INVERSE SEMIGROUPS OF HOMEOMORPHISMS ARE HOPFIAN

BRIDGET B. BAIRD

If X is a nonempty topological T_{1} space then the set of all homeomorphisms whose domains and ranges are closed subsets of X forms a semigroup under partial composition of functions. We call it $I_{F}(X)$. If, in a semigroup, every element a is matched with a unique element b such that $a b a=a$ and $b a b=b$ then the semigroup is an inverse semigroup (b is called the inverse of a and is denoted by $\left.a^{-1}\right)$. We have that $I_{F}(X)$ is an inverse semigroup with the algebraic inverse of a $\operatorname{map} f$ being just the inverse map f^{-1}. In this paper we examine epimorphisms from $I_{F}(X)$ onto $I_{F}(Y)$. The main theorem gives conditions under which an epimorphism must be an isomorphism. A consequence of this theorem is that for many spaces X (including all finite n-dimensional Euclidean cubes I^{n}, all finite n-dimensional spheres S^{n}, and the Cantor discontinuum \mathscr{C}) every epimorphism from $I_{F}(X)$ onto $I_{F}(Y)$ must be an isomorphism (Y is an arbitrary first countable T_{1} space). Thus for all of these spaces the semigroup $I_{F}(X)$ is hopfian (every surjective endomorphism is an isomorphism). Another theorem shows that $I_{F}(R)$ is also hopfian (R denotes the real line). In [1] a research article stated some of these results. The case where X is the unit interval or the Cantor discontinuum was mentioned. The present paper extends those results but uses entirely different techniques.

These inverse semigroups $I_{F}(X)$ behave nicely in the sense that $I_{F}(X)$ and $I_{F}(Y)$ are isomorphic if and only if X and Y are homeomorphic (see [4]). In fact, if ϕ is an isomorphism from $I_{F}(X)$ onto $I_{F}(Y)$ then there is a homeomorphism h from X onto Y such that $\phi(f)=h \circ f \circ h^{-1}$ for all $f \in I_{F}(X)$. Idempotents (elements f such that $f \circ f=f$) in $I_{F}(X)$ are identity maps on closed subsets K of X and will be denoted by $\langle K\rangle$. The identity map on the point y will be denoted by $\langle y\rangle$. The zero of the semigroup $I_{F}(X)$ is just the empty map and will be denoted by 0 . Throughout this paper we shall assume that $|X|>2$, X is T_{2}, and Y is nontrivial T_{1} (i.e., Y has more than one point). We also assume that ϕ is an epimorphism from $I_{F}(X)$ onto $I_{F}(Y)$. Note that we then have that $\phi(0)=0$ and $(\phi(f))^{-1}=\phi\left(f^{-1}\right)$. Epimorphisms carry idempotents to idempotents and so if $\langle F\rangle \in I_{F}(X)$ then $\phi\langle F\rangle=\langle R\rangle$ for some closed subset R of Y. Conversely, if $\langle R\rangle \in I_{F}(Y)$ then there exists a closed subset F of X such that $\phi\langle F\rangle=\langle R\rangle$ (see [2], p. 57). The notation $\langle x, y\rangle$ will denote the homeomorphism whose domain is the point x and whose range is the point y. McAlister [3] has shown that if $\phi\langle x, y\rangle \neq 0$ for some $x, y \in X$ then ϕ is an

[^0]isomorphism. If $y \in Y$ let $D_{y}=\cap\{F: \phi\langle F\rangle=\langle y\rangle\}$. The collection $\{F: \phi\langle F\rangle=$ $\langle y\rangle\}$ satisfies the finite intersection property (if $\phi\langle F\rangle=\langle y\rangle=\phi\langle H\rangle$ then $\phi\langle F \cap H\rangle=\phi(\langle F\rangle \circ\langle H\rangle)=\phi\langle F\rangle \circ \phi\langle\mathrm{N}\rangle=\langle y\rangle)$. Thus if X is compact then $D_{y} \neq \emptyset$ for all $y \in Y$.

Lemma 1. Suppose ϕ is an epimorphism from $I_{F}(X)$ onto $I_{F}(Y)$. (a) Let $k \in I_{F}(X)$ be such that $K=\operatorname{dom} k$ (domain of $\left.k\right), H=\operatorname{ran} k$ (range of (k)), $\phi\langle K\rangle=\langle R\rangle$ and $\phi\langle H\rangle=\langle S\rangle$. Then $\phi(k)$ maps R homeomorphically onto S. (b) Suppose $\phi\langle F\rangle=\langle T\rangle, R \subseteq T$ and R is homeomorphic to S. Then there exist homeomorphic sets K and H such that $H \subseteq F, \quad \phi\langle H\rangle=\langle R\rangle \quad$ and $\quad \phi\langle K\rangle=\langle S\rangle$.

Proof. (a) We have that

$$
\begin{aligned}
\operatorname{dom} \phi(k)=\operatorname{dom}\left((\phi(k))^{-1} \circ \phi(k)\right) & =\operatorname{dom}\left(\phi\left(k^{-1}\right) \circ \phi(k)\right) \\
& =\operatorname{dom} \phi\left(k^{-1} \circ k\right)=\operatorname{dom} \phi\langle K\rangle=R .
\end{aligned}
$$

Likewise ran $\phi(k)=S$.
(b) Since R is homeomorphic to S there exists $k \in I_{F}(X)$ such that $\phi(k)$ maps R homeomorphically onto S. Suppose dom $k=J$ and ran $k=G$. Then $\phi\langle J\rangle=\phi\left(k^{-1} \circ k\right)=\langle R\rangle$ and $\phi\langle G\rangle=\langle S\rangle$. Now

$$
\phi\langle J \cap F\rangle=\phi\langle J\rangle \circ \phi\langle F\rangle=\langle R\rangle \circ\langle T\rangle=\langle R \cap T\rangle=\langle R\rangle .
$$

Let $H=J \cap F$ and $K=k(H)$. Then $\phi\langle H\rangle=\langle R\rangle, H \subseteq F$ and H is homeomorphic to K. We also have that

$$
\phi\langle K\rangle=\phi\langle k(H)\rangle=\phi\left(k \circ\langle H\rangle \circ k^{-1}\right)=\phi(k) \circ \phi(k)^{-1}=\langle\phi(k)(R)\rangle=\langle S\rangle .
$$

Lemma 2. Suppose $\phi\langle F\rangle=\langle p\rangle$ for some $p \in Y$ and compact $F \subseteq X$. Then $D_{y} \neq \emptyset$ for all $y \in Y$ and $D_{y}=\cap\{K: \phi\langle K\rangle=\langle y\rangle, K$ compact $\}$.

Proof. We have that

$$
\begin{aligned}
D_{p}=F \cap\{K: \phi\langle K\rangle=\langle p\rangle\}= & \cap\{F \cap K: \phi\langle K\rangle=\langle p\rangle\} \subseteq \\
& \cap\{K: \phi\langle K\rangle=\langle p\rangle, K \text { compact }\} \subseteq D_{p} .
\end{aligned}
$$

Thus $D_{p}=\cap\{K: \quad \phi\langle K\rangle=\langle p\rangle, K$ compact $\}$ and since the latter collection has the finite intersection property, $D_{p} \neq \emptyset$. Since F is compact, $\langle F\rangle$ generates an ideal \mathscr{U} whose idempotents are all identities on compact sets. Now $\phi(\mathscr{U})$ is an ideal of $I_{F}(Y)$ which contains $\langle p\rangle$ and so contains all maps of the form $\langle y\rangle$. Therefore for any $y \in Y$, there is a compact set K such that $\phi\langle K\rangle=\langle y\rangle$. We now apply the first part of the proof to obtain the fact that $D_{y} \neq \emptyset$ for all y and $D_{y}=\cap\{K: \phi\langle K\rangle=\langle y\rangle, K$ compact $\}$.

Definition 3. X will be called admissible (respectively strongly admissible) if whenever F is a proper compact subset of X (respectively F is a compact subset of X), $\quad x \in F$ and U is any neighborhood of x, then there exists a homeomorphism h from F into U such that $h(x)=x$.

Remark. The space S^{1} is admissible but not strongly admissible. All noncom-
pact admissible spaces are strongly admissible. The class of admissible spaces is not productive (e.g., $S^{1} \times S^{1}$) but the class of strongly admissible spaces is productive.

Proposition 4. The product of strongly admissible spaces is strongly admissible.

Proof. Let $\prod_{j \in J} X_{j}$ be a product of strongly admissible spaces, let K be a compact subset of this product, let $q \in K$ and let G be a neighborhood of q. Then there exists a finite set $\{1,2, \ldots, N\}$ and open sets $G_{j} \subseteq X_{j}$ for $j=1, \ldots, N$ such that

$$
q \in p_{1}^{-1}\left(G_{1}\right) \cap \ldots \cap p_{N}^{-1}\left(G_{N}\right) \subseteq G
$$

where p_{j} denotes the projection map onto X_{j}. Since each X_{j} is strongly admissible there exist homeomorphisms $h_{j}(j=1, \ldots, N)$ from $p_{j}(K)$ into G_{j} such that $h_{j}\left(q_{j}\right)=q_{j}$. Define h from $\prod_{j \in J} p_{j}(K)$ into $\bigcap_{i=I}^{N} p_{j}^{-1}\left(G_{j}\right)$ by

$$
\begin{aligned}
& (h(x))_{j}=h_{j}\left(x_{j}\right) \text { for } j=1, \ldots, N \\
& (h(x))_{j}=x_{j} \quad \text { otherwise. }
\end{aligned}
$$

Then h is a homeomorphism and $h(q)=q$. Since $K \subseteq \prod_{j \in J} p_{j}(K)$ and $\bigcap_{j=1}^{N} p_{j}^{-1}\left(G_{j}\right) \subseteq G$ the proof is complete.

Proposition 5. $I^{n}, R^{n}, I^{\infty}, \mathscr{C}$ (the Cantor discontinuum), the space of rational numbers and the space of irrational numbers are all strongly admissible. S^{n} is admissible.

Proof. It follows from well known results that I, R, \mathscr{C}, the rationals and the irrationals are strongly admissible and that S^{n} is admissible. Now apply Proposition 4.

Remark. Note that the two point discrete space D is not even admissible but the product of D with itself a countable number of times is strongly admissible since it is homeomorphic to \mathscr{C}.

Lemma 6. Suppose X is admissible and $\phi\langle J\rangle=\langle p\rangle$ for some $p \in Y$ and compact $J \subseteq X$. Let $y, w \in Y$ with $y \neq w$. Then $D_{y} \cap D_{w}=\emptyset$.

Proof. We know that $D_{y} \neq \emptyset$ for all y by Lemma 2. Now suppose $D_{\nu} \cap D_{w} \neq \emptyset$. Let $x \in D_{y} \cap D_{w}$ and let F be such that $\phi\langle F\rangle=\langle y\rangle$. Then there exists $z \in F$ such that $z \notin D_{w}$ (otherwise if K is such that $\phi\langle K\rangle=\langle w\rangle$ and $F \subseteq K$ then $\phi\langle F\rangle=0$ which is a contradiction). Now $z \notin D_{w}$ and so there exists W such that $\phi\langle W\rangle=\langle w\rangle$ but $z \notin W$. The set W is closed and so let U be a neighborhood of z where $W \cap U=\emptyset$. We have that X is admissible, $z \in F$ and $z \in U$ and so U contains a copy of F. Call it Z. Then $\phi\langle Z\rangle=\langle q\rangle$
for some $q \in Y$ (see Lemma 1). Now $Z \cap W=\emptyset$ and so $Z \cap D_{w}=\emptyset$. Hence $q \neq w$ and $q \neq y\left(x \in D_{y} \cap D_{w}\right)$. Let $\phi\langle W \cup Z\rangle=\langle R\rangle$. Then $w \in R$ and

$$
q \in R(\langle w\rangle=\phi\langle W\rangle=\phi\langle W\rangle \circ \phi\langle W \cup Z\rangle=\langle w\rangle \circ\langle R\rangle=\langle\{w\} \cap R\rangle)
$$

By Lemma 1 choose homeomorphic sets K and H where $K \subseteq W \cup Z$, $\phi\langle K\rangle=\langle\{w, q\}\rangle$ and $\phi\langle H\rangle=\langle\{y, w\}\rangle$. Let k map K onto H and let $S=K \cap W, Q=K \cap Z$. Then $\phi\langle S\rangle=\langle w\rangle$ and $\phi\langle Q\rangle=\langle q\rangle$. But $S \cap Q=\emptyset$ ($W \cap Z=\emptyset$). Now $k(S) \subseteq H$ and so $\phi\langle k(S)\rangle=\langle y\rangle$ or $\langle w\rangle$. Without loss of generality suppose $\phi\langle k(S)\rangle=\langle y\rangle$. Then $\phi\langle k(Q)\rangle=\langle w\rangle$. Since $S \cap Q=\emptyset$ we have that $k(S) \cap k(Q)=\emptyset$ also. But $x \in k(S) \cap k(Q)$ since $x \in D_{y} \cap D_{w}$. This is a contradiction. Thus $D_{\nu} \cap D_{w}=\emptyset$.

Lemma 7. Suppose X is admissible and $\phi\langle J\rangle=\langle p\rangle$ for some compact set J. Then $\left|D_{y}\right|=1$ for all $y \in Y$.

Proof. Suppose $\left|D_{y}\right|>1$ for some $y \in Y$. Let $x, z \in D_{y}$ where $x \neq z$. Let U be a neighborhood of x such that $z \notin U$. Let F be such that $\phi\langle F\rangle=\langle y\rangle$ and since X is admissible let k be a homeomorphism from F into U where $k(x)=x$. Then $\phi\langle k(F)\rangle=\langle w\rangle$ for some $w \in Y$. Now $w \neq y$ since $z \notin k(F)$ and $z \in D_{y}$. We show that $x \in D_{w}$. Suppose H is such that $\phi\langle H\rangle=\langle w\rangle$. Then $\phi\langle H \cap k(F)\rangle=\langle w\rangle$. Now $k^{-1}(H \cap k(F)) \subseteq F$ and is homeomorphic to $H \cap k(F)$. Therefore $\phi\left\langle k^{-1}(H \cap k(F))\right\rangle=\langle y\rangle$. Thus $x \in k^{-1}(H \cap k(F))$. But since $k(x)=x$ this means that $x \in H \cap k(F)$. Therefore $x \in H$ and so also $x \in D_{w}$. But then $D_{w} \cap D_{y} \neq \emptyset$. This is a contradiction by the last lemma. Thus $\left|D_{y}\right|=1$ for all $y \in Y$.

Remark. If $\phi\langle J\rangle=\langle p\rangle$ for some $p \in Y$ and compact J then the last lemma says that for each $y \in Y$ there is associated an $x \in X$ such that $D_{y}=\{x\}$. Define a map h from Y into X by $h(y)=x$. The function h will be one-to-one by Lemma 6.

Lemma 8. Suppose X is admissible and $\phi\langle J\rangle=\langle p\rangle$ for some compact J. Then for every $y \in Y$ and every neighborhood U of $h(y)$ there exists a closed set F such that $F \subseteq U$ and $\phi\langle F\rangle=\langle y\rangle$.

Proof. Suppose not. Let $x=h(y)$ and let U be a neighborhood of x such that for all F with $\phi\langle F\rangle=\langle y\rangle$ there exists $z \in F-U$. We first show that the collection $\{F-U: \phi\langle F\rangle=\langle y\rangle\}$ satisfies the finite intersection property (clearly the sets are nonempty and closed). Consider $\bigcap_{i=1}^{n}\left(F_{i}-U\right)=\left(\bigcap_{i=1}^{n} F_{i}\right)-U$ where $\phi\left\langle F_{i}\right\rangle=\langle y\rangle$ for all $i=1 \ldots n$. We have that $\phi\left\langle\bigcap_{i=1} F_{i}\right\rangle=\langle y\rangle$ also and hence $\left(\cap_{i=1}^{n} F_{i}\right)-U \neq \emptyset$ by assumption. Therefore $\{F-U: \phi\langle F\rangle=\langle y\rangle\}$ satisfies the finite intersection property. Now

$$
\cap\{F: \phi\langle F\rangle=\langle y\rangle\}=\cap\{F: \quad \phi\langle F\rangle=\langle y\rangle, F \text { compact }\}
$$

by Lemma 2. Therefore

$$
\cap\{F-U: \phi\langle F\rangle=\langle y\rangle\}=\cap\{F-U: \quad \phi\langle F\rangle=\langle y\rangle, F \text { compact }\} \subseteq K
$$

where K is compact and $\phi\langle K\rangle=\langle y\rangle$. Therefore $\cap\{F-U: \phi\langle F\rangle=\langle y\rangle\} \neq \emptyset$. But

$$
\cap\{F-U: \quad \phi\langle F\rangle=\langle y\rangle\} \subseteq \cap\{F: \quad \phi\langle F\rangle=\langle y\rangle\}=\{x\} .
$$

Thus $\cap\{F-U: \quad \phi\langle F\rangle=\langle y\rangle\}=\{x\}$. But $x \in U$. This is a contradiction.
Lemma 9. Suppose X is admissible and $\phi\langle J\rangle=\langle p\rangle$ for some $p \in Y$ and compact J. Suppose also that $\phi(k)(y)=z$ for some $k \in I_{F}(X)$ where $y, z \in Y$. Then $k(h(y))=h(z)$.

Proof. Let dom $k=K$ and let F be any closed set where $F \subseteq K$ and $\phi\langle F\rangle=\langle y\rangle$ (see Lemma 1). Then $h(y) \in F$ and

$$
\phi(k \circ\langle F\rangle)=\phi(k) \circ \phi\langle F\rangle=\phi(k) \circ\langle y\rangle=\langle y, \phi(k)(y)\rangle=\langle y, z\rangle .
$$

Thus the range of $\phi(k \circ\langle F\rangle)$ is z. But by Lemma 1 this means that $\phi\langle k(F)\rangle=\langle z\rangle$ and so $h(z) \in k(F)$. By the last lemma we can take F inside arbitrary neighborhoods U of $h(y)$ and so $k(h(y))=h(z)$.

Notation. Write $y_{\alpha} \rightarrow y$ if the net $\left\{y_{\alpha}\right\}$ converges to y.
Lemma 10. Suppose X is admissible and $\phi\langle J\rangle=\langle p\rangle$ for some $p \in Y$ and compact J. Then Y is not discrete.

Proof. Suppose Y is discrete. We first show that $h(Y)$ must also be discrete. Hence suppose $h(Y)$ is not discrete and let $h\left(y_{\alpha}\right) \rightarrow h(y)$ where $y_{\alpha} \neq y$ for all α. Since $\left\{y_{\alpha}\right\}$ is homeomorphic to $\left\{y_{\alpha}\right\} \cup\{y\}$ there exists a homeomorphism k such that $\phi(k)$ maps $\left\{y_{\alpha}\right\} \cup\{y\}$ onto $\left\{y_{\alpha}\right\}$. Let $\phi(k)(y)=y_{\beta}$. By Lemma 9 we have that $k(h(y))=h\left(y_{\beta}\right)$ and $k\left(h\left(y_{\alpha}\right)\right) \in\left\{h\left(y_{\alpha}\right)\right\}$ for all α. But $h\left(y_{\alpha}\right) \rightarrow h(y)$ and since k is a homeomorphism we have that $k\left(h\left(y_{\alpha}\right)\right) \rightarrow k(h(y))$. This is a contradiction since $k(h(y))=h\left(y_{\beta}\right)$. Thus $h(Y)$ is discrete. We may now choose $h(y) \in h(Y)$ and an open neighborhood U of $h(y)$ such that $U \cap h(Y)=\{h(y)\}$. Let $F \subseteq U$ be such that $\phi\langle F\rangle=\langle y\rangle$ and F is compact. If $|F|=1$ then ϕ is an isomorphism (see [3]) and hence X is homeomorphic to Y. But then X is discrete and clearly cannot be admissible (recall that $|X|>2)$. Therefore $|F| \geqq 2$. Let $x \in F$ with $x \neq h(y)$ and let V be a neighborhood of x such that $V \subseteq U$ but $h(y) \notin V$. Then since X is admissible there exists a homeomorphism from F into V such that $f(x)=x$. The set $f(F)$ is homeomorphic to F and so $\phi\langle f(F)\rangle=\langle z\rangle$ for some z. But

$$
f(F) \subseteq V \subseteq X-h(Y)
$$

and so $f(F) \cap D_{z}=\emptyset$. This is a contradiction. Thus Y is not discrete.
Recall that a completely (or hereditarily) normal space X is one where if A and B are subsets of X with $A \cap \bar{B}=\emptyset=\bar{A} \cap B$ then there are disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$. All metric spaces are completely normal.

Lemma 11. Let X be completely normal and let F and H be subsets of X where $F \cap H=\emptyset, x \notin F \cup H, \bar{F}=F \cup\{x\}$ and $\bar{H}=H \cup\{x\}$. Then there exist disjoint open sets U and V such that $F \subseteq U, H \subseteq V$ and $\bar{U} \cap \bar{V}=\{x\}$.

Proof. Let $Z=X-\{x\}$. Then Z is normal, F and H are closed in Z. Thus there are open subsets A and B of Z such that $F \subseteq A, H \subseteq B$ and $A \cap B=\emptyset$. Now $A=D \cap Z$ and $B=E \cap Z$ where D and E are open in X. Let $U=D-\{x\}$ and $V=E-\{x\}$.

Theorem 12. Suppose X is a completely normal space which is admissible, Y is nontrivial first countable T_{1}, ϕ is an epimorphism from $I_{F}(X)$ onto $I_{F}(Y)$ and $\phi\langle J\rangle=\langle p\rangle$ for some $p \in Y$ and compact set J. Then ϕ is an isomorphism.

Proof. By Lemma 10 the space Y is not discrete. Let $y_{n} \rightarrow y$ where $y_{n} \neq y$ for all n. We first show that the sequence $\left\{h\left(y_{n}\right)\right\}$ accumulates at $h(y)$. Suppose not. Then there exists an open set U such that $h(y) \in U$ but $h\left(y_{n}\right) \notin U$ for all n. In fact, we can choose U so that $h\left(y_{n}\right) \notin \bar{U}$ for all n. Let $F=X-U$. Then for all $n, h\left(y_{n}\right) \in X-\bar{U} \subseteq F$. The set $X-\bar{U}$ is open and so for all n there exists F_{n} such that $h\left(y_{n}\right) \in F_{n} \subseteq X-\bar{U} \subseteq F$ and $\phi\left\langle F_{n}\right\rangle=\left\langle y_{n}\right\rangle$ (see Lemma 8). Therefore if $\phi\langle F\rangle=\langle H\rangle$ we have that $y_{n} \in H$ for all n. But then $y \in H$ and hence $h(y) \in F$. This is a contradiction. Therefore the sequence $\left\{h\left(y_{n}\right)\right\}$ accumulates at $h(y)$. Without loss of generality assume that $h\left(y_{n}\right) \rightarrow h(y)$. Now choose distinct subsequences $\left\{y_{n}{ }^{\prime}\right\}$ and $\left\{y_{n}{ }^{\prime \prime}\right\}$ of $\left\{y_{n}\right\}$. By the above we may assume that $h\left(y_{n}{ }^{\prime}\right) \rightarrow h(y)$ and $h\left(y_{n}{ }^{\prime \prime}\right) \rightarrow h(y)$. Let $F=\left\{h\left(y_{n}{ }^{\prime}\right)\right\}$ and $H=\left\{h\left(y_{n}{ }^{\prime \prime}\right)\right\}$. The sets F and H satisfy the conditions of the last lemma and so let U and V be as in the lemma. Then $\bar{U} \cap \bar{V}=\{h(y)\}$. Let $\phi\langle\bar{U}\rangle=\langle R\rangle$ and $\phi\langle\bar{V}\rangle=\langle S\rangle$. Since U is a neighborhood of each $h\left(y_{n}{ }^{\prime}\right)$ there exist closed sets $L_{n}{ }^{\prime}$ such that $h\left(y_{n}{ }^{\prime}\right) \in L_{n}{ }^{\prime} \subseteq U \subseteq \bar{U}$ and $\phi\left\langle L_{n}{ }^{\prime}\right\rangle=\left\langle y_{n}{ }^{\prime}\right\rangle$ (see Lemma 8). Therefore $y_{n}{ }^{\prime} \in R$. Likewise each $y_{n}{ }^{\prime \prime}$ belongs to S. But since R and S are closed this means that $y \in R \cap S$. Then $\langle R \cap S\rangle=\langle R\rangle \circ\langle S\rangle=$ $\phi\langle\bar{U}\rangle \circ \phi\langle\bar{V}\rangle=\phi\langle\bar{U} \cap \bar{V}\rangle=\phi\langle h(y)\rangle$. Now since $y \in R \cap S$ we have that $\phi\langle h(y)\rangle \neq 0$. But then ϕ is an isomorphism by [3] (and hence X is homeomorphic to Y).

Corollary 13. Suppose X is $I^{n}, S^{n}, \mathscr{C}$ (the Cantor discontinuum) or I^{∞}. Then any epimorphism ϕ from $I_{F}(X)$ onto $I_{F}(Y)$ (where Y is any nontrivial first countable T_{1} space) must be an isomorphism.

Proof. Let $y \in Y$. Then since ϕ is an epimorphism there exists a closed set J such that $\phi\langle J\rangle^{\prime}=\langle y\rangle$. But J must be compact since X is compact. Now apply Theorem 12.

Corollary 14. Suppose X is $I^{n}, S^{n}, \mathscr{C}$ or I^{∞}. Then the semigroup $I_{F}(X)$ is hopfian.

Although Theorem 12 shows that for many spaces X and Y any epimorphism from $I_{F}(X)$ onto $I_{F}(Y)$ must be an isomorphism this is not always the case. If X is any space which does not contain proper closed homeomorphic
copies of itself (for instance X could be R^{n}) and Y is trivial (i.e., $Y=\{y\}$) then the following map ϕ will be an epimorphism from $I_{F}(X)$ onto $I_{F}(Y)$:

$$
\begin{aligned}
& \phi(f)=0 \quad \text { if } \quad \operatorname{dom} f \neq X \\
& \phi(f)=\langle y\rangle \quad \text { otherwise. }
\end{aligned}
$$

For another example of an epimorphism which is not an isomorphism let $X=R$ (the reals), $Y=\{y, z\}$ and define an epimorphism ϕ by the following:
$y \in \operatorname{dom} \phi(f)$ if $[\mathrm{a}, \infty) \subseteq \operatorname{dom} f$ for some a
$z \in \operatorname{dom} \phi(f)$ if $(-\infty, b] \subseteq \operatorname{dom} f$ for some b
if $y \in \operatorname{dom} \phi(f)$ then $\phi(f)(y)=y$ if $f[a, \infty)=[c, \infty)$ for some c,

$$
\phi(f)(y)=z \text { otherwise }
$$

if $z \in \operatorname{dom} \phi(f)$ then $\phi(f)(z)=z$ if $f(-\infty, b]=(-\infty, d]$ for some d,

$$
\phi(f)(z)=y \text { otherwise }
$$

$\phi(f)=0$ for all other maps f.
Although not all epimorphisms from $I_{F}(R)$ onto $I_{F}(Y)$ are isomorphisms we do have the result that all epimorphisms from $I_{F}(R)$ onto $I_{F}(R)$ are isomorphisms:

Theorem 15. $I_{F}(R)$ is hopfian.
Proof. Let ϕ be an epimorphism from $I_{F}(R)$ onto $I_{F}(R)$. Call a set $W \subseteq R$ right ended (respectively left ended) if W contains a set of the form $[w, \infty$) (respectively $(-\infty, w])$. Suppose $a \in R$ and $\phi\langle A\rangle=\langle[a, \infty)\rangle$. Choose B homeomorphic to A such that $\phi\langle B\rangle=\langle(-\infty, b]\rangle$ where $b<a$. Then $\phi\langle A \cap B\rangle=\phi\langle A\rangle \circ \phi\langle B\rangle=0$. If A is both right and left ended then B must be also and hence $A \cap B$ contains a copy of $A(A \neq R)$. But then $\phi\langle A \cap B\rangle \neq 0$ which is a contradiction. Therefore A cannot be both right and left ended. If A is neither right nor left ended then there exist sets B and C homeomorphic to A where A, B and C are mutually disjoint. Let $\phi\langle B\rangle=\langle S\rangle$ and $\phi\langle C\rangle=\langle T\rangle$. Then S and T are homeomorphic to $[a, \infty)$ and so at least two of the three sets S, T and $[a, \infty)$ have nonempty intersection. But this is impossible since A, B and C are mutually disjoint. Thus if $\phi\langle A\rangle=\langle[a, \infty)\rangle$ then A must be right or left ended but not both (true for arbitrary $a \in R$ and $A \subseteq R$ such that $\phi\langle A\rangle=\langle[a, \infty)\rangle)$. Without loss of generality suppose A is right ended (and hence not left ended). Now let $B=k(A)$ where k maps R onto R by $k(x)=-x$. Then $\phi\langle B\rangle=\langle S\rangle$ for some S homeomorphic to $[a, \infty)$. If S is of the form $[s, \infty)$ then

$$
\phi\langle A \cap B\rangle=\phi\langle A\rangle \circ \phi\langle B\rangle=\langle[a, \infty) \cap[s, \infty)\rangle .
$$

But $A \cap B$ is neither right nor left ended which contradicts the above result. Therefore S is of the form $(-\infty, s]$. Now if A is not contained in $[w, \infty)$ for some w then let C be homeomorphic to A with C right ended but $A \cap C \subseteq$
$[r, \infty)$ for some r. Then $\phi\langle C\rangle=\langle T\rangle$ with T homeomorphic to $[a, \infty)$. As above T cannot be of the form $(-\infty, t]$ since $B \cap C$ is neither right nor left ended. Let $T \cap[a, \infty)=[e, \infty)$ and let $W=A \cap C$. Then $\phi\langle W\rangle=\langle[e, \infty)\rangle$, W is right ended and $W \subseteq[w, \infty)$ for some w. Choose U homeomorphic to W with $\phi\langle U\rangle=(-\infty, e]$. If U is right ended then $U \cap W$ contains a copy of W but $\phi\langle U \cap W\rangle=\langle e\rangle$ which is a contradiction. Therefore U is left ended and $U \subseteq(-\infty, u]$ for some u. But $U \cap W$ is compact and $\phi\langle U \cap W\rangle=\langle e\rangle$. By Theorem 12, ϕ is an isomorphism.

The author would like to thank the referee for many helpful suggestions.

References

1. B. B. Baird, Epimorphisms of inverse semigroups of homeomorphisms between closed subsets, Semigroup Forum 14 (1977), 161-166.
2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys of the Amer. Math. Soc. 7 Vol. 2 (Providence, 1967).
3. D. B. McAlister, Homomorphisms of semigroups of binary relations, Semigroup Forum 3 (1971), 185-188.
4. IV. J. Thron, Lattice-equivalence of topological spaces, Duke Mathematical J. 29 (1962), 671-679.

University of Florida, Gainesville, Florida

[^0]: Received November 15, 1977 and in revised form November 10, 1978.

