emax)\B o, then the norm of the projection on V
using Emax = V @ TmaxD can be estimated in simple terms. This can be useful for
estimating the norm of the resolvent of Ap near a point in spec Ap N bg-res A.

In Section 6 we discuss some aspects of symmetric cone operators from the ge-
ometric perspective developed in Section 5. Among other things, we show that for
such operators, the set of domains of selfadjoint extensions is a real-analytic sub-
manifold of ®, and that if dim ® > 0, then for every real A there is a selfadjoint
extension of A with A in its spectrum. This is so even if the operator with minimal
domain is bounded below (or above). A more detailed study of geometric aspects of
the spectrum of selfadjoint extensions will be taken up elsewhere.

In Section 7 we analyze Ax, also from the perspective of Section 5. While A, is
not a Fredholm operator, the fact that it is homogeneous under the action of the
one-parameter group x, permits a rather complete analysis of the operator, its back-
ground spectrum and the resolvents of the various extensions with index 0. Theo-
rem 8.3 gives a necessary and sufficient condition for a given extension of A to admit
a sector of minimal growth.

We finish the paper proving Theorem 9.1, an analogue of Theorem 8.3 giving a
necessary and sufficient condition for an extension of A to admit a sector of minimal
growth. While the proofs of these theorems are quite similar, some assumptions in
Theorem 9.1 are automatically satisfied in the case of Theorem 8.3.

Most of the nonstandard notation used in this paper, and not mentioned in this
introduction, is presented in Sections 4 and 5. In general, objects associated with A
have the symbol A as part of the notation. For example, € A max is the orthogonal
complement of D min in DA max> and Ta max is the corresponding orthogonal pro-
jection. All the other projections will usually indicate the space on which they map:
If H=E®F, then mgp: H — H will denote the projection on E according to this
decomposition, and 7 is the orthogonal projection on E.

2 Definitions and Conventions

Throughout the paper M is a compact n-manifold with boundary, m is a smooth b-
measure, E — M is a Hermitian vector bundle, and V a Hermitian connection on E.
The boundary of M will be denoted by Y. By x we shall mean a smooth defining
function of Y, positive in the interior M of M. This function will be fixed shortly so
as to have certain properties that simplify the calculations.
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The b-tangent bundle of Melrose, *TM, is the vector bundle over M whose space
of sections is

(2.1) Coo(M; TM) = {X € C*°(M; TM) : X is tangent to OM },

see [7,8]. The space CP (M; CTM) is a Lie algebra over € under the usual Lie bracket,
and the collection of elements of order < m in its enveloping algebra is the space
Diff ;' (M) of totally characteristic differential operators of order < m. If E — M
is a complex vector bundle and Diff "' (M; E) is the space of differential operators on
C°(M; E) of order m, then Diff;'(M; E) denotes the subspace consisting of totally
characteristic differential operators on C*°(M; E) of order m; see Melrose [8].

The elements of x~" Diff ;' (M; E), that is, differential operators of the form A =
x~™P with P € Diff ;'(M; E), are the cone operators of order m.

The Hilbert space L} (M; E) is the L* space of sections of E with respect to the
Hermitian form on E and the density m. Thus the inner product is

(u,v)Li = /(u,v)Em ifu, ve Lﬁ(M;E).

For non-negative integers s, the Sobolev spaces H; (M; E) are defined as
H(M;E) = {u € L}(M;E) : Pu € Lj(M; E) VP € Diff;(M;E)}.

The Hilbert space structure is defined using the vector fields in C5, (M; TM) with the
aid of the connection on E and a partition of unity. The spaces H; (M; E) for general

s € R are defined by interpolation and duality, and we set

H*(M;E) = H(M;E), H, *(M;E) = |J Hj(M;E).

The weighted spaces x*H; (M; E) = {x*u : u € H;(M;E)} are Hilbert spaces with
the inner product for which H;(M;E) > u — x*u € x"Hj(M;E) is an isome-
try. In the case of s = 0, one has x*H)) (M;E) = x"L;(M;E) = L*(M,x *n;E),
and the Sobolev spaces based on L?(M, x~?*m; E) and Diff; (M; E) are isomorphic
to x*H} (M; E). The topological structure of these spaces is independent of the par-
ticular b-density on M, Hermitian structure and connection of E, and defining func-
tion x.

To simplify a number of computations and constructions, it is convenient to in-
troduce additional structure. Let m: NY — Y be the normal bundle of Y in M,
NY = TyM/TY. Let x: M — R be any defining function for Y, positive in M. Since
dx vanishes on TY, dx defines a function x5, = dx : NY — R. Define

Y ={v € NY : xov > 0},

and let m,.: Y — Y be the restriction of 7.
Let x9, denote the canonical section of *TM along Y.
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Lemma 2.1 Let my = x0,|m be the contraction of m by x0, along Y; my is a smooth
positive density on Y. There is a tubular neighborhood map

(2.2) > VY '-sUCM
and a defining function x for Y in M such that

d
(2.3) d*m = ax Q@ mimy in'V.
X

Proof Pick some smooth but otherwise arbitrary tubular neighborhood map ® and
a defining function X. Trivialize N.Y as [0, c0) x Y by choosing some smooth vector
field Oz in M along Y such that 9z% = 1. Trivialized in this manner, %5 : [0,00) XY —
[0, 00) is the canonical projection. The b-density d;‘% ® mimy is smooth, positive,

and globally defined on Y”. Therefore, near £, = 0,
- dx
d*m = f& ® mimy
XA

with some smooth function f. From the fact that ® is a tubular neighborhood map,
it follows that f = 1 when X, = 0. There exists g smooth, defined near 5 = 0, and
equal to 1 at ¥4 = 0, such that if F(X, ) = (Xag(%, ¥), ¥), then

dx dx
F*(f~—/\®7fimy) = ~—/\ ®7Timy.
XA XA

Indeed, this holds if g solves

g 1— f(x/\g> }’)
f(Zrgy) £A ’

8ng =

Since f(0,y) = 1, there is a smooth solution with initial condition g(0,y) = 1.
Define ® = ® o F. Then @ is a tubular neighborhood map satisfying (2.3). Let x be a
smooth function on M, positive in M, that agrees with £, o ®~! near Y. Then ® and
x are as required. u

We fix a tubular neighborhood map (2.2) and defining function x for Y such that
(2.3) holds, and take

dx
(24) ma = —/\ X Wi]ny
XA

as density on Y. We also fix x, as defining function for Y in N,Y. Both U and V
contain Y.

Let X, = 0y, be the canonical vertical vector field. Fix a smooth real vector field
X on M which coincides with d®(X,) near Y. Shrinking V and U we assume that
this holds in U.
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Definition 2.2 An operator P € Diff;'(M; E) is said to have coefficients independent
of x near Y if [P,V x] = OnearY.

The operators on M with which we are concerned need not have coefficients in-
dependent of x. They appear, however, in the form of Taylor coefficients. Namely, if
P € Diff}'(M; E), then for any N there are operators Py, Py € Diff}'(M; E) such that

N-1
(2.5) P= Z Pixk + Py
k=0

where each Py has coefficients independent of x near Y. The operators Py are uniquely
determined near Y by P and our choices of connection on E defining function x and
vector field X. These Taylor expansions will be used in the course of the construction
of the map 6 in Theorem 4.7.

If P has coefficients independent of x near Y, then so does its formal adjoint P* in
L;(M; E). This follows immediately from

(2.6) (Vaxth, Vpose) = — (1 VaxVpose, 4 v € Co°(U; B).

To see that this formula holds we note that xX(u, v)g = (Vixu, v)g + (1, Vixv)g be-
cause the connection is Hermitian. Near Y, the Lie derivative L,xm vanishes because
of (2.3) and the choice of X. So if u and v are supported in U and h = (u, v), then
xXhm = L xhm = d(hxX|m). Therefore, by Stokes’ theorem, fo (u,v)pm=0if
u,v e Cgo(IOJ;E). This gives (2.6).

Let E* — Y be the vector bundle 7 (E|y) and give it the canonical Hermitian
metric and connection. An operator P € Diff}'(Y"; E) is said to have coefficients
independent of x, if it commutes with V, x, . The spaces x\ H; (Y"; E") are defined
in a manner completely analogous to those associated with M, using operators with
coefficients independent of x». For nonnegative integers s, they may be defined using
smooth vector fields in *TY” that commute with x,X,. Since Y” is non-compact,
XK L2(Y"; EM) literally means the L2-space corresponding to the measure x, 1.

Using the tubular neighborhood map ®, define ®,: E*|y — E|y as follows: for
n = (p,n') € E, with p € Vand 0’ € Er (), let .1 € Ep(p) be the element
obtained by parallel transport of " along the curve t — ®(¢p), t € [0,1]. The map
.. is a smooth vector bundle isomorphism covering ®, an isometry because V is
Hermitian. For this reason, and because of (2.3), the induced map

(2.7) O, x "LV ENy) — x LU Ely)

is an isometry.

Let x; be the one parameter group of diffeomorphisms of M generated by xX. If u
is a section of E, let (khu)(p) € E,, be the result of parallel transport of u(X1og,p) €
Ey,p along the curve [0, 1] 3 s — X(1-5)logo(p) € M. There is a unique smooth
positive function f,: M — R with the property that f7x™m = Xiog o (X" M).

Definition 2.3  Let k, act on C{°(4M;E) as k,u = f,kb. Denote also by r, the
analogously defined family of maps on C§°(Y"\; E") obtained using m, and x, 0., -
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The context will indicate whether an instance of k, means the operator on sections
of E over M or sections of E" over Y”. In the case of Y”, the function f, is 0"/>.
Because of the following lemma, the function f, in the case of M is equal to o2
nearY.

Lemma 2.4 Letu € C°(V;EMNy). Then Ko®uu = Ok uforall o > 1 — € for some
€ > 0 depending on u.

This follows from the definitions of ®, and ,, using that near Y, ®*m = my,,
xp = x0®,and ,0,, = X. The number ¢ serves only to ensure that the support of
Kot is contained in V.

Lemma 2.5 The family o — k,, initially defined on C3°(M; E), extends to
x~"™212(M; E)

as a strongly continuous one-parameter group of isometries.

Proof Let h denote the Hermitian metric on E. If u, v € C§° (M; E), then

h(ku, k,v)X"m = h( fyrpu, forbv)x™m

= h(sshu, ryv) f2x"M = oy, (h(at, V)2 m),

50 ki, extends to x~"/2L2(M; E) as an isometry. Next we note that f,/, = forXiog o' fo-
Indeed,

2 M. Lk Mo % * m
fn’g'x m*Xloggg’x m*XIOgg’Xlogg/x m

2 2 2
= X[’;gg,(fgxmm) = (X{;gg,fg) X

Thus,
Koo = fa'gfﬂl@ = fQ’(Xﬁ)gg’ﬁ))ﬁglﬁg = f@’”‘g';’f@"ﬂg = Ko'Ky.

That o — k,u is continuous follows from the continuity of each «, and the fact that
this holds when u belongs to the dense subspace C°(M; E) of x ™/2L2(M;E). W

We end the section with a brief comment on what we mean by the Mellin trans-
form of an element of x~"/2L2(M; E). Fixw € C§°(—1, 1) real valued, nonnegative
and such that w = 1 in a neighborhood of 0. Also fix a Hermitian connection V
on E. The Mellin transform of an element u € C§° (M; E) is defined to be the entire
function #i: C — C°°(Y;E|y) such that for any v € C*°(Y; E|y)

(x""wu, W;V)Lli(M;E) = (4(0), V) 2(vE)y)-

By 7y v we mean the section of E over U obtained by parallel transport of v along the
fibers of y. As is well known, the Mellin transform extends to the spaces x#Li(M ;s E)
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in such a way that if u € x*L}(M; E), then (o) is holomorphic in {So > —p} and
in 2({So = —pu} x Y) with respect to do @ my.

The density m, the map @, the function x and the Hermitian connection are fixed
throughout the paper. For the sake of some notational simplification we will hence-
forth write x, m, and E instead of xA, 1Mx, and E”. Fixing a defining function x for Y
in M, as we have done, is equivalent to fixing a trivialization of Y, a diffeomorphism
YN — [0,00) X Y.

3 The Symbols of a Cone Operator

Let E, F — M be complex vector bundles over M. An operator
A € x " Diff ) (M; E, F)
is called c-elliptic if P = x™A is b-elliptic, which means that its b-symbol,
bo(x™A) € C°(PT*M\0; Hom( r*E, %*F)),

(Melrose, [8]) is invertible. Here %r: *T*M\0 — M is the projection map. This
definition depends in a mild way on the choice of defining function: if % is another
defining function for OM, then

(3.1) bo(x"A) = (&/x)" ba(x"A).

Alternatively, consider the following construction of the c-cotangent bundle of
M, ‘T*M, motivated by Melrose’s definition of bTM, and definition of an invariant
replacement of the b-symbol. Let ¢: OM — M be the inclusion map and define

Cox(M; T*M) = {n € C*(M, T*M) : 1"n = 0},

the space of smooth 1-forms on M which are, over M, sections of the conormal
bundle of M in M. Just as with the b-tangent bundle, there is the ¢-cotangent bun-
dle “T*M whose space of smooth sections is CSY(M; T*M), and a homomorphism
‘ev: ‘T*M — T*M which is an isomorphism over the interior. The fiber over p is

‘TyM = C3(M; T*M) / (T, (M) - C&5 (M; T*M))

where J,(M) is the ideal in C>°(M) of functions vanishing at p, and the homomor-
phism ‘ev is the one induced by C&7 (M; T*M) > n — n(p) € T, M. Since the latter
map has J,(M) - C&(M; T*M) in its kernel, it induces a map ‘ev,,: CT;M — T;M.
Let ‘TM be the dual bundle and let r: “T*M — M be the projection map.

At this point, it is convenient to recall that the b-tangent bundle of M is defined in
a completely analogous manner using Ce° (M; TM), (2.1), so that

tan

"T,M = C(M; TM)/ (9,(M) - C25(M; TM)) .

tan tan

Thus we have a map ev: *TM — TM.
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Now let A € x~" Diff ] (M; E, F). Since A is a differential operator in the interior
of M, it has a principal symbol there, given by the standard formula

a(A)E)(d(p) = lim 77" T PAE ) (p),

with f a real-valued smooth function such that df(p) = & and with ¢ a smooth
section of E. Suppose now that f is defined in a neighborhood of a point py € OM
and vanishes on 0M, so that df is conormal to M and therefore represents a local
section of ‘T*M. If, with local coordinates x, y1, . .., y,—1 and with respect to some
frame ¢, ..., ¢, of E and frame ¢, . . . , 1, of F near py, we have

A(YSW0,) =537 DT afa b DS D b,
I

Y ktla|<m

then, away from the boundary,

a(A)(df)(Zh“m) =x"Y N a6 9)(0, ) (D f) R
I

Y k+|al=m

where by 0, f we mean the gradient of f in the y variables. Since f = xg with smooth
g, this is equal to

SN a6 0)(0,9) (g +x0) W s

WV kt|al=m

which is smooth up to the boundary. Suppose that f is another smooth function
defined near p, and vanishing on the boundary, so that f = xg for some g. Then the
statement that df — d f € Jp, (M) - CZ (M; T*M) is equivalent to the statement that
g(po) = &(po) and 9y,g(po) = 0y,8(po) for j = 1,...,n — 1; (recall that p, € OM).
Thus if df and df represent the same element of “T, M, then

lim F(A)df(P)(@(p) = lim o(A)(df (p)(@(p))

for any smooth section ¢ of E defined near py. It follows that the function
‘TyM > n— ‘a(A)n) =oa(A)(‘ev(n)

extends by continuity to a function ‘T*M > 7 +— ‘o (A)(n), which is a section of
Hom(m*E, “n*F) over “T*M\O0. It is easy to see that ‘o (A) is smooth.

Definition 3.1 The section ‘o (A) is the c-symbol of A.

For example, with the notation above, taking ¢ = £ + ) 7jy; with £ and ~; real
constants and f = xg, we get

(AN e =D D af, (e, )y Er
ja

WV k+|al=m
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so if 7 is the element of “T*M represented by df, then the right-hand side of this
formula is Eo-(A)(n)(Zu h*¢,.).

By the definition, ‘a'(A)(n) = o (A)(“ev(n)), dn € “Tj,M. From the fact that ‘ev
is an isomorphism over the interior of M, invertibility of ‘a(A) over M is equivalent
to ellipticity of A in that set.

To relate the c-symbol of A and the b-symbol of x™A recall first that if P €
Diff}'(M; E, F), then ba(P)(Pev'n) = a(P)(n), n € T*M\0; here bey*: T*M —
YT*M is the dual of Yev: TM — TM. Thus, if n € YTM projects on an interior
point of M, then ’a(x"A)(7) = & (P)((Yev*)~'(7)), 7 € bT*M\O. The fact that
x™A is totally characteristic implies that 77 — & (P)((’ev*)~!(#)) extends by conti-
nuity to the boundary. Let n € “T*M project over an interior point. Then

‘o(A)n) = o(A)(‘ev(n) = x "o (x"A)(“ev(n))
=o(x"A)(x ! ev(n)) = ba(x"A)(Pev* (x ! ‘ev(n))).

Writing the map 7 — Yev*(x~! ‘ev(n)) in coordinates, one sees that it extends as
a smooth isomorphism x~!: ‘T*M — *T*M, so ‘a(A)(n) = o (x"A)x"'(n)).
In particular, invertibility of the c-symbol of A is equivalent to invertibility of the
b-symbol of x™A.

The isomorphism x~': ‘T*M — YT*M is determined by the defining function
X, so is not natural. Write x for its inverse. If % is another defining function for OM,
then x'x is multiplication by £/x; this is the reason for (3.1).

Definition 3.2  The operator A € x~ " Diff ;] (M; E, F) is called c-elliptic if

‘o(A) € C®°(“T*M\0; Hom(“7*E, 7*F))
is an isomorphism. If F = E, the family A — A — X is called c-elliptic with param-
eterinaset A C Cif‘o(A) — XA € C®((‘T*M x A)\0;End(( x id)*E)) is an
isomorphism. Here 7 x id: (‘T*M x A)\0 — M X A is the canonical map.

Let x; be the one-parameter group of diffeomorphisms generated by the vector
field xX; see Section 2. Fix t and let n € CS(M; T*M). Then x;n € CF(M; T*M),
since x; o ¢t = ¢. Since also x;Jy,(;) (M) = J,(M), we get a map

(3.2) X;: ‘TM — ‘TM,

a vector bundle morphism covering x_;. It is not hard to see that this map is smooth.
IfA € x " Diff; (M;E, F), let A, = g*’”nglAng. Then A, € x~" Diff ;' (M; E) and

(3.3) ‘a(A,) = 07"k, (Ca(A) 0 Xiog )y
Thus A, is c-elliptic if A is.

We now recall the definitions of conormal and wedge symbols, and of boundary
spectrum.
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If P € Diff}'(M;E) and if u is a smooth section of E that vanishes on Y = 9M,
then Pu also vanishes on Y. Therefore, if v is a section of E over Y and u is an
extension of v, then (Pu)|y does not depend on the extension. Thus, associated with
P there is a differential operator P(0): C*=(Y;E|y) — C*(Y;E|y) of order m. Fix
o € C. Since u — x'P(x'?u) is an operator in Diff}'(M; E), there is, for each
o € C, an operator P(o) € Diff™(Y; Ely). The conormal symbol of P is defined to be
the operator-valued polynomial

(3.4) C 3> o — P(0) € Diff™(Y; E|y).

It is easy to verify that P(c) is elliptic for every o if P is b-elliptic. The boundary
spectrum of P, (cf. [8]) is spec,(P) = {0 € C: P(0) is not invertible}.

The definition of P(¢') depends on the choice of defining function x but different
choices of defining functions give operators related by conjugation with multipli-
cation by /¢ for some smooth real-valued function g, so the particular choice of
defining function to define the conormal symbol is not critical. The conormal sym-
bol of A € x~™ Diff}'(M; E) is defined to be that of the totally characteristic operator
x™A, and the boundary spectrum of A is defined to be that of xA.

If A € x " Diff}] (M; E, F), then @, !A®, is a cone operator defined in V (2.7)
and if u € C§° (Y"; EM), then the limit in the following definition exists in

C(YNS FM).

Definition 3.3 The wedge symbol of A is the operator A, € x~ ™ Diff} (Y"; E, F)
defined by

(3.5) Apu = lirr(l) gmﬁy(@jA(I)*)ﬁy_lu.
g*}

Writing A as x~™P and expanding P as in (2.5) with N = 1, we get directly from the
definition of A5 that A\ = x~ P, o where Pp g is the operator on Y that coincides
with & 1P, ®, near Y and satisfies /{Q(P/\,o)/@g_l = Pp o forall p > 0. Near Y (in M),
with the notation and conventions of Section 2,

Po= > ar(y)Dj(xDy)"

|a|+k<m

near py where ay,(y) is independent of x. The operator P, is the “same” operator
(the pull-back by @), but on Y”, and so

An=x" " an(y)D Do)

|| +k<m

for all x. The conormal symbols of A and A, are equal to each other in coordinates;
they are the family

x " Z aka(y)akD;f, o e C.

|a|+k<m
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The wedge symbol A, of A inherits properties of A. Using the tubular neighbor-
hood map ® we also get a bundle isomorphism ‘T3 Y — T} M covering . It is
not hard to verify that, over Y" =Y = M we have ‘o (A, )|cryn = ‘o (A)
Thus c-ellipticity is preserved.

Let A* be the formal adjoint of A acting on x_m/zLi(M; E). Since @, and k, are
isometries (the former near Y),

‘TyM-

(gmng(@,:lACI)*)/{;lu,v)xfm/zLi = (u, g’”ng(CI);lA*(I)*)n;lv)xfm/zLi
if u,v € C3°(Y"; EM) and g is small. Thus, taking the limit as o — 0, we get

(3.6) (AN)" = (A")A.

Lemma 3.4  Suppose that A is symmetric on C{°(M;E). Then An is symmetric on
C°(Y; E). If in addition A is semibounded from below, then A is semibounded from
below by 0.

The first assertion follows immediately from (3.6) and the hypothesis that A* = A.
For the second, let C € R be such that

(At 1) —nppz > CH“”i*m/ngv u € C°(M;E).

Suppose that u € C3°(Y; E™). Then

(gmn;(@;lA(I)*)nQu, u)x_m/zLi = 0" (A®.k,u, @*ngu)x_m/zLi

> CQmH‘I)*’fg“||i—m/ng = CQm””Hi—m/zL;-

Passing to the limit as ¢ — 0, we thus get the second assertion of the lemma.

It also follows from (3.5) that the family A — A, — A satisfies the homogeneity
relation

(3.7) Apn — 0" A = 0"Ky(Ap — /\)/@;1 for every o > 0.

Definition 3.5 A family of operators A(\) acting on a k-invariant space of distri-
butions on Y” will be called r-homogeneous of degree v if A(¢™\) = 0"k, ANk,
for every p > 0.
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4 Closed Extensions

In this section we recall some known facts about the closed extensions of a c-elliptic
cone operator A on a compact manifold and, where needed, sketch proofs of anal-
ogous results for the closed extensions of its model operator A. Theorem 4.7 gives
a natural isomorphism between D .x(A)/Dinin(A) and Dyyax(AA)/Dmin(A) which
will play an important role in [3], but not in the remainder of the present paper. The
rest of the material in this section will be used at various points in all later sections.

Suppose that A € x~™ Diff;'(M; E). Fix u € R and consider A first as an un-
bounded operator

(4.1) A: C3°(M;E) C X'LE(M; E) — x"Lj(M; E).

Write D i (A) for the domain of the closure of this operator; with this domain, A
is referred to as the minimal extension of A. The structure of D,;,(A) when A is
c-elliptic was characterized in Gil-Mendoza [4, Proposition 3.6]. Define also

Dinax(A) = {u € XL (M; E) : Au € x"L;(M;E)}.

The maximal extension of A is A: Dimax(A) C x'LE(M;E) — xMLi(M;E), also a
closed operator. The space Dpin(A) is a closed subspace of Dyax(A) in the graph
norm defined by A, and all closed extensions of (4.1) have as domain a subspace of
Dmax(A) containing D in (A).

It is well known (see Lesch [5]) that if A is c-elliptic, then A with domain D ., (A)
is Fredholm, D ;,(A) has finite codimension in Dy, (A), and if D is a subspace of
Dmax(A) containing D pin(A), then

(4.2) indAp =indAp_ +dimD/Dyn.

Here Ap means the operator A: D C x*L}(M; E) — x"L}(M;E). The problem we
wish to consider is the nature of the spectrum and structure of the resolvent of the
closed extensions of (4.1) of index zero (if any).

Since multiplication by x” is an isomorphism (in fact an isometry)

X XL (M; E) — x"*L}(M; E),

min

we may conjugate A with such operators with no essential change in the problem.
For convenience we will work with the operator x~#~"/2Ax#*"/2 50 as to base all the
analysis on x’m/zLi(M; E). Clearly, x—#~"/2 Axt+m/2 ¢ x~™ Diff ' (M; E). Since

ca_(xf,ufm/ZAx;ﬁm/Z) _ CO_(A),

c-ellipticity is preserved by such conjugations. We thus assume that g = —m/2. The
standing assumption, unless otherwise indicated, will be that A is c-elliptic.

We will usually abbreviate Dyin(A) to Dmin and Diax(A) to Dmax when the oper-
ator is clear from the context. As already indicated, the operator A with domain D
will be denoted by Ap.

The inner product

(4.3) (u,v)a = (u, v)xfm/zLi + (Au,AV)x—m/Zli

on D, makes this space into a Hilbert space.
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Definition 4.1 The orthogonal complement of D, (A) in Dyax(A) with respect
to this inner product will be denoted €, (A), or Eax if A is clear from the context.
We denote by Tmax: Dmax(A) — Dmax(A) the orthogonal projection on € ,x(A).

Since Dpin 1s closed in Diaxs Dimax = Dmin D Emax and since Doy, has finite
codimension in D,y, Emayx 1 a finite-dimensional space.

Lemma 4.2  The space € . (A) is equal to D x(A) Nker(A*A + I), where the kernel
is computed in the space of extendable distributions.

Here A* is the formal adjoint of A in the space x~"/2L2(M; E), that is,
(Au,v) = (u,A*v) Vu,ve C(‘)X’(J\;I;E).

It is immediate from the definitions of minimal and maximal domains that the Hil-
bert space adjoint of

(4.4) A: Doin(A) € x "2L2(M; E) — x~ 2L} (M; E)

is
A*: Dpax(A*) € x™2L2(M; E) — x~™*L2(M; E).

Proof We first show that E0x C Dpax(A) Nker(A*A + I). If u € Enax then
u € Dpnax(A) and (Au,Av)xfm/zLi = —(u, v)xfm/zLi Vv € Dppin. Therefore the map

Dmin(A) 5 v — (AU,AV)x—m/zLIZ eC

is continuous in the norm of x~"/ 2L}(M;E), and consequently, Au belongs to the
domain of the Hilbert space adjoint of (4.4). Thus u € Dy,x(A*A) and the identity
(u,v)a = 0, v € Dmin(A) gives (A*Au,v) + (u,v) = 0Vv € C(‘)’O(M; E) which gives
that u € ker(A*A +I). Thus € pnax C Dmax(A) Nker(A*A +1).

To prove the opposite inclusion, suppose that u € Dy, (A) Nker(A*A +I). Then
Au € x_m/zLi(M;E) (since u € Dpax(A)) and A*(Au) = —u € x_m/zLi(M;E), )
Au € Dpax(A*). Thus (A*Au,v) = (Au,Av)Vv € CJ° (M;E), and it follows that
(u,v)a = 0forallv € CSO(M; E). Since the latter space is dense in Dy, we get that
u € Emax- [ |

In the course of the proof we also showed the following.

Lemma 4.3 E.,.x(A) C Dy (A*A).

Since A is c-elliptic, so are A* and A*A + I. It follows that the Mellin transform of
any u € Enax is a meromorphic function defined on all of C.

We now discuss analogous aspects for the operator A,. The space Dpin(An) is the
domain of the closure of

An: CE(YSE) € xPLA(YS E) — x~ 2L (Y E)
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and
Dimax(An) = {u € x ™2LHY"E) : Aju € x ™2LHY";E)}.

Since A, need not be Fredholm with either of these domains, we discuss these in
some detail. We will usually write D min and D s may for the minimal and maximal
domains of Ax.

Lemma 4.4 Ifu € Duyu(Ap), then (1 — w)u € Duin(AN) for every cut-off function
w withw = 1 near x = 0.

In other words, as far as closed extensions are concerned, there is no essential
structure at infinity.

Proof Let j: YA — Y’ be the involution (x,y) — (£,¥) = (1/x,y). Under
this map, Py = x™AA goes over to a certain other totally characteristic b-elliptic
operator Py, A, goes to Ay = &"P,, and j*: x"H) (Y, E) — £ VH,(Y";E) is
an isomorphism. We will write ¢ for j*u. Since Py is b-elliptic, there are properly
supported operators Q and R defined on extendable distributions such that for every
v the operators

Q:&'Ly(YSE) — &'H' (Y5 E),  R:€'Li(Y™SE) — &"H° (Y5 E)

are continuous and QPy = I — R. If u € Dpux(An), then 11 € §’”/2L127(YA;E) and
E"Pyit = f € €"PL2(Y/SE). From Q" f = Q& "¢ Poit = 1 — Ril, we get
i = Q¢ f + Ritwith Q¢~"f € € "2H(Y;E) and Rit € €"2H°(Y;E). If
w is as in the statement of the lemma, then (1 — W) is supported near £ = 0, so
(1 — w)Rit € E™2HM(Y"E). Thus (1 — )it € €"2L2(YNE) N E™2H" (Y E).
Let x € C§°(R) be such that x(£) = 1 near 0 and let x¢(§) = x(¢€). Define

Ve =(1—xo)(1 — ).

Then v, € £"2LA(Y/SE) N E™2HM(Y™SE) and v — (1 — @)t as £ — 00, in
EM2L2(Y™;E) as well as in E~"/2H;"(Y"; E). From the latter we get that Py con-
verges in £~"/2L2(Y";E) to Py(1 — w)it as £ — oo, and consequently, that A,
converges in £"/2L3(Y"; E) to Ax(1 — &)it. This proves that (1 — w)u € Dpin(An),
since the vy are compactly supported. ]

The structure of D min near Y is described in the first two items of the follow-
ing proposition, which can be proved using the same arguments as in the proof of
[4, Proposition 3.6]. The third follows from an analysis of Mellin transforms that
takes advantage of the fact that the conormal symbols of A, and A are the same. An
explicit, simple but fundamental isomorphism between the spaces DA max/D A min
and Dyax(A) /Dimin(A) is given in Theorem 4.7.

Proposition 4.5 Let A € x~ ™ Diff ] (M; E) be c-elliptic. Then
(1) ®A,min = {M S D/\,max twuE xm/275HZn(YA§E) Ve > 0}
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(i) Damin = x™2H" (Y ;E) N x~"2L2(Y; E) if and only if
spec,(A) N {So = —m/2} = @.
(iil) dim D max/DAmin = dim Dipax(A) /Dinin (A).
On D max we take, naturally,
(4.5) (u,v)a, = (A/\M,A/\V)xfm/zLi + (u, V)xfm/ZLi7
as inner product.

Definition 4.6  The orthogonal complement of DA min in DA max With respect to
this inner product will be denoted €ax(An), OF EA max if Ap is clear from the con-
text. We denote by ma max: Dmax(Ar) — Dmax(Ax) the orthogonal projection on
Emax(A/\)~

The proof of Lemma 4.2 gives that € max = DA max Nker(AXAA +1).

The following result, although elementary in nature, is of fundamental impor-
tance in expressing the relation between the domains of A and the domains of A,.
Let S= {0 € C: —m/2 < So < m/2}, and for each o € Slet N(o) be the largest
integer N such that S0 — N > —m/2. Letoj, j = 1,...,v be an enumeration of the
elements of ¥ = spec,(A) N S.

Theorem 4.7  Let A be an arbitrary c-elliptic cone differential operator. There are
canonical decompositions

(4.6) Emx(A) = P Es,(A),  Emml(An) = EP &, (AN),
j=1 j=1

such that

(i)  for sufficiently small e > 0, if u € €,,(A), then 0| {g5~_m/2—c) has poles at most
atoj —id ford =0,...,N(0j);

(i) ifu € &;,(Ap), then U] {So>—my2} has a pole at most at o j;

(iii) ifu € &;,(A) oru € &,,(Ap) and il is holomorphic at o, then u = 0.

There is a natural isomorphism

(4.7) 0 : Emax(A) = Emax(An)

such that for each j,

(4.8) | Eay) €q;(A) = E4(AN),

and for each j and for all u € &,,(A),

(4.9) (O, 'wu — Ou)y” s holomorphic near g,

where w € C§°(U; E) is such that w = 1 near Y.
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Proof ForanyopensetU C C,let M(U) be the space of meromorphic functions on
U with values in C*°(OM; E|gp). For oy € U, let M, (U) be the subspace of M(U)
consisting of elements with pole only at oy € U. Finally, let $(U) be the subspace
of holomorphic elements. We let s, : M,,(U) — M,,(C) be the map that sends an
element in M, (U) to its singular part at .

If A = x~"P with P € Diff}'(M;E), then near Y = OM = 9Y" we have

m—1
(4.10) xMA=DP= Z Pexk + P,
k=0

where each Py, k < m, has coefficients independent of x, ¢f. Definition 2.2. Then
x"Apn = ®'Py®, near Y in Y. Let P be the conormal symbol of Pi. The operator
Dy is the conormal symbol of both A and A .

Letog € 3,andlet U C Sbeaneighborhood of o such that UNspec,(A) = {0 }.
Then Py gives an operator P: M(U)/H(U) — M(U)/H(U) whose kernel is finite-
dimensional. Since oy is the only point of spec;(A) in U, the elements in the kernel of
P are represented by meromorphic functions on U with pole only at 0. By taking the
singular part of such functions we get a space égo (Ap) C M, (C) with the property
that h € M, (C) and Poh € HU) imply that there is a unique element ¢y € égu (AA)
such that h — ¢ € H(U):

(4.11) E50(An) = {50,(Po(0) ™" f(0) : f € HU)}.

Ify € égo (An), then there is u € x’”‘/zH{jO (M; E) supported in U such that
1 — 1 is holomorphic in So > —m/2. Such u belongs to x*m/zLi(M; E), and since
byt = Py(it — ) is holomorphic in So > —m/2, we get that D 'u € Dy (Ap).
If v € Dpax(An) also has the property that # — ¢ is holomorphic in So > —m/2,
then @, 'u — v € Dpyin(An), and consequently Ta max P '# = T maxv. Thus there is
a well defined operator Fu 4, : é,,o (Ar) — Emax(An), characterized by the property
that ¢ — [Fa 5] is holomorphic in So > —m/2. From this property one obtains
that s,,([Fr5,%]1") = 1, so the operator Fu ,, is an isomorphism onto its image.
Define

A

(4-12) 800 (A/\) = F/\.,frn 800 (A/\)

Clearly, if 0;, 0 € X and 0; # 0, then £,,(Ar) N &y, (An) = 0.

Ifu € Emax(An), then 4l is meromorphicin So > —m/2 with poles in ¥, since Pyii
is holomorphic in So > —m/2. Therefore s, (1) € €,,(A) and & — ZU]EZ so, (1)
is holomorphic in So > —m/2. Thus the Mellin transform of

v
V=u-— ZF/\,(TjSU}’(ﬁ)

j=1

is holomorphicin So > —m/2, and therefore v € D in(Ax). But v = 0, since v also
belongs to €max(An). Thus we have (4.6) for the operator A.
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We now construct the spaces £,,(A) for A. Picko € Y andlety € éao (Ap). Thus
Dy is entire. Define &5,,0 as the identity map on égo (AA) and inductively define

€0t €0y (AN) — My _i9(C), I =1,...,N(oyg)

by
91
€000 (V) = —Sg—iv (Po(0) ™! Z Py_(0)(&spe(p)(o +i(¥ — 1)) ).
(=0
Then
9
(4.13) Z Py_(0) (&5 e() (o +i(V — 1))
(=0

is entire, and
N(oo)

m—1
Z Pi(0) Z &oy.0(V) (0 + ik)
k=0 9=0

is holomorphic in So > —m/2. Define

N(oo)

(4.14) Ea({ Y o)1 € En(An)].

=0

Given ¢ € égo (AA), choose for each ¢ an element uy € x_m/zH;f<> (M; E) such that
by — &4, 9(1) is entire. Then u = > 1y € Dpax(A). If the vy € x_’"/sz><J (M; E) also
satisfy the condition that ¥y — &,, y(1)) is entire, then T (1) = Tmax(v), s0 again we
have a well-defined operator F,, : égn (AA) — Emax(A). This operator is injective; we
let €, (A) be its image. It is more tedious than difficult to verify that (4.6) holds.
Define 6 so that (4.8) holds, and on each £, ,(A), 0 = Fp,, o Fg_jl. Then (4.9) also
holds. [ |

Let D(A) = {D C Dmax(A) : D is a vector space and Dyin(A) C D}. The ele-
ments of D(A) are in one-to-one correspondence with the subspaces of €,,x(A) via
themap ® 3 D — DN Enax(A) = Tmax(D) C Emax(A), so D(A) can be viewed
as the union of the Grassmannian varieties of various dimensions associated with
Emax(A). Likewise let

DA = {D C DA max : Dis avector space and Dp min C D}.
With the map 6 of Theorem 4.7 we then get a map

(4.15) 0:D(A) — Dy
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5 Domains and Spectra

We discuss here the spectra and resolvents of the closed extensions of a cone operator
A € x~ ™ Diff;'(M; E) in geometric terms. We continue to assume that A is c-elliptic
and that M is compact. The results in this section will be relevant mostly in Sections
6 and 9. The conceptual point of view developed here will be taken up in Section 7
in the context of the model operator.

We begin with the elementary observation that only those extensions of A that
have index zero may have nonempty resolvent set.

Lemma 5.1 ThereisD € D such thatind Ap = 0 if and only ifindAp_,, < 0and
indAp,, > 0.

Proof 1If there is a domain D € D such that ind Ap = 0, then the relative index
formula (4.2) gives

indAp . <indAp

min — min

S il’ldA;D

+ dim D /Dyax = 0
+ dim Dmax/Dmin =indAp

min max *

Conversely, suppose that 0 < —indAp,, and indAp
we get d = indAp,, — indAp_,, so —indAp_, < d, and there is a subspace
of Dinax/Dmin of dimension — ind Ap_, . This subspace corresponds to an element
D € D for which (4.2) gives ind Ap = indAp,,, —indAp , = 0, which proves the
lemma. [ |

> 0. Using (4.2) again,

max —

min

The domains D € D on which A has index 0 are those in
& ={DeD:dimD/Dp, = —indAp__ }.

By the lemma, ® is empty unless

(5.1) indAp_ <0 and indAp_ > 0.
Assuming this, let d’/ = —ind Ap_, . Then
(52) 6G>D—DnN 8max = 7TmaxD € Grd”(gmax)

is a bijection between ® and the Grassmannian of d’’-dimensional subspaces of €
which we use to give ® the structure of a complex manifold. Let ' = ind Ap
Thend =d’ +d" = dim € ..

An initial classification of points in the spectrum of a closed extension of A begins
with the notion of background spectrum.

max *

Definition 5.2  The background spectrum of A is the set
bg-specA = {X € C: \ € specAp VD € D}.

The complement of this set, bg-res A, is the background resolvent set.
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Thus, if D € ®, then Ap has as spectrum the (disjoint) union of bg-spec A and a
subset of bg-res A. Note that the resolvent set res Ap of Ap, D € ®, is contained in
bg-res A. As we shall see, the part of the spectrum of Ap in bg-res A is amenable to
detailed study. The set bg-spec A has the same generic structure as a spectrum.

Lemma 5.3  The set bg-spec A is either C, or closed and discrete.

Indeed, bg-spec A is an intersection of closed sets, so itself closed, and either all
spectra are C or there is one extension with discrete spectrum. Thus bg-res A is open.
A useful description of bg-res A is as follows.

Lemma 5.4 bgresA={\ecC:Ap

— Nisinjective and Ap, — A is surjective}.

min max

Proof If A € bg-resA, let D € D be such that A ¢ specAp. Since D, C D,
Aqp,_, —Aisinjective, and since D C Doy, Ap,, — A s surjective. Thus A € bg-res A.

Conversely, suppose that A belongs to the set on the right in the statement of
the lemma. Let R C x~™/2L2(M;E) be the range of Ap_, — A, and let R be its
orthogonal complement. Since Ap_. — A is injective, dimRt = —ind Ap
d"'. Choose a basis fi, ..., fy» of Rt. Since Ap__ — ) is surjective, we may choose
up,...,ugr € Dy such that (A — Nu; = f; for all j. The u; are independent
modulo Dpyin. Let D = Dy b span{uy, ..., us+}. Then D € D and Ap — Ais
invertible, since R is closed. |

min

Proposition 5.5  Suppose that (5.1) holds and that dim ® > 0. Then for every A € C,
there is D € ® such that A € spec Ap.

Proof Let A € C. If A\ € bg-specA, then in fact A\ € specAp for any D € ©.
Suppose then that A ¢ bg-spec A, so by Lemma 5.4 there is Dy € ® such that Ap, — A
is invertible. The hypothesis that dim ® > 0 is equivalent to the statement that the
two numbers d’/ = —indAp,_, and d’ = ind Ap, are strictly positive; recall that
their sum is d, the dimension of Dyax/Dmin. Let w € Diax\Do. Such w exists
because d’’ < d. Let f = (A — M)w, and let v € D, be such that (A — \)v = f. Then
w — v # 0 modulo Dy, and thus is an eigenvector of A. Let D € ® contain w — v;
such D exists because d’’ > 0. Then Ap — ) has nontrivial kernel. [ |

We will write X, for the kernel of Ap
indAp,_,since Ap

. — A A € bg-res A. For such A, dim X, =
— A is surjective and its index is independent of \.

max

Proposition 5.6 Let X = | |\ ¢y e K and let p: X — bg-res A be the natural
map. Then X — bg-res A is a locally trivial Hermitian holomorphic vector bundle.

Proof Let Ay € bg-resA, let Kf\; be the orthogonal complement of K, in Dpax.
The operators

A = (A= Nlx,, and AN = (4 = Vs
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are continuous as operators into x—m/ 2Li(M; E) when the domains are given the
graph norm of A, and depend holomorphically on A. Since A,(\o) is invertible, the
inverse A,(\) ™! exists for A close to \. It is easy to verify that if uy € K),, then

u(N) = ug — A, (N) AT (Vg € Ky

for A close to A\g. These are, by definition, holomorphic local sections of K. The
statement that X — bg-spec A is a locally trivial holomorphic vector bundle follows
by taking local frames near A of the form u;(\) where the u; form a basis of X,,.
The Hermitian form in X is the one whose restriction to X, is the restriction of the
inner product of D, to K. [ |

Note that if u, v € K, then
(5.3) (4, v)a = (Au, Av) + (u,v) = (1 + [A\]*)(u, v).

Lemma 5.7 LetD € ®. The following are equivalent:

(i) A €E€resAp;
(i) A €bgresAandXND =0;
(iii) A € bg-res A and T Ky N TmaxD = 0.

Moreover, if A € res Ap, then
(54) :K/\ ®D = ®max and 7TmaxiK)\ D 7Tmax.D = gmax-

Proof To prove the equivalence of (i) and (ii), we recall first that res Ap C bg-res A.
A point A € C belongs to resAp if and only if ker(Ap — A\) = 0, because A is
Fredholm of index 0. But for A € bg-res A, ker(Ap — A) = K, ND. Thus (i) and (ii)
are equivalent.

Suppose that A € bg-res A. If 4 € T Ky N TmaxD, then u = ¢ — v with ¢ € K,
and v € Dyin. Thus ¢ = u+v € TaxD + Diin = D, and so ¢ € Ky N D. If
TmaxIKr N TmaxD 7 0, pick u # 0. Then ¢ # 0, so Ky N D # 0. Thus (ii) implies
(iii).

Again suppose that A € bg-res A. To prove that (iii) implies (ii) we will first show
that Tmax|ac, : K — Emax is injective. Let ¢ € K. If Tmaxp = 0, then ¢ € Dy But
A — \is injective on Dyyin, s0 ¢ = 0. Thus if KyND # 0, then mma Ky NTmaxD # 0.

To prove the last statement, we first observe that

dim X, + dim D /Dy = indAp,,, — indAp,,, = dim € qy.

max min

This gives, in view of (iii), that Tmax K\ B TmaxD = Emax. Adding Dpin to both sides
of this formula gives Ky + D = Dpay, but this sum is direct, in view of (ii). [ |

The lemma gives

(5.5) specAp = bg-spec AU {\ € bg-resA : K N D # 0}
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forany D € . Since Ky N D = 0 if and only if m;x Ky N TaxD = 0, the presence
of spectrum in bg-res A for a given extension A is a purely finite dimensional phe-
nomenon. We will exploit this in Section 9 to give estimates for the resolvent By ()
of Ap — A in terms of a canonical right inverse of Ap_ — A, a canonical left inverse
for Ap,, — A\ A € bg-res A, and a finite dimensional projection.

If A € bg-res A, more generally, if Ap__ — A is surjective, then Ap__ — A admits
a continuous right inverse By, (), namely, let fKAL C Dnax be the orthogonal com-
plement of X with respect to the inner product (4.3) (fKAL may not be, and does not
need to be, an element of ®). The operator (A — )\)|3<AL : Ky — x"2L2(MGE) is
continuous and bijective. Then the inverse By« (A) of (A — /\)|9<AL is continuous. For
each \ € bg-res A, the operator B, (A) has the smallest norm among all continuous
right inverses of Ap__ — .

max

The operators Bmax(A) can be obtained from any family
B! (\): x"2L2(M;E) — Dy

of continuous right inverses for Ap__ — A by means of the formula

max

(5.6) Binax(A) = Bpax(A) — ¢, Brrax (V)

in which g, : Dpax — K, is the orthogonal projection on X, (with respect to

(4.3)).
The Bpax(A), as operators x~/ 2L (M;E) — Dpay, depend continuously, even
smoothly, on A. To see this, let A\, Ay € bg-res A. Then

(A = X)Bmax(X0) = ((A = X0) + (Ao = X)) Bmax(Xo) = I + (Ag = A)Brax(Ao)-

Both Bpay(Ao): xfm/zLi (M; E) — Dax and the inclusion ¢: D pay <—>x"”/2Li(M; E)
are continuous, hence tBa(No) : x /212 (M; E) — x~™/2L3(M; E) is continuous.
So if A is close enough to Ay, then B/, .(\) = Bmax()\o)(l + (N — )\)LBmax()\o)) ! is
a right inverse for Ap_, — A depending smoothly on A. Since the 7y, , as operators
Dmax — Dmax- also depend smoothly on A, the correction (5.6) gives the smoothness
of A — Bpax(M).

The operators Bmax(A) can be used to construct the resolvent of Ap — A for any
D € ©, as follows. For each A € bg-res A such that K, N D = 0 let

T\, D+ Dmax - K/\

be the projection according to the decomposition (5.4); this is a continuous operator.
Noting that A € res A if and only if A € bg-res A and K, N'D = 0, define

(5.7) Bp(A) = Bmax(A) — T3¢, D Bmax(A)-
Then 75, pBp(A) = 0, so Bp(A\) maps into D. Since (A — Mg, o = 0, Bp(})

is a right inverse for Ap — A, which must also be the left inverse because Ap — X is
invertible.
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The canonical left inverse for Ap_, — A is constructed in an analogous manner.
Let R) be the range of Ap_, — A, A € bg-res A (more generally, one can let A belong
to the set where Ap_, — A is injective). Since A, — A is injective if A € bg-res A,
Ap . — X : Dpin — R, has a continuous left inverse B?nin()\). The orthogonal
complement Ri‘ has dimension —indAp_, . Let Byin(A) be the composition of
the orthogonal projection on R, followed by B%. ()\). Viewing Ry as the kernel
of A*= X on Dy (A*), we see that |_]/\Ebg_speCA iR/% is a smooth (anti-holomorphic)
vector bundle over bg-res A. An analysis similar to that done for B,,x(\) gives that
Bmin(A) depends smoothly on A € bg-res A.

If B/ . (X) is a left inverse for Ap_, — A\, A € bg-res A, and 7, is the orthogonal

projection on R, (in x~™/2L}(M; E)), then

min

(58) Bmin(A) = Bllnin()‘)Tr:Rm

and so

[[Bmin (M| 2222, D) < 1Binin M 2 e-m212 D -

Let D € ® and let Bp(\) be the resolvent of Ap — A. It is immediate that the
formula

(5.9) Bp(A) = Buin(A) + (I = Bmin(M)(A = X)) Bn(A)
holds. Replacing (5.7) in this formula we get
(5.10) Bp(A) = Bax(A) = (I = Bin(M(A = X)) ¢, D Bmax(A).
Letting min = I — Tmayx, We see that
(5.11) Tx,,D = T%K,, D (Tmax + Tmin) = TK,, D Tmax-
The operator I — Bpin(A)(A — A) is a projection with kernel Dy, s0
I = Bin(A)(A = A) = (I = Brin(A)(A = A)) Tmax-
Thus we arrive at
(512)  Bp(N) = Bmax(A) = (I = Bmin(A)(A = A)) Tmax 56, D Tmax Bmax (A)
a formula which will prove to be very useful.

Remark 5.8 The range of the projector I — Bpin(A)(A — A) contains Ky, so there is
no difference between (5.10) and (5.7). Writing Bp () in the form (5.12) separates
the geometric information in . To, D Tmax from analytic contributions.

We now focus on mMmax T, D Tmax> i particular its norm as a map €max — Emax-

Lemma5.9 LetD € ® and \ € bg-resA with K N D = 0. Then TmaxTx, D&
is the projection on Tm Ky according to the decomposition Emax = TmaxKx © TmaxD.
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Proof The map TmaTx, Dle,,, IS a projection. Indeed, in view of (5.11),

max
Tmax7T Ky, D TmaxTK )y, D |Emax = TmaxTK,,DTK,,D |Smx = TmaxTK,,D |8max-

The operator Tmax7x, Dle,,, has kernel containing mmaxD, since the latter space is
contained in D, and range contained in mm.xXy. To complete the proof we only need
to show that ker mmx7ac, Dle,.. = TmaxD. Suppose that u € Ker Tmamac, ole,...-
Then ¢ = my, pu € K has the property that M. = 0. Thus ¢ € Dyyin. But since
A — Mis injective on Dy (since A € bg-resA), ¢ = 0. That is, u € ker 7, ». Since
u is already in €,y this gives u € D N Epax. But the latter space is mmaxD. [ |

In the course of the proof of Lemma 5.7 we showed that if A € bg-res A, then
Tmax|9c, @ Ka — Emax is injective. Thus, since the spaces K have dimension d’ =
indAqp, , we have a map bg-resA 3 A — Ty Ky € Grar(Emax). Write Koy for
this map, $0 Kpmax(A) = Tmax K. If Ao € bg-res A, let ¢4, . .., ¢4 be a holomorphic
frame of X, cf. Proposition 5.6, near A\g. Thus, in addition to independence, the maps
A = ¢;()) are holomorphic for A near Ag. If uy, ..., u4 is an orthonormal basis of
€ max> then K44 (A) is spanned by the vectors

Tmaxi(A) = Y (9 (V) w ),
k

which depend holomorphically on A\. Thus K.y : bg-resA — Grgs(Emax) is holo-
morphic.

If D € ©®, then Lemma 5.7 asserts that A € bg-resA N spec Ap if and only if
Tmax K N TmaxD 7# 0. Writing W = oD, let

By = {V € Grg (Emax) : VNW £ 0}
Then A € bg-resA Nspec Ap < Kpnax(A) € Byy.

Definition 5.10  For any nonnegative integer dy < d and W € Gry, (Emax) let
Byw ={V € Gry_g,(Emax) : VAW £ 0} If D € D, we write Bp for B, .

Thus, spec Ap is the union of bg-spec A and the pre-image of B under the map
gcmax-

Proposition 5.11 The set By C Grg: (Emax) is a variety of (complex) codimension 1.
For each D € ®, spec Ap = bg-spec AU KL (Bp). This is a disjoint union.

Proof We already showed the second statement. To prove the first statement, fix
an ordered basis u = [uy, ..., uy] for Epax. Pick some point Vo € Gry/(Emax) and
let ® = [¢1, ..., 4] be a holomorphic local section defined near V of the bundle
of ordered bases of the canonical bundle over Gry/(€p.c). Thus (V) = u - Z(V)
for some matrix Z(V) € M%*?'(C) depending holomorphically on V. Let ¥ =
[¥1,...,%4 ] beabasisof W,so W =u-W with W € M9%4"(C). Then

£V) = det[Z(V)|W]
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is holomorphic in V. Since [®(V), ¥] fails to be a basis of €, if and only if V N
W #£ 0, (V) vanishes if and only if V N'W # 0. Thus By is a complex variety of
codimension 1. [ |

The norm of the factor mpax T, D Tmax in (5.12), defined for A € bg-res A\ spec A,
can be estimated in quite simple terms. Using Lemma 5.9, the problem is generally
to estimate, for any W € Grg, (Emax) and V € Gry— g4, (Emax) \Bw, the norm of the
projection

(513) T™VW * Emax - Emax

on 'V according to the decomposition &€, = V & W. We assume that the integer d,
satisfies 0 < dy < d.

Let then W € Gry (Emax). Fix ordered orthonormal bases u = [uy,. .., uy] for
Emax and ¥ = [¢y, ..., 4] for W. Let V € Gry_4,(Emax) With ® = [y, ..., Pa_4,]
an ordered orthonormal basis of V. There are unique matrices V€ M*@=d)((C),
W € M¥*%(C) such that ® = u-V and ¥ = u- W. Define 6(V, W) = | det[V|W]].
The columns of V, likewise the columns of W, form an orthonormal set of vectors
in C¢. We claim that 6(V,' W) is independent of the choices of orthonormal bases
® and W. Indeed, if ®’ and W' are other choices of ordered orthonormal bases of,
respectively, V and W, then @' = & - U;, ¥/ = ¥ - U, with unitary matrices U; and
U,. Thus ® =u- VU, and ¥’ = u- WU,. But

VU, WU,] = [VIW] [0 Uz]

so | det[VU,|WU,]| = | det[V|W]detU, detU,| = |det[V|W]]| since unitary ma-
trices have determinant of modulus 1. Thus we get a globally defined function

d: Grd—do(gmax) X Grdo(emax) — R.

This function is clearly continuous, and By is the set of zeros of V — §(V,'W).
Suppose V ¢ By and let Ty 1w : Emax — V be the projection (5.13) on V. The basis
u can be written in terms of the basis [®, ¥] asu = [P, ¥]- Q, where Q is the inverse
of P = [V|W]. Let P be the matrix of minors of P, so that Q = (detP)"'P. The
entries of P are polynomials of degree d — 1 in the entries of P. Since the columns of
the latter matrix are vectors in the unit sphere in € the entries p;, of P are bounded
by a constant independent of P. If u = > a‘uy € € pax, then the two terms in

d—dy

[detpz;qbkzﬁ?“é} [dtp2wk2~k+d * }

correspond to the decomposition E,,x = V & W. Thus

d—dy

YW= o tpz;‘bkzp

This gives the following result.
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Lemma5.12 Let'W € Gry,(Emax) and let V € Gra_4,(Emax) \Bw. Then

C
< —.
Imvawll < oV, W)

The constant C is independent of V.

The question arises as to whether there is D € ® such that spec Ap is discrete.
The following proposition shows that if there is one such domain, then the set of such
domains is open and connected, and its complement is a set with empty interior.

Proposition 5.13 Theset B = {D € ® : specAp = C} is a variety. Thus, since ®
is connected, B # © if and only if B has empty interior.

Proof We identify ® with Grg//(Emax) using the map (5.2). Let v — Grygr/ (Emayx)
be the canonical vector bundle. This is a holomorphic vector bundle. Let Dy € &
andlet uy, ..., ugs be a holomorphic frame for v in a neighborhood U of Dy. Thus,
ifu, ..., uis abasis of &pay, then

d
wi(D) =Y gDy, j=1,....d",
(=1

with holomorphic functions gf: U — C. Anyu € D € U can be written uniquely as

d//
u=v+ Zajuj(D)

=1
with v € Dyn. For D € U, define F(D): Dy — D by

d// d//
F(D)(v+ Zajuj('Do)) = v+ Zafu,-(:D), v € Dunin.
j=1 i=1

This operator is bijective, and continuous in the graph norm of A. The operators
A(D,\) = (A— )\ o F(D): Dy — x "L} (M;E) depend holomorphically on
(D,A) € U x C, and the invertibility of Ap — A is equivalent to the invertibility
of A(D, \).

If Dy ¢ B, then there is Ay ¢ spec Ap,, and therefore, there is a neighborhood
U’ C U of Dy and € > 0 such that A(D, \) is invertible for (D, \) € U’ x B(\, €),
where B(\g, €) is the open disc in C with center Ay and radius €. Thus U’ is disjoint
from B, which proves that B is closed.

Suppose that \g € spec Ap,, let K = ker(Ap, — Ag), and let K= be the orthogonal
complement of K in Dy. Let R = (A—Xo)(Dy), let R+ be the orthogonal complement
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in x"”/zLi(M; E) of R, and let g and 71 be the respective orthogonal projections.

Define
Ay = e A(D, Nk, Ay = e A(D, N ge,
A21 = 7TRA(®, )\)‘]@ A22 = 7TRA(®7 )\)|Ki7
so that N
K R
A(D, ) = {‘2“ 1‘:12} LD —d
21 Ax KL R

The operators A;; are continuous as operators into their target spaces as subspaces
of x~™/2[2(M; E) when their domains are given the graph norm of A, and they de-
pend holomorphically on (D, \) for D € U and A close to Ag. Since A (Dy, Ao)
is invertible, we can, perhaps after shrinking U, find € > 0 such that A, (D, \) is
invertible if D € U x B(Ag,e). If (D, A) € U x B(\, €), the elements of the ker-
nel of Ap — X are in one-to-one correspondence with the elements in the kernel of
A=A — ApAL' Ay : K — R via the map

kerA>u— u— A2_21A21u € kerA(D,\) 2 kerAp — .

Since Ap has index 0, K and R+ have the same dimension. Picking bases of K and
R+ we can define a determinant f(D, \) for A. Since A depends holomorphically
on (D, \), so does f(D, A). The set {(D,\) € U x B(Ag, ) : f(D,A) = 0} is the
intersection of specA = {(D,A) € & x C: X € specAp} with U x B(\g, ) (thus
spec A is a variety). Write f as

FD,N) =Y il DI = A5
(=0

the functions f; are holomorphicin U. If D € U N B, then f(D,A) = 0 for all
A € B(Xo,¢€), s0 fy(D) = 0. And if this condition holds for D, then f(D,\) = 0.
So B N U is the set of common zeros of the functions f;: U — C, and ¥ is a variety.

|

The following gives examples where B is not empty.
Example5.14 Let A = ¢ "D, on the interval [—1,1], with p € C, p # 0. This
is a cone operator A = (1 — x?)~'e™'"*(1 — x*)D,, and (1 — x?) vanishes simply at
x = #£1. We consider this operator initially as an unbounded operator
CE(—1,1) € (1 =) 7V2L(=1,1) = (1 — ) "V2L2(~1,1)
with the measure m = (1—x?)~'dx. The space (1—x?)~'/2L2(—1,1) isjust L>(—1, 1)

with the measure dx, so the domains of the minimal and maximal extensions are,
respectively, the standard Sobolev spaces Hi[—1,1] and H'(—1, 1). Since H'(—1, 1)
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consists of continuous functions on [—1, 1], the elements in D, can be evaluated
atx = —1 and at x = 1. The Mellin transforms at either boundary of elements of
(1 — x)712L2(—1, 1) are holomorphic in I > 1/2, of course. To compute the
conormal symbol of P = e~ "**(1 — x*)D, at x = —1,let xp = 1 + x. Then

P=(2- xL)e_’vp("L_l)xLDxL = Ze_"p(’“_l)xLD,CL - xLe_i”(xL_l)xLDxL,

so the conormal symbol of P at x = —1 with respect to x; is 20¢€”, giving a simple
pole at o = 0 for the inverse of the conormal symbol. If 4 € Dy, its valueatx = —1
is essentially the residue at ¢ = 0 of the Mellin transform of u. Using xg = 1 — x as
defining function for {x = 1}, we get

P=—-(2- xR)e*"”(l7’”‘)xRDxR = —Zef’lp(lfx’*)xRDxR + xRefi”(lfx")xRDxR,

and the conormal symbol at that boundary is —20e~". Since the only point in
spec, (P) is 0, we deduce that Dy = (1 — x*)/2H} and that

Dinin = {1 € Dinax : u(—1) = u(1) = 0}.

The operator A with the minimal domain is injective. The formal adjoint of A is
A* = €7*(D, + p), and the Hilbert space adjoint of Ap_. is A* with its maximal
domain, D* . The latter contains the function e~"”*, which spans the kernel of A*,

max*
so the index of Ap_, is —1. This also gives that the index of Ap__ is +1.

The domains on which A has index 0 are of the form
Do . = {1t € Doy : a_u(—1) + a;u(l) = 0}
with (a_, ;) € C*\0. If z # 0, then (za_, za;) determines the same domain as

(a_, o), so ®, the manifold of domains where A has index 0, is CP' = S2.
Fix some (a_, ;) € C*\0. The kernel of (A — \) on Dy is spanned by

hy(x) = "/,
The condition that by € D,_ 4, is
a_e Py aw”iﬂ/p =0,

equivalently

N i —ip
a + NI = o g N =,

Thus, if p € 7Z (p # 0), then a_ + a; = 0 implies specAp, = C, while
a_ + oy # 0 implies spec Ap = @. And if p ¢ 7Z, then for any (a4, a_) €
C\0, the spectrum of Ap, . is discrete, and empty if either v or vy = 0.

oo
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6 Selfadjointness

We now discuss the important case where A is symmetric on Dy, from the per-
spective of Section 5. The selfadjoint extensions of such operators were studied by
Lesch [5]. Suppose A is such a c-elliptic symmetric operator. Since

A = Nu|| > [SA|||lu||  if u € Duin,

Aqp . — A s injective when A # 0. Since A is Fredholm and the Hilbert space
adjoint of Ap_, is A with domain Doy, Ap,,, — A is surjective if IA # 0. Since
the operators Ap,, — A are Fredholm and depend continuously on A, the indices at
A =iand A = —i are equal. So the deficiency indices are the same, and A admits
selfadjoint extensions. If Ap is one such extension, then specAp C R, therefore
bg-spec A is a discrete subset of R.

The Dirichlet form of a general cone operator A is the sesquilinear form

max

(6.1) [, v]a = (Au,v) — (u,A™v), 1 € Dmax(A), v € Dimax(A").

It has the property that
[ua V]A = [ﬂ-maxuv 71-maxV]A;

because [Tmax¥, TminV]la = [Tmint, Tmin¥]a = O for any u and v. Moreover, the
induced sesquilinear pairing

(6.2) Emax(A) X Emax(A*) — Cis nonsingular

(cf. [4, Theorems 7.11, 7.17]). If D € D(A), let JD € D(A*) be the annihilator of
D with respect to the pairing (6.1). Thus if D € D, then the Hilbert space adjoint
of Ap is Aj. We will prove in a moment that the mapping J: D(A) — D(A") is
real-analytic. Let J*: D(A*) — D(A) be the analogously defined map. Clearly J*J
is the identity. If A is symmetric on Dy, and D € ®, then J: ® — ®, J* = 7, and
Aqp is selfadjoint if and only if D is a fixed point of J. Such domains will be called
selfadjoint.

Lemma 6.1 Let A be an arbitrary c-elliptic cone operator.

(1) Ifu € Emax(A), then Au € Enax(A*). The map Emax(A) D u — Au € Epax(A¥)
is an isometry.

(ii) Ifu € Emax(A) and v € D (A*), then (Au, v)ax = [u,v]a.

(iii) Let D € D(A). Ifu € D N Emax(A), then Au is orthogonal to D with respect to
the inner product defined by A*.

Proof To prove the first assertion in (i), suppose # € Epax(A), 50 At € D (A*).
In addition, A*Au = —u, so AA*(Au) = —Au, thatis, Au € Eax(A*). Ifu, v €
Emax(A), then

(Au, Av)a« = (A*Au, A*Av) + (Au, Av) = (u,v) + (Au, Av) = (u,v)4.
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For part (ii), suppose u and v are as indicated. Then
(Au,v)ar = (A"Au, A™v) + (Au,v) = (—u, A™v) + (Au,v) = [u,v]a.

For part (iii) we observe thatif u € D and v € JD, then [u, v]4 = 0, and use part (ii).
|

Proposition 6.2 The mapping J: D(A) — D(A*) is real-analytic.

Proof Let Dy € D(A)g, and let ¢y, ..., ¢4 be an A-orthonormal basis of €. (A)
whose first d, elements form a basis of Dy N Emax(A). Let ; = Agj, j = 1,...,d.
The 1); form an orthonormal basis of €. (A*), by part (i) of Lemma 6.1. Therefore,
by part (ii) of the same lemma,

(6.3) (¢j, ¥rla = djk-

We deduce that Dy = span{tgy+1, - - -, Ya} B Dmin(A*). Write ) = [¢1, ..., Pa,]>
®, = (@441, - - -, Pal, and analogously ¥, B,. The set

{span(®, + B, - Z) : Z € MI=d)xd ()Y
is a neighborhood of D in (a component of) D(A), and the map
Z — span(®, + B, - Z)

is the inverse of a holomorphic chart. Likewise, parametrize the (d — d,)-dimensional
subspaces of € (A*) in a neighborhood of gDy by W — span(¥, + ¥, - W) with
W € M%x(d=d)(C), The condition that the vector space spanned by

do
Uiy + D Wi, k=1,...,d—dy

j=1
is [ -, - ]a-orthogonal to

d—dy

$i+ > Zhdraa, j=1,....do

k=1

is Zf + Wi = 0 because of (6.3). Thus, in coordinates, J maps the space determined
by Z to the space determined by W = —Z*. We conclude that J is real-analytic. H

Since J is real-analytic, its set of fixed points is a real-analytic variety.
Proposition 6.3 Let A be symmetric on Dpin. The set SU of domains D € ® such

that Aq is selfadjoint is a real-analytic (smooth) submanifold of ® of codimension (d')?,
d/ = indAfD

max *
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Proof IfindAp,, = 0, thenalso indAp,_, = 0, Dmin = Dmax and Ap_ is the
only selfadjoint extension of A. Assume then that ind Ap_ > 0 and pick a self-
adjoint domain Dy. Let ¢,..., ¢4 be an orthonormal basis of Dy N Eay. Then
(¢, #xla = 0. By part (i) of Lemma 6.1, (Ap;,Adr)s = 6jr. Thus by part (ii),
[¢j,Ad]la = (Adj,Adr)a = dj. Also by part (i), [Aj, Adrla = —(¢j, Adj)a,
which vanishes by part (iii). As above, write ®; = [¢1,...,¢s] and let &, =
[Ady, ..., Adar]. So a neighborhood U C ® of Dy is parametrized by the vector
spaces associated with the bases ®; + ®, - Z, Z € gl(C, d’). Writing the components
of®, + P, - Zas

max min

d’

Gi+ Y ZHA¢, j=1,....d
k=1

- o . T . .
we see that the selfadjoint domains in U are those that satisfy Z,i -7 i = 0, i.e., Zis
a selfadjoint matrix. These equations represent (d’)? real-analytic conditions. ]

Proposition 6.4  Let A be symmetric on Dy and assume that —ind Ap . > 0. For
any X € R thereis D € SU such that \ € spec Ap.

Proof If A belongs to bg-spec A, then A already belongs to the spectrum of any ex-
tension, selfadjoint or not, of A. Suppose A € bg-res A. If u, v € K, ¢f. Proposition
5.6, then [u, v]4 = 2i(A\)(u, v), so if A is real, then the Dirichlet form of A vanishes
on Xy. Since dim K, = indAp_ = —ind Ap,, , and since mmay is injective on Ky,

(6.4) D)\ = fK)\ + Dmin

is an element of ® on which the Dirichlet form vanishes. Thus Aq is selfadjoint, and
A € specAp. [ ]

Note that there is no assumption on semiboundedness of A.
Proposition 6.5 Let A be symmetric on D ;. Then

(6.5) bg-specA = [\ specAn.
DU

Proof IfindAp . = 0,then ® = {Dyyn} and bg-spec A = spec Ap
is already selfadjoint, (6.5) is an identity.

Suppose then that —ind Ap_,, > 0. Denote the set on the right in (6.5) by S.
From the definition of bg-spec A we get bg-spec A C S.

To prove the opposite inclusion suppose that Ay € bg-res A. If )y # 0, then Ay ¢
S,since S C R. If A\g € RNbg-res A, consider Ao, , where D) isasin (6.4). From the
proof of Proposition 6.4 we know that Ap, is selfadjoint. Since Ap, is Fredholm
and specAp, # €, this spectrum is discrete. Since Ky, C Dy, Ao € specAp, .
We can therefore find a neighborhood U C bg-resA of )y with the property that
U NspecAp, = {Ao}. We claim that if A € U\{Ao}, then Ay ¢ specAp,. To
see this, let A € U and assume that Ay € specAp,. Then K, N D, # 0. Thus

Since Ap

min * min
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there are ¢ € K, with ¢ # 0, and ¢y € K, v € Dpin such that ¢ = ¢ +v. The
element ¢ — v € D,, is equal to 9, so Dy, N K, # 0. Necessarily 1p # 0, since
Tmax® = Tmax® and ¢ # 0. Thus A € U N specAp, , which implies A = A\g. It
follows that if A € U N R\, then D)y € SWA and Ay ¢ specAp,, hence Ay ¢ S.
Therefore S C bg-spec A. ]

7 The Model Operator

In this section we focus on the spectra of closed extensions of the operator Ax,
¢f. (3.5). We continue to assume that the operator A € x~™ Diff ;' (M; E) is c-elliptic.
We will usually write Dz min for Dpin(An) and DA max for Dinax(Ax). Recall that the
inner product on D max is given by (4.5). The nature of DA i, was described in
Proposition 4.5. We also noted there that D max/D A min is finite dimensional. Be-
cause of the finite dimensionality of this quotient, many of the results concerning the
closed extensions of A find their analogue in the situation at hand, despite the fact
that neither of the operators

An: Dpmin C X "PLAY"E) — x "2LHY" E)

nor
An: Dpmax C X "2L2(YNE) — x ™22 (Y E)

needs to be Fredholm. On the other hand, the homogeneity property
(7.1) Ap =X =0"ky(Ax — A/ @™k, forevery o > 0

of Ax — A\ A € G, ¢f. (3.7), not available in such simple form in the case of A, permits
an essentially complete understanding of the spectra and resolvents for the closed
extensions of Ax.

We begin our analysis with the following.

Definition 7.1  The background spectrum of A, is the set
bg-specAy = {A € C: A € specAp pVD € D}

The complement of this set, bg-res A 1, is the background resolvent set.

The analogue

bg-resAp = {A € C: Ap p,, — Aisinjective and A p,, — A is surjective}

min max

of Lemma 5.4 holds for A, in place of A, with the same proof.

Lemma 7.2 If\ € bg-resAp and D € D,, then A\ p — X is Fredholm. The set
bg-res A is a union of open sectors.
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Proof Let A € bg-resAx. Since DA max/ DA min is finite dimensional and A, — A is

injective on DA min, Ax,D,,. — A has finite dimensional kernel. Thus A o, — Ais

Fredholm, and so is its restriction to any subspace of D 5 may of finite codimension.
Next, suppose that Ay € bg-res A, and let A = ¢ ). Since &, is invertible and

Ap =X = 0"kK,(Ap — )\o)l‘i;ly

A — ) is injective on DA min and surjective on D max. Thus the ray {rAo : >0}
is contained in bg-resAn. Since Ay € bg-resAn, Ax — Ao admits a continuous
left inverse B(\o): x*m/2L,2,(YA;E) — Dpmin- Since the inclusion Dy min —
x~™2[2(Y";E) is continuous, the formula B(A))(Ax — A) = I+ (Ao — A)B(X\)
gives that (Ax min — A) admits a left inverse if A is close to Ag. Likewise (Ap max — A)
admits a right inverse if A is close to Ag. So bg-res A, is open. Therefore its connected
components are open sectors. |

Label the connected components of bg-resAx by A,, @ € I € N. Since the
inclusion map D — x~"/2L2(Y"; E) is continuous for any D € D,

A, 2 A= ind(Arp — \)

is constant, and ind(Ax » — A) = ind(Ax p
Let

—A)+dimD/D min, A € bg-resAn.

min

d =ind(Arp,, —A), d/=—ind(Arp, —N), A€k,

max min

and let
Oprag ={D €D :dimD/Dpmin =4d.}, a€l.

The elements of ®  ,, are thus the domains D for which Ay p — A has index 0 when
A€ A,. Write & Amax for the orthogonal complement of DA min i DA max. Using
that

DA 3D = DNEA max

is a bijection onto the set of finite dimensional subspaces of € A max, We give each of
the ® , the structure of a complex manifold.

The proofs of the following lemma and proposition parallel the arguments in the
proofs of Propositions 5.5 and 5.13, respectively.

Lemma 7.3 For every a € J such that dim ®, , > 0 and every A € A, there is
Dy € Op, such that X € specAp p,.

Proposition 7.4  Foreverya € 3, theset B, = {D € G, : A, c specAxp}isa
variety.

If D € Dy, then k,D is again an element of D5. Indeed, Do min C K,D C
D A max since both D s min and D max are k-invariant. Define

Ky D/\ — D/\, E‘Q(‘D) = HQD.
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Since Ky DA min = DA min> TAmaxKe = TAmaxKoTA,max> and therefore the map
(72) R > 5 = 71—/\,max"$e§‘ 8/\max: 8/\,max - 8/\,max

is a (continuous) one-parameter group of isomorphisms of € 5 max, necessarily given
by exponentiation of its infinitesimal generator. So (7.2) extends to a holomorphic
action of C on €A .. We will use the notation £,(V) for ma maxk,(V) when V C
&€ A, max 18 a subspace.

Proposition 7.5 Let dy < d = dim € s max be a nonnegative integer. The map
R x Grdn(‘g/\,max) = (ga V) = Keﬁv € Grdo(g/\,max)

extends to a holomorphic map Keyp: € X Grg,(Ep max) — Gra,(E A max) With the prop-
erty that Kexp (+¢', V) = Kexp(C Kexp(¢', V) forall ¢, (' € CandV € Grg, (E A max)-
In particular, for each V € Grg,(E A max)> the curve R 3 & — kxsV € Grg, (EA max) S
real-analytic, and the infinitesimal generator of the group action Keyp is the real part of
a holomorphic vector field.

Proof The proof is an elementary argument on Grassmannian varieties. Let V, €
Grg, (€A max) and pick a basis @ = [¢y, ..., ¢4] of EA max Whose first dy elements
form a basis of Vo. Then ma maxke| e .. SeNds the basis ® to the basis ®-k(¢) whose
j-th component is ZZ:1 qﬁkn];((); the matrix k({) = [H’;(C)] depends holomorphi-
callyon ¢. Let &, = [¢1,...,Pa], ®2 = [Bays1,-- -, Pal. f Z € MU—W)Xd(C) is
a (d — dy) x dyp matrix with complex entries, then ®, - Z is defined, the entries of
P, + ®, - Z are independent, and V(Z) = span(®; + ®, - Z) C € max defines an
element of the Grassmannian Grg, (€A max). For a fixed basis ® the collection of ele-
ments V(Z) is a neighborhood U of Vy and Z — V(Z) is the inverse of a holomorphic
chart of Grg, (€ A max). Write the d x d matrix £(¢) in block form,

_[®© w0
"(O[nm n%(@)]’

with k1(¢) € M%*4(C). With this notation, A maxke | €, Maps the components
of ®; + P, - Z to the components of ®; - (k}(C) + k1(()Z) + B, - (K1(C) + K3(O)2).
If Z belongs to a bounded set in M(@~4)*4((C), then for ¢ small enough the matrix
k1(¢) + k1()Z is invertible, since £(0) = I, and we get from

(@1 +®, - (K1(Q) +R3OZ) (K1(Q +RYOZ) '} - (KO +RYOZ)
that x,c maps the point in U of coordinates Z to the point in U of coordinates

(£1(Q) + K3(0)Z) (K1(C) + K3(()Z) 7! The latter is a holomorphic function of
(and Z. [ |
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If D € Dp, then D = mp maxD ® DA min. Therefore
KeD = (A maxke TAmax D) © DA min
for real {. For ( € C, define kD = (TA maxFec TA,maxD) © DA min. The

Kes: Grdn(g/\,max) - Grdn(‘g/\,max)

with £ € R form a one-parameter group of biholomorphisms. Let T, be the in-
finitesimal generator. The points where T, vanishes are the fixed points of k.. The
vector field T, is the real part of a holomorphic vector field T} (a holomorphic sec-
tion of T"°D ). Since T vanishes at a point if and only if T} vanishes at that point,
we have that the set of fixed points of k¢ in each Gry, (€ A max) is an analytic variety.

Corollary 7.6  The set of k-invariant domains in D, is an analytic variety.

Thus the set of k-invariant domains is a small set.
Remark 7.7 By [4, Lemma 5. 12], a subspace of € o max 18 k-invariant if and only if
it is a direct sum of subspaces &; C &,,(Ax), each of which is itself r-invariant. The

set of ri-invariant subspaces of £,,(A) of a given dimension needs not be a discrete
subset of the corresponding Grassmannian.

Again asin Section 5, let K5 y = ker(Ax p,, —A), for X € bg-res A,. The proof of
Proposition 5.6 gives that the K  are the fibers of a Hermitian holomorphic vector
bundle

(7.3) Ka — bg-resAx

/

", which may change with a.

over bg-res Ax; the rank of X |5 is the number d

Lemma 7.8 Let A € bg-resAx. The map r, sends K  to Kp gny, and so gives a
vector bundle morphism I, — K.

Proof Writing (7.1) in the form
(7.4) Ay — A= g_mﬁ;;l(A/\ — 0" Ak, foreveryp >0,

and letting each member of this identity act on ¢ € K, », we see that K,0 € K gmy.
|

Lemma 5.7 has a word-by-word translation to the situation at hand, and if D €

® A o, then

(7.5) A€resAyp NA, <= KaND=0.
For such A,

(7.6) Kar®D = DA max.
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Let :K/\,max()\) = 7T/\,maxg<:/\,)\- Then Aa SA— :K/\,max(/\) € Grd(j(g/\,max) is holo-
morphic.

Suppose that \g € A, and let T = {r\, : r > 0} be the ray through \,. In
view of Lemma 7.8, the set specAx » N I' will not contain points A with || large
if and only if kK,K A, N D = 0 for p large. With the notation introduced in Defi-
nition 5.10 (of course, with €.« replaced by €A max), this will happen if and only if
KoK A max(Xo) & B, o forlarge o. Since B, » C Grar (€A max) is of complex
codimension 1 and ¢ — K,Kx max(Ao) is a real curve, these curves generically do
not intersect B, 5. However, it can happen that £,K A max(Ao) € B o forall
o, for instance if K A ND contains a nontrivial k-invariant subspace. It can also
happen that K,K\ max(Ao) € B, . o infinitely often. For example, suppose that
€ A max 1s two-dimensional and that the infinitesimal generator of the action &, has
two distinct eigenvalues ioy and io, with So; = So,. Let uy, u, be eigenvectors for
these eigenvalues. If aju; + ayu, is a basis element for ma maxD and Ka max(Ao) is
spanned by the same vector, then K,K A max(Ao) is spanned by @10 Uy + a0y,
and K,K A max(Ao) N T maxD 7# 0 whenever o = 2™k R —Ro1) with k € 7.

We will show that the spaces K, A € A,,, can be obtained directly from a single
space K x> Ao € A, via the action of k and B min(A), the left inverse of Ay, — A
with kernel equal to the orthogonal complement of Rx y = rg(Ax »,,, — A). The
family B min(A) depends smoothly on A € bg-res A, (see §5).

Fix some sector A,, and for the sake of simplicity let Ay € A, lie in the axis of
symmetry I, of A,. So A, = {A\ : |arg(M\/Ao)| < 0,}, where arg is the principal
branch of the argument function on C\R_. Let log be the principal branch of the
logarithm on the same set. Then Pax(A)P = A maxFostv/ao)/m T max @ is well defined
for ¢ € K, and is holomorphicin A for A ¢ —T',. Thus we have a map

gBma}(()\) : g{/\,)\o - 8/\.,max
depending holomorphically on A for A ¢ —T',,. In general, if ¢ € K4 », then
(Ap — )\)WA,min¢ = —(Ap — >\)7TA,max¢-

Thus the right-hand side belongs to the range R ) of Ay p

A, max

min

. — A and
TAmin® = —BAmin(AN)(Ar = A)TA max®-
Conversely, if u € Ex max and (Ax — AN)u € R, then
U = BAmin(A)(Ax = Nu € Kpz.
Define Prmin(A): Kz, — Damins A € Ay by
Ponin(N)@ = =Bamin(A)(Ax = N)Pmax(N)@, ¢ € Ky,
Let also

(77) ‘B()\) = SBmax()\) + gBmin(A): :K/\.,)\o - D/\,max-

The operators B min(A) depend smoothly, but not holomorphically, on A (unless
ind(Axp,, —A) = 0for A € A,). So it is not obvious that Pnin(N\) depends
holomorphically on .
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Proposition 7.9 The map Pmin(A): Knx, — Damin depends holomorphically on
A€ R, and

(7.8) PN € Ky fordehyandp e Kny,.

Proof Since Ay € bg-resA,, thereis D € ®,, such that Ay € resA, p, so
resAx,D NA, # . Thenlet By »()) denote the resolvent of Ay p onresAx o NA,.
In particular, B »(A) depends holomorphically on A € resA,p N A,. Let ¢ €
KA .», and define

‘Bmin,’D()\)¢ = _WA,minBA,D(A)(A/\ - A)‘Bmax()‘)¢

for A € resApp N A,. Thus B min, > (A) is holomorphic on the set where we defined
it. Note that 7x minBa,»(A) is @ holomorphic left inverse for Ay »,,, — A when A\ €
resAxp N /O\a.

If ¢ € Kap and o € Ry then £, € Kp gy, and Prax (0" Xo)d = TA maxko®-
Thus if o' Xy € res Ap p then

min

7r/\,minfig¢ = _WA,minBA,‘D(Qm/\O)(A/\ - Qm)\o)7-‘—/\.rr1ax"<agg25
= _WA,minBA,’D(QmAO)(A/\ - Qm)\O)gpmax(QmAO)(b-
Consequently, Bmax(0™A0)d + PBmin,n(0"A0)p = Kkpp € Ka gmy,. This implies
that the equation (Ax — A)[Pmax(A) @ + Bmino(A)@p] = 0 is satisfied when A €
'y, N resAn ». By unique continuation, it is satisfied for any A € A, NresAn p.
Thus
(7.9) Brnax(N e + Brmind(AN)p € Kax if A € resAnp N A,

For such X we therefore have (Ax — A)PBmax(A)p = —(Ax — A)PBmin, o (N, s0

(7.10) Bnin,D(AN)P = —=Ba min (A (A — ) Brnax (N,
that is,
(7.11) PBrnin D (NP = Prnin(A) .

Replacing this in (7.9), we see that formula (7.8) holds where P yin D (A) @ is defined.

Since the left-hand side of (7.11) is holomorphic where defined, so is the right-
hand side. Since the right-hand side is continuous on A,, the singularities of the
left-hand side, i.e., the elements of the discrete set spec A p N A, are removable.
Thus Pnin(A)¢ is holomorphic for A € A, and by continuity (7.8) holds. [ |

The sets L, = {Kamax(A) : X € Aa} C Gry; (€ max) play an important role,
particularly their intersection with the varieties 8, = o, D € ®,,. These sets are
invariant under the action of k. for £ real. If V € Grg (€A max), then C > ¢ —
KV € Grg,(Ea max) is @ holomorphic map, ¢f. Proposition 7.5. The generator of
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the one-parameter group (£,V) +— k.V, the vector field T, is the real part of a
holomorphic vector field T, cf. the paragraph following the proof of Proposition
7.5, which at V is the image of the Cauchy—Riemann vector field at { = 0, O¢|o,
under the differential of the map { — k,V. If V is not k-invariant, i.e., To # 0
at V, then also the imaginary part of T, is different from 0 at V; thus { — K.V is
a local embedding near ¢ = 0if T, # 0 at V. As a consequence, we get that the
real and imaginary parts of 7% commute at the noninvariant points. Since the set
of invariant points is closed with empty interior, the real and imaginary parts of T
commute everywhere. We can view the images of the maps C 5 ( +— K,V as a point
(if 'V is invariant) or as an integral manifold of the involutive Frobenius distribution
generated by RT\, ST on Gry, (Eamax)\{V € Gry, : Vis s-invariant}.

Theorem 7.10  The set L, is contained in one orbit of T .

In fact, the set £, is identical to the set { £ og0/20/m TA maxKan, : A € Aa}, a subset
of the orbit of T} containing ma maxXKa - Thus, if dimg Grar (Eamax) > 2, then L,
is in principle a small set (nevertheless it could be dense).

The following lemma completes our description of the vector bundle K intro-
duced in (7.3).

Lemma 7.11 If ¢ € Kx ,, then
(7.12) kPN =P("N)(9), o0€R,.

Proof Write (\/Xg)/" = ellosM XoD+iarg/2ol/m N ¢ T For real p and \ ¢
—I',, we have

WA,maxH,QW/\,maxﬂ(,\/)\o)l/m TA,max — WA,maxH(gﬂl)\/)\U)l/m TUA,max-

Thus WA,maxH,Q(Bmax()\)gb = g‘]3max(9m>\)¢- But lf)\ S [\(l') then HQ‘B(A)QS € g</\,g”’)\
and Pin (0™ A)¢ is the unique element of D 5 iy such that

(‘Bmax(gmA)gé + gBmm(i_’)mk)q5 € K/\,g’")\a

so we have K, B(AN) P = PBmax (0" AP + Brmin (0" A)@. This is (7.12). [ |

Suppose ¢ € Kn 5. If #(A) = B(A)¢ vanishes at some A;, then ¢(\) vanishes
along the ray through A,. Therefore it vanishes identically, since ¢(\) is holomorphic.
Thus, if we pick a basis {¢;} of X »,, then the sections B(\)¢; form a frame over

A, for the bundle K 1.
8 Resolvents for the Model Operator

We now turn our attention to determining the existence of sectors of minimal growth
for extensions of A,.
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If D € Gp o, we write By p(A) for the inverse of Axp — A\, A € resAp . If
A € €\0, then A = \/|)|. By a closed sector we shall mean a set of the form

A={zeC:z=réforr>0,0 R, |#— 6| <a}.

If R > 0 and A is a closed sector, then Ag = {\ € A: |A\| > R}. LetD € Gy 4. Let
A be a closed sector with A\0 C A,,. Then A is called a sector of minimal growth for
Ap,p if there is R > 0 such that A, p — A is invertible if A € Ag, and either of the
equivalent estimates

(8.1) 1BAD M gie-merzy < C/IAL - [IBAD M giemnz ) < C

holds for some C > 0 when \ € Ag.
The following lemma is immediate, in view of (7.1) and the fact that x, is an
isometry on x*’”/ZLi(YA; E).

Lemma 8.1 IfD € G ,, then resA,  —ip = 0 "resAp D. IfresAp p # @, then
(8.2) B, -1\ = 0"k, ' BAn (0" Nk, 0> 0.

Thus, if the closed sector A, A\O C A, is a sector of minimal growth for App, then A
is a sector of minimal growth for A, 1,

In fact, if the first estimate in (8.1) holds when A € Ag, then

||BA7[{;1D(A)|‘$(X7m/ZLi) < C/|>\|7 A€ AR/gm

with the same constant C.
The simplest domains are those that are x-invariant.

Proposition 8.2 Suppose D € &, , is k-invariant. Then either A, Nres App =09,
or A, C resA . In the latter case the resolvent B 1 () of Ax o satisfies

(8.3) 1BAD (M 2(e-merzy < C/[A|
for some C > 0 when A € A\O, A a closed sector with A\0 C A,,.

Proof Suppose that Ay € A, Nspec A p. The homogeneity property (7.1) and the
assumption that D is k-invariant give that A/ o™ € spec Ax p for every o > 0. Thus
specAxp N A, is not discrete. On the other hand, if D € ® Aa\Ba, ¢f. Proposi-
tion 7.4, then spec Ax » N A, is a discrete closed subset of A,,. In particular, for every
ray

(8.4) I'={zeC:z=reé" forr >0}

contained in A, T'N spec A, p is closed and discrete. Thus, if D is x-invariant, then
Ay NspecAp p # @ implies A, C specAp p.

https://doi.org/10.4153/CJM-2007-033-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2007-033-7

782 J. B. Gil, T. Krainer, and G. A. Mendoza

Suppose A is a closed sector with A\O C resAn . Since D is k-invariant, (8.2)
reads: Bx p(\) = 0"k, 'BA p (0" N)k,. Setting o = I\~ gives

Bap(A) = |)\|_lf<é\,\|1/mB/\,D(5\)5&‘11/,"-
For A € A (|/\\ = 1) we have a uniform estimate for ||B/\7'D(AA)H$(X—m/2Li), and (8.3)

follows immediately, since #, is an isometry on x~"/2L2(Y"; E). [ |

If the domain D € ®, , is not s-invariant, the existence of a ray or sector of
minimal growth for Bs 1 () is more complicated.

Theorem 8.3 Let D € Gp,, let A be a closed sector with A\O C R,. Then A
is a sector of minimal growth for Ax o if and only if there are C, R > 0 such that
Ar CresAp p and

(8.5) Hﬂ'A,mangcA_},m‘;‘ll/m@|8A,max||$(93mmax) <C, A€

If D is xk-invariant, then

TAmaxTgc o D& p e = WA-maxWKA.AvﬂlgA-max’
A M‘l/m

and the theorem reduces to the trivial situation of Proposition 8.2.
The proof of the theorem requires some preparation. Define BA max(A) for A €
bg-res A, as the right inverse of

An =X Dpmax C X "2L2(YNE) — x "2L2(Y"E)
with range in fo\j’ v+ Thus Ba max(A) has the virtue of being the right inverse of
An max — A with the smallest operator norm. It depends smoothly on A\ € bg-res Ax;
this is proved in the same way as the corresponding statement for Bp,c(A) in Sec-

tion 5. Recall that B min(A) is the left inverse of Ax p,,, — A with kernel equal to the
orthogonal complement of Rx y = rg(Ax »,,, — A). For A € res A, p let

THKar,D * ®A,mu - D/\,max

be the projection on X, ) according to the decomposition D max = Ko @ D,
cf. (7.6). Then the resolvent of A5 p is

(86) B/\,‘D()\) = B/\,max()\) - (I - B/\,min()\)(A/\ - A)) 7TZK/M.,’DB/\,max(A);

cf. (5.10). We will take advantage of this formula by using the group action k. We
begin with estimates for Ba min(A) and B max(A).
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Lemma 8.4 The operator Ba min(N) is k-homogeneous of degree —m,
(8.7) Bamin(A) = 07" KpBamin(A/ 0"k, .
Therefore, if A is a closed sector with A\O C bg-res A, then

(8.8) ||B/\.min(>\)‘|$(x*”’/2L§) < C/|Al

for some C > 0 when X € A\O0.

Proof Let B} .\(\) = 0 "k,Bamin(A/0")k, '. The operator By ;. (\) maps into
D A min because the latter space is k-invariant. Using the n-homogéneity of A5, one
verifies that the operator B} . () is a left inverse for A min — A. Also, because of the
k-invariance of D A min and the k-homogeneity of Ay — A, we have R\ = £,R)/,m.
The kernel of B, ;. (\) is nngf/Qm. Since #, is an isometry on x™"/2L2(Y"; E), K,
preserves the orthogonality of the decomposition R, Jon © ij-/ o Hence, the kernel
of B}, i, (A) is orthogonal to R. Thus B}, in(A) = Bamin(A), and (8.7) holds.

The estimate in (8.8) follows from setting o™ = || in (8.7). [ |

The operator family BA max(A) is not k-homogeneous. Nevertheless its norm sat-
isfies good estimates.

Proposition 8.5  Let wxc, ,: D max — DA max be the orthogonal projection on X x ».
Regard the finite dimensional space X 5  as a subspace ofx”"/zLi(Y/\; E) and let

poc, :x "PLA(Y"E) — x"2LA(Y; E)
be the orthogonal projection on K ». Then

_ 1— AP N
(8.9) B max(N) = [A| 7 Ky m (I — mpxm)BA,max()\)HMfum-

Therefore, if A is a closed sector such that A\O C bg-res A, then
(8.10) 1B max(M| sz e-mpzy < C/|A|
for some C > 0 when A € A\0.
The proof will require the following lemma.
Lemma 8.6 Forany A € bg-resA, and ¢ > 0,

1+ |A]? 1—o"
1 R b B R
(8.11) Ky TK gy Ko = 07 KA, T 1+ [o"\[2

AP P

We will prove the lemma later.
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Proof of Proposition 8.5 Suppose f € x_m/zLi(YA;E) and let u = B max(N)f.
Then (An — 0" Nkt = 0" Ky(AN — Nu = 0"k, f, and consequently

B/\,max(gm/\)gmﬁyf = '%Qu - WKA.gmAKgu'
This gives the formula

QmB/\,max(Qm/\)HQf = KgB/\,max(/\)f - 7TZKA_A,m)\HQB/\,maX(A)f

which, in view of (8.11) and the fact that the range of B max(}) is orthogonal to
X A x> reduces to

2m

"B " = KpBA max T T L my2
0 /\,max(Q A)’%Qf KD, (/\)f 1+|Qm)\|2

KPP B/\,max()\)f-

Thus
1— QZ m

EETIPDA

The formula (8.9) is obtained from this by replacing o™ by |\| and A by \. The
estimate (8.10) is evident given the formula (8.9). [ |

Brmax(0"A) = Q*’”Kg(l )B/\Jnax(/\),‘{;l.

The operator

Bl}\,max(A) = \)\|71’f|,\\1/mB/\ﬁmax(5\)H‘;‘11/m7 A € bg-resAp,

is a K-homogeneous right inverse of Ax max — A of degree —m that coincides with
B max(A) when |A| = 1. For any closed sector A with A\O C bg-resA, there is C
such that

B sy < /N, A€ AVD,

A,max

and for any closed sector A as above and R > 0,

HB/\7maX(A) - B;/l\,max()‘)H_?(x_”‘/zLi) < C/l/\‘

for A € Ag. So in some estimates below, it makes little difference whether the correc-
tion term involving px ., is present or not. However, we will keep on using B max(})

instead of B"

A .max(A), as the former family is in some sense more natural than the lat-
ter.

Proof of Lemma 8.6 Let ¢y, ..., ¢4s be an A-orthonormal basis of K x. Then
Sjk = (&), da, = (1+ [N}, dr).

In particular, the /1 + [A]2¢; € K, are orthonormal in x~"/2L2(Y”; E). On the
other hand, using that r, is an isometry on x~"/2L2(Y"; E),

(KB, KoP)a, = 0" (D, d)a, + (1 — ™), dx)

1— o™ 1+ 0"\
(sz+ 4 )jk: " Al j
1+ AP 1+ AP

k-
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Thus the \/(1 + A2 /(L + |0mA[P)kp; € K gnr are Ap-orthonormal, and if u €

XA x then
1+ |AP
X Rl = T zj:(”a“v Ko®j)anko®;
1+ |\
= m Z [QM(U’ diday + (1 — sz)(“7¢j)] Ko®j
j
1+ |AP
= m QZ [sz(% dilajdj+ (1 — sz)(“7¢j)¢j]
j
= (LWQZVHTQK M+7Z(l+|)\‘ )(M¢)¢)
1+ oA A L+ |omA? 17
( 1+ A2 N 1— " )
=Kyl ———0"my, U+ ——— ul.
AT map et TP
This gives the formula in the statement of the lemma. ]
Note that if # € D A max, then
(8.12) [Pac,yull < [lull < flullay,  lpsc, ullay < 1+ AP|ulla,

Lemma 8.7 Let A be some closed sector, let R > 0, and let
PO): x™2LA(Y™E) — D max
be a family of operators defined for A € Ag. Then
(8.13) [P g=mrzy < C/IAL - and [PV ge-mipz D ) < C
hold for some C > 0 and all A € Ay if and only if
(8.14) 185 PO o,y < /I
holds for some C > 0 and all A\ € Ag.

Proof Using that AARWW,
try in x m/zLi(Y/\; E), we obtain

P(A\) = |\ 7'k, 1, AAP(N), and that |

N |/ 18 an isome-

\/\I

55 POVFIR, = AR PO + [l POV
= P72l ANPOFI + 153 POV £

= A2 AAPO) £ + [PV f]2
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if fe x"”/zLi(Y/\;E). Thus (8.14) follows from (8.13).
Assume now that (8.14) holds and let f € x™"/2L2(Y"; E). Then

HP(/\)f” - ||’i‘)\|1/mp(/\)f|| < ||I{‘)\|1/W1P(A)f||AA
gives the first estimate in (8.13). To obtain the second, write ||[P()) f||3, as

JAAPOSIZ + [PV = 1573k AP I + (15 POV AP

[ A1/

and use the k-homogeneity of A, to conclude that
1PV, = INPIANR o POV S + 115 5 POO £
< (AP + Dl PO, -
The second estimate in (8.13) follows from this. [ |

Corollary 8.8 Let D € G ,, let A be a closed sector. Then A is a sector of minimal
growth for Ax » if and only if there are C, R > 0 such that

(815) ||/{|/\|]/MB/\ 'D()\)Hg(x m/sz D A max) C/|)\|, A S AR-

Both Bx mm(/\) and BA max (M) satisfy (8.13), therefore (8.14) for any closed sector
A with A\O C A,. In the case of B min(A), the first of the estimates in (8.13) is
(8.8). To prove the second, we note that A\BA min(A) = mx, , + ABA min(A) Where
TR, X 2LA(YPN E) — x~™2L2(Y; E) is the orthogonal projection on R . The
norm of this operator is 1, and || ABa min(A) ||_g(x7m/zL127) is bounded independently of
Awhen A € A and | )| islarge. The argument for Ba max(A) is analogous, using (8.10)
and the fact that this operator is a right inverse for Ay — A.

Proof of Theorem 8.3 We will prove that (8.5) is equivalent to (8.15). Recalling the
formula (8.6) for By p(\) and that Bx max(\) satisfies (8.14), we see that By p())
satisfies (8.15) if and only if

< C/|A|

max)

H K:l/\ll/m (I - B/\,min(A)(A/\ - )\)) '/TUCAAA.,DB/\,max(A)H Z(x*"’/zLi D

for A € A, |\| large. We have

K:l_Alll/m (I - B/\,min(/\)(A/\ - )\)) 7TZK/M.,’DB/\,max(A)
=(I- Bamin(\)(Ap — ;\)) HNWW%M,DfmwmH‘_Mll/mB/\,max(A)-

EV1dently KarND = 0if and only if KI/\II/M:KA ANK

Kaxr =X, 3, and it is not hard to see that

W/m@ = 0. By Lemma 7.8,

‘)\‘l/m

-1 o
RApmTHKan, DR m = WﬂcM,ﬁ‘::Wﬂ)
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Using that I — Ba min(A)(Ax — A) and 7%, , » both vanish on D, mi, regardless of
A and D, we arrive at the conclusion that B 1 () satisfies (8.15) if and only if the
norm of

(816) I— B/\,min(;\)(A/\ - j\) T A, max 7Tg< kT D 7T/\,max"f_ll/mB/\.,max()\)
AR [Al

1
|Af1/m

as an operator x‘m/zLi(Y/\; E) — D max is bounded by C/|A| for some C if A € A,
|A| large. By Lemma 8.7,

1 5 mBAmax | 212, oy < €/
for A € A, || large. Evidently

1T = BAmin O\ (An = N 2D, 0

is bounded independently of A, A € A\0. Thus if (8.5) holds, then the norm of the
operator (8.16) is bounded by C/|A| for some C when A € A, || large.

Conversely, suppose that the norm of the operator (8.16) is bounded by C/| | for
some C when A € A, || large. Composing with ma max On the left, we get that the
norm of

—1
T A,max T g¢ D 77/\.max"<5|/\‘1/mB/\.max()\)

1
AN

as an operator x—m/ 2LIZJ(YA; E) — €A max satisfies the same estimate. Using the for-
mula (8.9) for B max(A), we get

—1
T ™ - B A
A,max j{AA’,ﬂ,wl/mD [A[/m /\,max( )

1—|\? Ay —
_ —1 1
- ‘)\| TTA max ﬂ—x/\.w’f‘_)\‘]l/mD (I - T‘)\pr/\’:\) B/\,max(>\)"£|/\|1/m'

We dismiss the factor HIRII‘ ,w at the end of the last formula, since this is an isometry

on x~"2L[2(Y"; E). Since px, , has rangein X, 5,
1— |2 .
—1
IAI ™ A max FKA.M‘;:]/M'D ( TMP P, BAmax(A)

- AP
1+ AP

= |>“_1 WA,maprCAAB/\,max(})

This operator x™"/2L2(Y";E) — D may evidently has norm O(|A|7!) if A € A,
|A| = oo (¢f (8.12)). We conclude that if the norm of (8.16) is bounded as indicated,
then the norm of

(8.17) Tiamax Tge . ! (DB/\,max(ﬁ\)
AN m
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is bounded by a constant when A\ € A, |\| large. The operator A\ — Non D A,max
satisfies ||Ax —}Hg(@max’xw/qi) < 1. So composing the operator (8.17) with A, — A
on the right, we get that the norm of

s us -1 I—-mg )= s .y T - %
A,max KA.X"”wl/m(D( SCA7A) A,max :K/\.)”{wl/mD A,max A,max TIK

satisfies the same estimate. Since || max7ac, ;| 2(Dn ) < 1, and using that

T, D = T, DTAmax> We obtain that if A is a sector of minimal growth for
A p, then

177 A max WUCAAAA,N,‘:\‘]I/MD A mas [ 2D )
is bounded for A € A, || large. This completes the proof of the theorem. ]

Let Kpmax(A) = TamasKan. Let D € Gy let \g € A, be such that |\o| = 1,
and let R > 0. The condition that

(8.18) 0" Xy € resAp p for p > R

is equivalent to the statement that X ,ny, 1D = 0 for o > R, which in turn is
equivalent to the condition that K, 5, N HQ_I'D = 0 for o > R. Thus, since K 5, N
ki, 'D = 0 if and only if 7 maxKax N Tamaxk, ' D = 0, the condition in (8.18) is
equivalent to the statement that the curve y defined by

(819) [Ru OO) S0+ ’Y(Q) = 7-‘—/\.rrlet)("<59_1D S Grd“’(’(a/\,max)

does not intersect the variety By, () introduced in Definition 5.10 (with E A max
in place of €,.x). With the proof of Lemma 5.9, mx max Ty o wolD l& . .. 1s the pro-
Ao ’

0

jection on K a max(Ag) according to the decomposition
:K/\A,max()‘o) 2] 71'/\,max"iglj) = 8/\,max~

Thus if there is a neighborhood U of B, ... (z) in Gra// (E A max) such that y(o) ¢ U
if g is sufficiently large, then Lemma 5.12 gives that

C
T <
Imscnmmimaol = e 00 A @)

is bounded as p — oo. Therefore the necessary condition of Theorem 8.3 is satisfied,
and we get the following.

Theorem 8.9 Let A\ € bg-res A, belong to A, LetD € Gy, and suppose that there
is a neighborhood U C Gr1/(Ea max) of B, (o) SUch that WA,maxﬁglg ¢ U for
all sufficiently large o. Then there is a closed sector A containing Ay which is a sector of
minimal growth for Ax .
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9 Resolvents

We will now prove the analogue of Theorem 8.3 for A € x~™ Diff ;' (M; E).

Define A, = ¢ "k, 'Ak,. Then A, is c-elliptic, since A is assumed to be
c-elliptic, cf. (3.3). Using that A, — A belongs to x~"*! Diff ' (M; E), [4, Proposition
4.1(1)] gives the first formula in Dyyin(A,) = Dmin(A) and Dyax(A,) = n;leax(A).
The second is obtained using that x, preserves C§° (M;E) and x~™/ zLi (M;E). We
will write D, max instead of Dax(A,), and Dy instead of Dmin(A,). Generally we
prepend the symbol p to subindices of objects associated with A, originally associ-
ated with A. In particular, €, n, = D with the orthogonal complement com-
puted in D, yax using the inner product (u, v)a, = (A,u, Ayv) + (4, v) of Dy may, and
Tomax: Domax — Do max i the orthogonal projection on &, . It is not hard to

verify that
9.1) Epmax = n;l [ker(A*A + 0*™) N Dinax)s
¢f. Lemma 4.2.
Using
(9.2) Qme;I(A — 0" Nk, =4, — A,

we see that bg-res A, = o~ " bg-res A. For A € bg-resA,let K, \ = ker(A, n_ . — ).
Then K,/ = K;IK/\. If D € ®, then HQ_ID € ,, and if \ € resAp, then
A" e resAM;lD. It is easy to verify that D, may = K, 5 /on @ /@Ajer and that

—1
(9.3) Ko Ky DRo = Tgc 0 plp-

Let By min(A) = Q’”m;lem(g’”)\)ﬁg. This is a left inverse of Ay p,,, — A. The
operator B, min(A) has range in Dy, since this subspace is x-invariant and the range
Omein(Qm)\) is gmin-

Theorem 9.1 Let D € ® and let A be a closed sector. Then A is a sector of minimal
growth for Ap if and only if there are positive constants C, R such that Ag C res Ap,

(9.4) [Bmin (M| ze-merzy < C/IAL - [ Bmax (M e-merzy < C/[A
and
(95) ||ﬂ-l/\l]/m'rmaxﬂ-xu‘1/nr7‘A7""‘:\‘11/mD|S\/\|1/”’Amax z((D\/\Il/”’Amax) S C7 )\ € AR.

The proof requires a number of analogues of results obtained in the previous sec-
tion. Their proofs parallel those in that section.

Lemma 9.2 Let A be some closed sector, let R > 0, and let

P(\): x ™2L2(M; E) — Dinax
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be a family of operators defined for \ € Ag. Then

<C

max) —

96)  [POl|emaizy < C/IN and [PV i
hold for some C > 0 and all A € Ay if and only if

9.7) P Lm0y < /N

‘)\‘l/m)max) —=

holds for some C > 0 and all A € Ap.

Proof Using thatA‘,\‘l/mnw/mP()\) A"k
etry in x~"/2L2(M; E), we obtain

1/mAP(/\) and that k| l/m is an isom-

"I [Al

||K’|/\|1/mP()\)f||A

|A\)\\1/"’ |/\‘1/mp()‘)fH2 + ||K")\‘1/mP(>\)f||2

‘)‘| 2HKp\‘l/mAlx\ll/'"P()‘)f”z + \|/€|M1/mP(>\)f||2

A1/

= (N 2Ap POV + POV 1P

if f € x~™/2L2(M;E). Thus (9.7) follows from (9.6).
Assume now that (9.7) holds and let f € x~"/2L2(M; E). Then

POV fll = ”’i‘)\p/mp(/\)f” < ||“|)\|1/mp()\)f”A

A1/
gives the first estimate in (9.6). To obtain the second, write ||[P(\) f]|3 as

IAPOOFIIZ + IPOVFIIP = [l 3w APQOFI + 1573 POV FII?

‘)\ll/m
and use the definition of Ay i/» to conclude that

IPOVFIE = [APIA 55 PO I+ 15, POO FII?

< (AP + Dl POV

|/\‘1/m :

The second estimate in (9.6) follows from this. [ |

Corollary 9.3 Let D € ©®, let A be a closed sector. Then A is a sector of minimal
growth for Ap if and only if there are positive constants C, R such that Ax C resAp
and

<C/I\, A€ Ag.

|)\\1/”‘.max) -

(9.8) ||I</‘_/\|ll/mBlD()\)||$(x*m/2Li1D
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Proof of Theorem 9.1: Sufficiency We will show that (9.4) and (9.5) imply (9.8).
Since Bnin(A) and Bpax(A) satisfy the estimate in (9.4), and since these estimates
imply for each of them the second estimate in (9.6), we obtain that n‘;‘ll JmBmin(A)

and H‘;\‘ll /wBmax(A) both satisfy (9.7). In particular, to prove (9.8) we only need to
prove that for some C,

1537w (BD () = Banax(N) | -z, ) SC/IAL, X€E Ag

|A1/m max

Writing Bp (M) as in (5.12), we get

iy (Bmax(A) = Bp () = £ (I = Buin (VA = X)) T, D Bmax(A).-
We rewrite the right-hand side as
(9.9) (1= Byx i amin ) A i = X)) K3 T36,,D K08 i Brnax (V).

Using that I — B|,\|1/m_’min(5\)(A‘,\|1/m — 5\) vanishes on Dyin, the identity (9.3), and that
Dmin C KB\;I/M‘D’ we replace the factor Hlt\lll/m T, DY/ 10 (9.9) by

TN/ max T D T|A|Y/m max-

—1
AN 1m

By hypothesis the norms of these operators Dy 1/m max — €|x[1/m max are uniformly
bounded when A € Ag. It is easy to verify that the norm of

11— B\/\|U"’,min(/\)(A\/\W"’ — )\) ‘D‘/\ll/m’max — ‘DI/\\‘l/m’max

is bounded independently of A, A € Ag. Finally, as already discussed,

||H|)\|11/mBmax()‘)”Z(x*’”/zLi,D ) < C/IA|

|A]Y/™M max
holds for some C > 0 and all A € Ag. Altogether these estimates give (9.8). [ |
To prove the necessity of the condition in Theorem 9.1 we will need two lemmas.

Lemma 9.4  Suppose that D € ® and that the closed sector A is a sector of minimal
growth for Ap. Then there are positive constants R and C such that

[ Bmin (M| e-mrzy < C/IAL - [Bmax (M) || 2 e-mzy < C/|A|
fOT A E AR.
This is a direct consequence of the formulas
Bmin(A) = Bp(M)7x,,  Bmax(A) = Bp(A) — wac, Bp(N),

cf. (5.6) and (5.8), valid for \ € resAp.
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Lemma 9.5 Let p,,: x~"212(M;E) — x~"/2L2(M;E) be the orthogonal projec-
tion on X, regarded as a subspace of x~"/*L}(M; E). Then

1+ AR, 1— "
(9.10) K', 7'1'9(:(],,,A = mg mﬂ'j(M + —1 n |Qm)\|2 Pac, -

Moreover, ||Psc, || 2(D,m) < V/1+][A[%

Proof The proof of (9.10) parallels that of Lemma 8.6. Let ¢y,...,¢s be an
A,-orthonormal basis of K,y = I pny. Then

Si = (0, ), = (1+ AP0}, d)-

In particular, the \/1+ [\[2¢; € X, are orthonormal in x~™/2L}(M; E). On the
other hand, using that #, is an isometry on x~"/ 2L} (M; E),

1+ |0\

(Robjs Koda = 0™"(, G)a, + (1= ™)@, ¢1) = —— ]2

5jk-

This gives an A-orthonormal basis of X,ny, and if u € K, », then

1+ AP
Wj(grn)\’%gu = 1+ |Qm>\|2 ;(ngv H(’¢j)Aﬂﬁ)¢j
1+ AP P 2
= w Z [Q "(u, ¢j)AQ +(1 = 0" (u, ¢j)} Ko®j
( 1+|/\\2 N - )
=Kyl ——— U+ ——— u).
T oA et T g P
Thus (9.10) follows. The estimate of the norm of py, , is elementary. [ |

Proof of Theorem 9.1: Necessity Suppose that A is a sector of minimal growth for
Ap. By Lemma 9.4, (9.4) holds. In particular there are C, R such that the operator

‘)\ll/m(BmaX(A) BD(/\)) - K‘)\‘l/m(l min()\)(A - )\))TriKA,‘DBmax()\)

as an element of .Z(x™"/2L}, D j1/m may) has norm bounded by C/|A if A € Ag.
Composing with 7| j1/n
clude that

on the left, and using that ., ,, preserves D, we con-

,max

\/\I

T max K (1 = Bunin V(A = X)) 7, 0 Brnax(A)

—1
= 7T-\)\|1/'".,max F;/I/\\‘]/m 7TUC)\,‘DBmaX()\)
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satisfies the same estimate. The operator

as an element of .,%(ZDWW

(A - )\)I@|>\|1/m = ‘/\|I€|/\‘1/m(Ap\‘1/m - 5\),

x~™/212), has norm bounded by 2|A|, A # 0. Thus

,max?

the operator

as an element of .,?(ZDWW,

—1
7T|/\\1/"’,max H‘Ml/m WJCA,DBmax(A)(A — )\)H‘)\ll/m

—1
= T \|\/m max Hl/\ll/m Wj{AﬁD(I - WKA)H|A|1/rn7

), has norm bounded by a constant independent of

,max

A € Ag. Since TK\DTK, = TK,»

il e 2P el
A DTG RIA = N s T TR AR T

[AL/m A

using (9.10). Thus

—1
\|7T\,\\1/"v,maxH|A|1/W7TS<A,D7TJ<Ale/m 2L(D ) SC, ANE Ag,

\)\|1/'”.max

for some C and consequently also

-1
||7T|/\‘l/m’maxl‘i‘)\‘I/H‘WJCA_‘DK/‘MI/m LD ) S O A € Ag,

for some other C. Using (9.3) we conclude that in particular

™ m s —1 <C A€ Ag.
I A max KIAU/M.A’“ml/mD|Elxxl/ylx,max”"%(Dlﬂl/"ﬁ,max) -7 R

This completes the proof of the necessity of the condition. ]
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