INVERSE SEMIGROUPS OF HOMEOMORPHISMS ARE HOPFIAN

BRIDGET B. BAIRD

If X is a nonempty topological T_1 space then the set of all homeomorphisms whose domains and ranges are closed subsets of X forms a semigroup under partial composition of functions. We call it $I_F(X)$. If, in a semigroup, every element a is matched with a unique element b such that aba = a and bab = bthen the semigroup is an inverse semigroup (b is called the inverse of a and is denoted by a^{-1}). We have that $I_F(X)$ is an inverse semigroup with the algebraic inverse of a map f being just the inverse map f^{-1} . In this paper we examine epimorphisms from $I_F(X)$ onto $I_F(Y)$. The main theorem gives conditions under which an epimorphism must be an isomorphism. A consequence of this theorem is that for many spaces X (including all finite *n*-dimensional Euclidean cubes I^n , all finite *n*-dimensional spheres S^n , and the Cantor discontinuum \mathscr{C}) every epimorphism from $I_F(X)$ onto $I_F(Y)$ must be an isomorphism (Y is an arbitrary first countable T_1 space). Thus for all of these spaces the semigroup $I_F(X)$ is hopfian (every surjective endomorphism is an isomorphism). Another theorem shows that $I_F(R)$ is also hopfian (R denotes the real line). In [1] a research article stated some of these results. The case where X is the unit interval or the Cantor discontinuum was mentioned. The present paper extends those results but uses entirely different techniques.

These inverse semigroups $I_F(X)$ behave nicely in the sense that $I_F(X)$ and $I_F(Y)$ are isomorphic if and only if X and Y are homeomorphic (see [4]). In fact, if ϕ is an isomorphism from $I_F(X)$ onto $I_F(Y)$ then there is a homeomorphism h from X onto Y such that $\phi(f) = h \circ f \circ h^{-1}$ for all $f \in I_F(X)$. Idempotents (elements f such that $f \circ f = f$) in $I_F(X)$ are identity maps on closed subsets K of X and will be denoted by $\langle K \rangle$. The identity map on the point y will be denoted by $\langle y \rangle$. The zero of the semigroup $I_F(X)$ is just the empty map and will be denoted by 0. Throughout this paper we shall assume that |X| > 2, X is T_2 , and Y is nontrivial T_1 (i.e., Y has more than one point). We also assume that ϕ is an epimorphism from $I_F(X)$ onto $I_F(Y)$. Note that we then have that $\phi(0) = 0$ and $(\phi(f))^{-1} = \phi(f^{-1})$. Epimorphisms carry idempotents to idempotents and so if $\langle F \rangle \in I_F(X)$ then $\phi \langle F \rangle = \langle R \rangle$ for some closed subset R of Y. Conversely, if $\langle R \rangle \in I_F(Y)$ then there exists a closed subset F of X such that $\phi(F) = \langle R \rangle$ (see [2], p. 57). The notation $\langle x, y \rangle$ will denote the homeomorphism whose domain is the point x and whose range is the point y. McAlister [3] has shown that if $\phi(x, y) \neq 0$ for some $x, y \in X$ then ϕ is an

Received November 15, 1977 and in revised form November 10, 1978.

isomorphism. If $y \in Y$ let $D_y = \bigcap \{F : \phi \langle F \rangle = \langle y \rangle \}$. The collection $\{F : \phi \langle F \rangle = \langle y \rangle \}$ satisfies the finite intersection property (if $\phi \langle F \rangle = \langle y \rangle = \phi \langle H \rangle$ then $\phi \langle F \cap H \rangle = \phi (\langle F \rangle \circ \langle H \rangle) = \phi \langle F \rangle \circ \phi \langle N \rangle = \langle y \rangle$). Thus if X is compact then $D_y \neq \emptyset$ for all $y \in Y$.

LEMMA 1. Suppose ϕ is an epimorphism from $I_F(X)$ onto $I_F(Y)$. (a) Let $k \in I_F(X)$ be such that K = dom k (domain of k), H = ran k (range of (k)), $\phi\langle K \rangle = \langle R \rangle$ and $\phi\langle H \rangle = \langle S \rangle$. Then $\phi(k)$ maps R homeomorphically onto S. (b) Suppose $\phi\langle F \rangle = \langle T \rangle$, $R \subseteq T$ and R is homeomorphic to S. Then there exist homeomorphic sets K and H such that $H \subseteq F$, $\phi\langle H \rangle = \langle R \rangle$ and $\phi\langle K \rangle = \langle S \rangle$.

Proof. (a) We have that

$$\begin{split} \operatorname{dom} \phi(k) &= \operatorname{dom} \left((\phi(k))^{-1} \circ \phi(k) \right) \\ &= \operatorname{dom} \phi(k^{-1} \circ k) = \operatorname{dom} \phi\langle K \rangle = R. \end{split}$$

Likewise ran $\phi(k) = S$.

(b) Since R is homeomorphic to S there exists $k \in I_F(X)$ such that $\phi(k)$ maps R homeomorphically onto S. Suppose dom k = J and ran k = G. Then $\phi\langle J \rangle = \phi(k^{-1} \circ k) = \langle R \rangle$ and $\phi\langle G \rangle = \langle S \rangle$. Now

$$\phi\langle J \cap F \rangle = \phi\langle J \rangle \circ \phi\langle F \rangle = \langle R \rangle \circ \langle T \rangle = \langle R \cap T \rangle = \langle R \rangle.$$

Let $H = J \cap F$ and K = k(H). Then $\phi \langle H \rangle = \langle R \rangle$, $H \subseteq F$ and H is homeomorphic to K. We also have that

$$\phi\langle K\rangle = \phi\langle k(H)\rangle = \phi(k \circ \langle H\rangle \circ k^{-1}) = \phi(k) \circ \phi(k)^{-1} = \langle \phi(k)(R)\rangle = \langle S\rangle.$$

LEMMA 2. Suppose $\phi(F) = \langle p \rangle$ for some $p \in Y$ and compact $F \subseteq X$. Then $D_y \neq \emptyset$ for all $y \in Y$ and $D_y = \bigcap \{K : \phi(K) = \langle y \rangle, K \text{ compact}\}.$

Proof. We have that

$$D_{p} = F \cap \{K : \phi\langle K \rangle = \langle p \rangle\} = \cap \{F \cap K : \phi\langle K \rangle = \langle p \rangle\} \subseteq \cap \{K : \phi\langle K \rangle = \langle p \rangle, K \text{ compact}\} \subseteq D_{p}.$$

Thus $D_p = \bigcap \{K : \phi(K) = \langle p \rangle, K \text{ compact}\}$ and since the latter collection has the finite intersection property, $D_p \neq \emptyset$. Since *F* is compact, $\langle F \rangle$ generates an ideal \mathscr{U} whose idempotents are all identities on compact sets. Now $\phi(\mathscr{U})$ is an ideal of $I_F(Y)$ which contains $\langle p \rangle$ and so contains all maps of the form $\langle y \rangle$. Therefore for any $y \in Y$, there is a compact set *K* such that $\phi\langle K \rangle = \langle y \rangle$. We now apply the first part of the proof to obtain the fact that $D_y \neq \emptyset$ for all *y* and $D_y = \bigcap \{K : \phi\langle K \rangle = \langle y \rangle, K \text{ compact}\}.$

Definition 3. X will be called *admissible* (respectively *strongly admissible*) if whenever F is a proper compact subset of X (respectively F is a compact subset of X), $x \in F$ and U is any neighborhood of x, then there exists a homeomorphism h from F into U such that h(x) = x.

Remark. The space S^1 is admissible but not strongly admissible. All noncom-

pact admissible spaces are strongly admissible. The class of admissible spaces is not productive (e.g., $S^1 \times S^1$) but the class of strongly admissible spaces is productive.

PROPOSITION 4. The product of strongly admissible spaces is strongly admissible.

Proof. Let $\prod_{j \in J} X_j$ be a product of strongly admissible spaces, let K be a compact subset of this product, let $q \in K$ and let G be a neighborhood of q. Then there exists a finite set $\{1, 2, \ldots, N\}$ and open sets $G_j \subseteq X_j$ for $j = 1, \ldots, N$ such that

$$q \in p_1^{-1}(G_1) \cap \ldots \cap p_N^{-1}(G_N) \subseteq G$$

where p_j denotes the projection map onto X_j . Since each X_j is strongly admissible there exist homeomorphisms h_j (j = 1, ..., N) from $p_j(K)$ into G_j such that $h_j(q_j) = q_j$. Define h from $\prod_{j \in J} p_j(K)$ into $\bigcap_{i=I}^N p_j^{-1}(G_j)$ by

$$(h(x))_j = h_j(x_j)$$
 for $j = 1, ..., N$
 $(h(x))_j = x_j$ otherwise.

Then h is a homeomorphism and h(q) = q. Since $K \subseteq \prod_{j \in J} p_j(K)$ and $\bigcap_{j=1}^{N} p_j^{-1}(G_j) \subseteq G$ the proof is complete.

PROPOSITION 5. I^n , R^n , I^{∞} , \mathscr{C} (the Cantor discontinuum), the space of rational numbers and the space of irrational numbers are all strongly admissible. S^n is admissible.

Proof. It follows from well known results that I, R, \mathcal{C} , the rationals and the irrationals are strongly admissible and that S^n is admissible. Now apply Proposition 4.

Remark. Note that the two point discrete space D is not even admissible but the product of D with itself a countable number of times is strongly admissible since it is homeomorphic to \mathscr{C} .

LEMMA 6. Suppose X is admissible and $\phi\langle J \rangle = \langle p \rangle$ for some $p \in Y$ and compact $J \subseteq X$. Let y, $w \in Y$ with $y \neq w$. Then $D_y \cap D_w = \emptyset$.

Proof. We know that $D_y \neq \emptyset$ for all y by Lemma 2. Now suppose $D_y \cap D_w \neq \emptyset$. Let $x \in D_y \cap D_w$ and let F be such that $\phi\langle F \rangle = \langle y \rangle$. Then there exists $z \in F$ such that $z \notin D_w$ (otherwise if K is such that $\phi\langle K \rangle = \langle w \rangle$ and $F \subseteq K$ then $\phi\langle F \rangle = 0$ which is a contradiction). Now $z \notin D_w$ and so there exists W such that $\phi\langle W \rangle = \langle w \rangle$ but $z \notin W$. The set W is closed and so let U be a neighborhood of z where $W \cap U = \emptyset$. We have that X is admissible, $z \in F$ and $z \in U$ and so U contains a copy of F. Call it Z. Then $\phi\langle Z \rangle = \langle q \rangle$

802

for some $q \in Y$ (see Lemma 1). Now $Z \cap W = \emptyset$ and so $Z \cap D_w = \emptyset$. Hence $q \neq w$ and $q \neq y$ ($x \in D_y \cap D_w$). Let $\phi(W \cup Z) = \langle R \rangle$. Then $w \in R$ and

$$q \in R(\langle w \rangle = \phi \langle W \rangle = \phi \langle W \rangle \circ \phi \langle W \cup Z \rangle = \langle w \rangle \circ \langle R \rangle = \langle \{w\} \cap R \rangle).$$

By Lemma 1 choose homeomorphic sets K and H where $K \subseteq W \cup Z$, $\phi\langle K \rangle = \langle \{w, q\} \rangle$ and $\phi\langle H \rangle = \langle \{y, w\} \rangle$. Let k map K onto H and let $S = K \cap W, Q = K \cap Z$. Then $\phi\langle S \rangle = \langle w \rangle$ and $\phi\langle Q \rangle = \langle q \rangle$. But $S \cap Q = \emptyset$ $(W \cap Z = \emptyset)$. Now $k(S) \subseteq H$ and so $\phi\langle k(S) \rangle = \langle y \rangle$ or $\langle w \rangle$. Without loss of generality suppose $\phi\langle k(S) \rangle = \langle y \rangle$. Then $\phi\langle k(Q) \rangle = \langle w \rangle$. Since $S \cap Q = \emptyset$ we have that $k(S) \cap k(Q) = \emptyset$ also. But $x \in k(S) \cap k(Q)$ since $x \in D_y \cap D_w$. This is a contradiction. Thus $D_y \cap D_w = \emptyset$.

LEMMA 7. Suppose X is admissible and $\phi\langle J \rangle = \langle p \rangle$ for some compact set J. Then $|D_y| = 1$ for all $y \in Y$.

Proof. Suppose $|D_y| > 1$ for some $y \in Y$. Let $x, z \in D_y$ where $x \neq z$. Let U be a neighborhood of x such that $z \notin U$. Let F be such that $\phi\langle F \rangle = \langle y \rangle$ and since X is admissible let k be a homeomorphism from F into U where k(x) = x. Then $\phi\langle k(F) \rangle = \langle w \rangle$ for some $w \in Y$. Now $w \neq y$ since $z \notin k(F)$ and $z \in D_y$. We show that $x \in D_w$. Suppose H is such that $\phi\langle H \rangle = \langle w \rangle$. Then $\phi\langle H \cap k(F) \rangle = \langle w \rangle$. Now $k^{-1}(H \cap k(F)) \subseteq F$ and is homeomorphic to $H \cap k(F)$. Therefore $\phi\langle k^{-1}(H \cap k(F)) \rangle = \langle y \rangle$. Thus $x \in k^{-1}(H \cap k(F))$. But since k(x) = x this means that $x \in H \cap k(F)$. Therefore $x \in H$ and so also $x \in D_w$. But then $D_w \cap D_y \neq \emptyset$. This is a contradiction by the last lemma. Thus $|D_y| = 1$ for all $y \in Y$.

Remark. If $\phi\langle J \rangle = \langle p \rangle$ for some $p \in Y$ and compact J then the last lemma says that for each $y \in Y$ there is associated an $x \in X$ such that $D_y = \{x\}$. Define a map h from Y into X by h(y) = x. The function h will be one-to-one by Lemma 6.

LEMMA 8. Suppose X is admissible and $\phi\langle J \rangle = \langle p \rangle$ for some compact J. Then for every $y \in Y$ and every neighborhood U of h(y) there exists a closed set F such that $F \subseteq U$ and $\phi\langle F \rangle = \langle y \rangle$.

Proof. Suppose not. Let x = h(y) and let U be a neighborhood of x such that for all F with $\phi\langle F \rangle = \langle y \rangle$ there exists $z \in F - U$. We first show that the collection $\{F - U : \phi\langle F \rangle = \langle y \rangle\}$ satisfies the finite intersection property (clearly the sets are nonempty and closed). Consider $\bigcap_{i=1}^{n} (F_i - U) = (\bigcap_{i=1}^{n} F_i) - U$ where $\phi\langle F_i \rangle = \langle y \rangle$ for all $i = 1 \dots n$. We have that $\phi\langle \bigcap_{i=1} F_i \rangle = \langle y \rangle$ also and hence $(\bigcap_{i=1}^{n} F_i) - U \neq \emptyset$ by assumption. Therefore $\{F - U : \phi\langle F \rangle = \langle y \rangle\}$ satisfies the finite intersection property. Now

$$\bigcap \{F : \phi \langle F \rangle = \langle y \rangle \} = \bigcap \{F : \phi \langle F \rangle = \langle y \rangle, F \text{ compact} \}$$

by Lemma 2. Therefore

$$\bigcap \{F - U : \phi(F) = \langle y \rangle\} = \bigcap \{F - U : \phi(F) = \langle y \rangle, F \text{ compact}\} \subseteq K$$

BRIDGET B. BAIRD

where K is compact and $\phi \langle K \rangle = \langle y \rangle$. Therefore $\bigcap \{F - U : \phi \langle F \rangle = \langle y \rangle\} \neq \emptyset$. But

$$\bigcap \{F - U: \phi(F) = \langle y \rangle\} \subseteq \bigcap \{F: \phi(F) = \langle y \rangle\} = \{x\}.$$

Thus $\bigcap \{F - U : \phi(F) = \langle y \rangle\} = \{x\}$. But $x \in U$. This is a contradiction.

LEMMA 9. Suppose X is admissible and $\phi\langle J \rangle = \langle p \rangle$ for some $p \in Y$ and compact J. Suppose also that $\phi(k)(y) = z$ for some $k \in I_F(X)$ where $y, z \in Y$. Then k(h(y)) = h(z).

Proof. Let dom k = K and let F be any closed set where $F \subseteq K$ and $\phi\langle F \rangle = \langle y \rangle$ (see Lemma 1). Then $h(y) \in F$ and

 $\phi(k \circ \langle F \rangle) = \phi(k) \circ \phi\langle F \rangle = \phi(k) \circ \langle y \rangle = \langle y, \phi(k)(y) \rangle = \langle y, z \rangle.$

Thus the range of $\phi(k \circ \langle F \rangle)$ is z. But by Lemma 1 this means that $\phi(k(F)) = \langle z \rangle$ and so $h(z) \in k(F)$. By the last lemma we can take F inside arbitrary neighborhoods U of h(y) and so k(h(y)) = h(z).

Notation. Write $y_{\alpha} \rightarrow y$ if the net $\{y_{\alpha}\}$ converges to y.

LEMMA 10. Suppose X is admissible and $\phi \langle J \rangle = \langle p \rangle$ for some $p \in Y$ and compact J. Then Y is not discrete.

Proof. Suppose Y is discrete. We first show that h(Y) must also be discrete. Hence suppose h(Y) is not discrete and let $h(y_{\alpha}) \to h(y)$ where $y_{\alpha} \neq y$ for all α . Since $\{y_{\alpha}\}$ is homeomorphic to $\{y_{\alpha}\} \cup \{y\}$ there exists a homeomorphism k such that $\phi(k)$ maps $\{y_{\alpha}\} \cup \{y\}$ onto $\{y_{\alpha}\}$. Let $\phi(k)(y) = y_{\beta}$. By Lemma 9 we have that $k(h(y)) = h(y_{\beta})$ and $k(h(y_{\alpha})) \in \{h(y_{\alpha})\}$ for all α . But $h(y_{\alpha}) \to h(y)$ and since k is a homeomorphism we have that $k(h(y_{\alpha})) \to k(h(y))$. This is a contradiction since $k(h(y)) = h(y_{\beta})$. Thus h(Y) is discrete. We may now choose $h(y) \in h(Y)$ and an open neighborhood U of h(y) such that $U \cap h(Y) = \{h(y)\}$. Let $F \subseteq U$ be such that $\phi(F) = \langle y \rangle$ and F is compact. If |F| = 1 then ϕ is an isomorphism (see [3]) and hence X is homeomorphic to Y. But then X is discrete and clearly cannot be admissible (recall that |X| > 2). Therefore $|F| \ge 2$. Let $x \in F$ with $x \ne h(y)$ and let V be a neighborhood of x such that $V \subseteq U$ but $h(y) \notin V$. Then since X is admissible there exists a homeomorphism f from F into V such that f(x) = x. The set f(F) is homeomorphic to F and so $\phi\langle f(F) \rangle = \langle z \rangle$ for some z. But

 $f(F) \subseteq V \subseteq X - h(Y)$

and so $f(F) \cap D_z = \emptyset$. This is a contradiction. Thus Y is not discrete.

Recall that a completely (or hereditarily) normal space X is one where if A and B are subsets of X with $A \cap \overline{B} = \emptyset = \overline{A} \cap B$ then there are disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$. All metric spaces are completely normal.

804

LEMMA 11. Let X be completely normal and let F and H be subsets of X where $F \cap H = \emptyset$, $x \notin F \cup H$, $\overline{F} = F \cup \{x\}$ and $\overline{H} = H \cup \{x\}$. Then there exist disjoint open sets U and V such that $F \subseteq U$, $H \subseteq V$ and $\overline{U} \cap \overline{V} = \{x\}$.

Proof. Let $Z = X - \{x\}$. Then Z is normal, F and H are closed in Z. Thus there are open subsets A and B of Z such that $F \subseteq A$, $H \subseteq B$ and $A \cap B = \emptyset$. Now $A = D \cap Z$ and $B = E \cap Z$ where D and E are open in X. Let $U = D - \{x\}$ and $V = E - \{x\}$.

THEOREM 12. Suppose X is a completely normal space which is admissible, Y is nontrivial first countable T_1 , ϕ is an epimorphism from $I_F(X)$ onto $I_F(Y)$ and $\phi\langle J \rangle = \langle p \rangle$ for some $p \in Y$ and compact set J. Then ϕ is an isomorphism.

Proof. By Lemma 10 the space Y is not discrete. Let $y_n \rightarrow y$ where $y_n \neq y$ for all n. We first show that the sequence $\{h(y_n)\}$ accumulates at h(y). Suppose not. Then there exists an open set U such that $h(y) \in U$ but $h(y_n) \notin U$ for all *n*. In fact, we can choose U so that $h(y_n) \notin \overline{U}$ for all n. Let F = X - U. Then for all $n, h(y_n) \in X - \overline{U} \subseteq F$. The set $X - \overline{U}$ is open and so for all nthere exists F_n such that $h(y_n) \in F_n \subseteq X - \overline{U} \subseteq F$ and $\phi(F_n) = \langle y_n \rangle$ (see Lemma 8). Therefore if $\phi(F) = \langle H \rangle$ we have that $y_n \in H$ for all *n*. But then $y \in H$ and hence $h(y) \in F$. This is a contradiction. Therefore the sequence $\{h(y_n)\}\$ accumulates at h(y). Without loss of generality assume that $h(y_n) \to h(y)$. Now choose distinct subsequences $\{y_n'\}$ and $\{y_n''\}$ of $\{y_n\}$. By the above we may assume that $h(y_n) \to h(y)$ and $h(y_n) \to h(y)$. Let $F = \{h(y_n')\}$ and $H = \{h(y_n'')\}$. The sets F and H satisfy the conditions of the last lemma and so let U and V be as in the lemma. Then $\overline{U} \cap \overline{V} = \{h(y)\}$. Let $\phi \langle \bar{U} \rangle = \langle R \rangle$ and $\phi \langle \bar{V} \rangle = \langle S \rangle$. Since U is a neighborhood of each $h(y_n)$ there exist closed sets L'_n such that $h(y'_n) \in L'_n \subseteq \overline{U} \subseteq \overline{U}$ and $\phi(L'_n) = \langle y'_n \rangle$ (see Lemma 8). Therefore $y_n' \in R$. Likewise each y_n'' belongs to S. But since R and S are closed this means that $y \in R \cap S$. Then $\langle R \cap S \rangle = \langle R \rangle \circ \langle S \rangle =$ $\phi(\bar{U}) \circ \phi(\bar{V}) = \phi(\bar{U} \cap \bar{V}) = \phi(h(y))$. Now since $y \in R \cap S$ we have that $\phi(h(y)) \neq 0$. But then ϕ is an isomorphism by [3] (and hence X is homeomorphic to Y).

COROLLARY 13. Suppose X is I^n , S^n , \mathscr{C} (the Cantor discontinuum) or I^{∞} . Then any epimorphism ϕ from $I_F(X)$ onto $I_F(Y)$ (where Y is any nontrivial first countable T_1 space) must be an isomorphism.

Proof. Let $y \in Y$. Then since ϕ is an epimorphism there exists a closed set J such that $\phi\langle J \rangle = \langle y \rangle$. But J must be compact since X is compact. Now apply Theorem 12.

COROLLARY 14. Suppose X is I^n , S^n , \mathscr{C} or I^{∞} . Then the semigroup $I_F(X)$ is hopfian.

Although Theorem 12 shows that for many spaces X and Y any epimorphism from $I_F(X)$ onto $I_F(Y)$ must be an isomorphism this is not always the case. If X is any space which does not contain proper closed homeomorphic copies of itself (for instance X could be \mathbb{R}^n) and Y is trivial (i.e., $Y = \{y\}$) then the following map ϕ will be an epimorphism from $I_F(X)$ onto $I_F(Y)$:

$$\phi(f) = 0$$
 if dom $f \neq X$
 $\phi(f) = \langle y \rangle$ otherwise.

For another example of an epimorphism which is not an isomorphism let X = R (the reals), $Y = \{y, z\}$ and define an epimorphism ϕ by the following:

$$y \in \operatorname{dom} \phi(f)$$
 if $[a, \infty) \subseteq \operatorname{dom} f$ for some a

 $z \in \operatorname{dom} \phi(f)$ if $(-\infty, b] \subseteq \operatorname{dom} f$ for some b

if
$$y \in \text{dom } \phi(f)$$
 then $\phi(f)(y) = y$ if $f[a, \infty) = [c, \infty)$ for some c ,
 $\phi(f)(y) = z$ otherwise

if $z \in \text{dom } \phi(f)$ then $\phi(f)(z) = z$ if $f(-\infty, b] = (-\infty, d]$ for some d, $\phi(f)(z) = y$ otherwise

$$\phi(f) = 0$$
 for all other maps f .

Although not all epimorphisms from $I_F(R)$ onto $I_F(Y)$ are isomorphisms we do have the result that all epimorphisms from $I_F(R)$ onto $I_F(R)$ are isomorphisms:

THEOREM 15. $I_F(R)$ is hopfian.

Proof. Let ϕ be an epimorphism from $I_F(R)$ onto $I_F(R)$. Call a set $W \subseteq R$ right ended (respectively left ended) if W contains a set of the form $[w, \infty)$ (respectively $(-\infty, w]$). Suppose $a \in R$ and $\phi(A) = \langle [a, \infty) \rangle$. Choose B homeomorphic to A such that $\phi(B) = \langle (-\infty, b] \rangle$ where b < a. Then $\phi \langle A \cap B \rangle = \phi \langle A \rangle \circ \phi \langle B \rangle = 0$. If A is both right and left ended then B must be also and hence $A \cap B$ contains a copy of A $(A \neq R)$. But then $\phi \langle A \cap B \rangle \neq 0$ which is a contradiction. Therefore A cannot be both right and left ended. If A is neither right nor left ended then there exist sets B and C homeomorphic to A where A, B and C are mutually disjoint. Let $\phi(B) = \langle S \rangle$ and $\phi(C) = \langle T \rangle$. Then S and T are homeomorphic to $[a, \infty)$ and so at least two of the three sets S, T and $[a, \infty)$ have nonempty intersection. But this is impossible since A, B and C are mutually disjoint. Thus if $\phi(A) = \langle [a, \infty) \rangle$ then A must be right or left ended but not both (true for arbitrary $a \in R$ and $A \subseteq R$ such that $\phi(A) = \langle [a, \infty) \rangle$. Without loss of generality suppose A is right ended (and hence not left ended). Now let B = k(A) where k maps R onto R by k(x) = -x. Then $\phi(B) = \langle S \rangle$ for some S homeomorphic to $[a, \infty)$. If *S* is of the form $[s, \infty)$ then

$$\phi \langle A \cap B \rangle = \phi \langle A \rangle \circ \phi \langle B \rangle = \langle [a, \infty) \cap [s, \infty) \rangle.$$

But $A \cap B$ is neither right nor left ended which contradicts the above result. Therefore S is of the form $(-\infty, s]$. Now if A is not contained in $[w, \infty)$ for some w then let C be homeomorphic to A with C right ended but $A \cap C \subseteq$

806

 $[r, \infty)$ for some r. Then $\phi\langle C \rangle = \langle T \rangle$ with T homeomorphic to $[a, \infty)$. As above T cannot be of the form $(-\infty, t]$ since $B \cap C$ is neither right nor left ended. Let $T \cap [a, \infty) = [e, \infty)$ and let $W = A \cap C$. Then $\phi\langle W \rangle = \langle [e, \infty) \rangle$, W is right ended and $W \subseteq [w, \infty)$ for some w. Choose U homeomorphic to W with $\phi\langle U \rangle = (-\infty, e]$. If U is right ended then $U \cap W$ contains a copy of W but $\phi\langle U \cap W \rangle = \langle e \rangle$ which is a contradiction. Therefore U is left ended and $U \subseteq (-\infty, u]$ for some u. But $U \cap W$ is compact and $\phi\langle U \cap W \rangle = \langle e \rangle$. By Theorem 12, ϕ is an isomorphism.

The author would like to thank the referee for many helpful suggestions.

References

- 1. B. B. Baird, Epimorphisms of inverse semigroups of homeomorphisms between closed subsets, Semigroup Forum 14 (1977), 161-166.
- A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Math. Surveys of the Amer. Math. Soc. 7 Vol. 2 (Providence, 1967).
- 3. D. B. McAlister, Homomorphisms of semigroups of binary relations, Semigroup Forum 3 (1971), 185-188.
- 4. W. J. Thron, Lattice-equivalence of topological spaces, Duke Mathematical J. 29 (1962), 671-679.

University of Florida, Gainesville, Florida