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COPRIME GROUP ACTIONS FIXING ALL 
NONLINEAR IRREDUCIBLE CHARACTERS 

I. M. ISAACS 

1. Introduction. The main result of this paper is the following: 

THEOREM A. Let H and N be finite groups with coprime orders and 
suppose that H acts nontrivially on N via automorphisms. Assume that H 
fixes every nonlinear irreducible character ofN. Then the derived subgroup of 
N is nilpotent and so N is solvable of nilpotent length â 2 . 

Why might one be interested in a situation like this? There has been 
considerable interest in the question of what one can deduce about a 
group G from a knowledge of the set 

cd(G) = {x(l)lx e Irr(G) } 

of irreducible character degrees of G. Recently, attention has been focused 
on the prime divisors of the elements of cd(G). For instance, in [9], 
O. Manz and R. Staszewski consider 77-separable groups (for some set 77 of 
primes) with the property that every element of cd(G) is either a 77-number 
or a 7r'-number. They prove in that situation (although their result is stated 
slightly differently) that either G has a normal abelian Hall 77 or 
7r'-subgroup or else G is solvable with nilpotent length ^ 5 . 

Our Theorem A, which was communicated privately to Manz and 
Staszewski is a key ingredient in their proof. (I apologize to them for any 
difficulties caused by my two-year delay in getting this theorem into 
print.) 

I would like to mention at this point, that it was B. Huppert, to whom 
this paper is dedicated, who is largely responsible for the renewed interest 
in character degree problems in recent years, especially problems of the 
type considered by Manz and Staszewski concerning prime divisors of 
character degrees. I would also like to thank Prof. Huppert for inviting me 
to Mainz in the summer of 1985 when most of this research was done and 
in the summer of 1987 when it was finally written up. 

One may wonder what further conclusions one can draw about the 
group N of Theorem A. We know that N' must be nilpotent, but is there 
any bound on its nilpotence class? The answer is "no". In fact, even its 
derived length is unbounded. 

Received September 11, 1987 and in revised form June 13, 1988. This research was 
partially supported by the National Science Foundation and the Deutsche Forschungs-
gemeinschaft. This paper is dedicated to B. Huppert on his sixtieth birthday. 
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THEOREM B. In the situation of Theorem A, the group N can have arbi
trarily large derived length. 

The construction we use to prove Theorem B also allows us to build 
groups where the fraction of all irreducible characters which are nonlinear 
is arbitrarily small and yet the group has arbitrarily large derived length. 
This is relevant to the questions considered in [6] and indeed, the con
struction used here is a generalization of an example in that paper. 

Finally, we mention that on the way toward proving Theorem A, we 
obtain a result relevant to a class of groups studied by A. R. Camina: 
groups having a normal subgroup K with 1 < K < G such that every 
conjugacy class of G outside of K is a union of cosets of K. It is well known 
that this holds if K is a Frobenius kernel in G. Camina proved [1] that if 
this is not the case, then either K or G/K must be a /?-group for some 
prime p. Our result is the following. 

THEOREM C. If K and G satisfy Camina's condition above and G/K is a 
p-group, then G has a normal p-complement. 

This theorem generalizes some of the results in [2]. 

2. Theorem C. We begin by proving a theorem that includes the result 
stated in the introduction as Theorem C. 

(2.1) THEOREM. Let 1 < K < G and assume that G/K is a nontrivial 
nilpotent group. Suppose that each conjugacy class of G outside of K is a 
union of cosets of K. Then either 

(i) G is a Frobenius group with kernel K or 
(ii) G/K is a p-group for some prime p. 

If (ii) holds, then G has a normalp-complement M and CG(m) Q Kfor all 
m G M - {1}. 

Observe that the two cases are not mutually exclusive and that Theorem 
C is included within the last sentence. For our proof of Theorem A, we 
actually only need to use Theorem 2.1 when G/K is abelian. Adding that 
assumption to the hypotheses, however, would not, it seems, make the 
result substantially easier to prove. 

Our proof includes some of Camina's arguments from [1]. 

Proof of Theorem 2.1. We begin with an observation (appearing in [1] ) 
which we will use repeatedly. It is that if g <E G — K, then 

|Cc(g) I = \CG/K(Kg) |. 

To see this, note that the conjugacy class clG(g) is the union of exactly 
those cosets of K which constitute the class c\G/K(Kg). It follows that 

\G:CG(g) | = |clG(g) | = |tf| \dG/K(Kg) \ = \K\\ (G/K):CG/K(Kg) \ 
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whence we obtain \CG(g) | = \CG/K(Kg) | as claimed. 
Now suppose that G splits over K so that G = KU with K n U = 1 for 

some subgroup U. If w G [/ — {1}, then the natural isomorphism between 
U and G/K yields 

I C ^ I I ) | = \CG/K(Ku) | = | C C ( I I ) | 

and so CG(u) Q U. It follows that G is a Frobenius group and (i) holds. 
We need another general observation. Let g G G — K and let 

k G CK(g). Then g is conjugate to gk and so 

1 = (gk)°W = jfc°te) 

and hence 6>(A:) divides #(&)• 
Suppose G does not split over K. We wish to establish (ii) and so we 

assume that the nilpotent group G/K is not a /?-group for any prime p. 
We can choose, therefore, z G G — K such that Kz G Z(G/K) and 
o(Xz) = /?# for primes p ^ q. Let r and 5 be the /?'-part and g'-part of o(z) 
respectively and let x = z r and y = z5. Then o(x) is a /?-power, o(^) is a 
g-power and x, y £ K. Suppose k G C ^ ( Z ) . Then /c G C ^ ( X ) and so o{k) 
divides o(x). Similarly, o(k) divides o(y) and hence k = 1. Therefore 
C^(z) = 1. Let C = CG(z). Then # n C = 1 and 

|C| = \CG/K(Kz) | = \G/K\ 

since Kz G Z(G/K). It follows that XC = G and this contradicts our 
nonsplitting assumption and shows that (i) or (ii) must occur. 

Now assume that G/K is a /?-group and let P G Syl^G). By Tate's 
theorem (see Satz IV.4.7 of [5] or Theorem 6.31 of [7] ), in order to prove 
that G has a normal /^-complement, it suffices to show that P n K Q P'. 
Let z G P - K with Kz G Z(G/K) and let Q = [P9 z] < P. Since 
[G, z] ç # , we have Q Q P n K. 

Now, by Corollary 2.24 of [7], for instance, 

|C P (z) | ë \CP/Q(Qz)\ = \P/Q\. 

Therefore 

\P/Q\ ^ |C P (z) | ^ |CG(z) | = \CG/K(Kz)\ = \G/K\ = \P/P n tf| 

and hence \Q\ è |P n X|. Since g c p n l , w e have 

P n i r = g = [ P , z ] ç p ' 

and G has a normal /^-complement M. 
Finally, let 1 ¥= m G M and suppose CG(m) % K. Choose g <E G — K 

centralizing m and note that |CG(g) | = \CG/K(Kg) | is a /7-power. Thus 
CG(g) is a /7-group and cannot contain m. 

3. Theorem A. We need a preliminary lemma. 
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(3.1) LEMMA. Let P be a p-group with class ^ 2 and suppose that P acts 
on some nontrivialp'-group Q such that CP(x) ^ P' for all x e Q — {1}. 
Then the action is Frobenius and P is either cyclic or isomorphic to g8 . 

Proof. If the action is Frobenius, then, as is well known, P is cyclic or 
generalized quaternion. Since we are assuming that P has class ^ 2 , the 
only generalized quaternion group that can occur is Q%. 

It suffices, then, to show that the action is Frobenius and we do this 
by induction on \P\. If the action is not Frobenius, then there exists 
x e Q ~ {1} such that CP(x) > 1. Write Z = CP(x) and note that 
Z Q P' Q Z(P) and so Z < P. Let C = CQ(Z) and note that C > 1 and 
P/Z acts on C. 

I f j ^ e C - {1}, then 

CP/z(y) = CP(y)/Z ç P'/Z = (P/Z)> 

and so the action of P/Z on C satisfies the hypotheses of the lemma. Since 
\P/Z\ < \P\9 the inductive hypothesis tells us that P/Z is either cyclic or 
isomorphic to Q%. 

If P/Z is cyclic, then P is abelian and this is a contradiction since 
1 < Z Ç f . If P/Z = £>8, then P = AB for subgroups A, B containing 
Z with A/Z and B/Z cyclic of order 4. It follows that A and B are abelian 
and so A n 5 ç Z(P) and |P:Z(P) | % 4. This forces |P'| ^ 2 and since 
Z Q P\ we conclude that Z = P' and g 8 = P / Z is abelian, a 
contradiction. 

We are almost ready now to prove Theorem A. Before we do, however, 
we wish to remind the reader of two relevant facts. 

(3.2) LEMMA. Let H act on N where ( \H\, \N\ ) = 1. Then 
(a) H fixes equal numbers of irreducible characters and conjugacy classes 

ofN. 
(b) If H fixes every irreducible character of N, then H acts trivially 

on N. 

Proof Part (a) is a consequence of the fact that the number of //-fixed 
irreducible characters of N is equal to the total number of irreducible 
characters of C = CN(H). If H is solvable, this equality follows by a result 
of G. Glauberman [3] (or see Chapter 13 of [7] ). If N is solvable, 
the equality follows by results of E. C. Dade and the author. (Perhaps the 
most accessible proof of this can be found in [8].) By the Feit-Thompson 
theorem, at least one of N or H must be solvable and so the equality 
always holds. 

To complete the proof of (a), it suffices to note that K I—» K n C defines 
a bijection from the set of all H-fixed classes of G onto the set of all classes 
of C This fact, proved using the conjugacy part of the Schur-Zassenhaus 
theorem, also relies on the Feit-Thompson theorem to guarantee that one 
of H or N is solvable. (See Corollary 13.10 of [7].) 
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The proof of part (b) lies much less deep since it is no loss in that case to 
assume that H is cyclic. Then, a result of R. Brauer (Theorem 6.32 of [7] ) 
can substitute for part (a) of this lemma to guarantee that H fixes each 
class of G. It follows that K n C ^ 0 for each class K. (In fact, we could 
assume H is a ^-group. In that case, this is a triviality.) Therefore, 

G = U Cx 

and as is well known, this forces C = G. 

The next result is a somewhat more precise formulation of Theo
rem A. 

(3.3) THEOREM. Let H act nontrivially on N {via automorphisms) and as
sume that ( |iV|, \H | ) = 1. Suppose that H fixes every nonlinear irreducible 
character of N. Let M = [N, H]. Then, 

(a) M = N'. 
(b) M is either abelian, a class 2 p -group for some prime p or a Frobenius 

group with kernel M'. 
(c) N is nilpotent. 

Proof The subgroup N'M is //-invariant and so H permutes its 
irreducible characters. We claim that H fixes every a e lvr{NM) with 
the property that N £ ker a. To see this, let x e Irr(iV|a) and note that 
N <2 ker x so that x is nonlinear and hence is //-invariant. It follows by 
Theorem 13.27 of [7] that some irreducible constituent /? of XN'M ls fixed 
by / / . We can write a = fin for some n e N.ll h G H, then n = nm for 
some m G M and we have 

ah = (pn)h = (fih)nm = fi" = a 

since /? = 13 and m e N'M. Thus a is //-invariant, as claimed. 
Next, let v G Irr(Af') with v ¥= \N,. We will show that v cannot extend to 

a character v G lrr(N'M). If such an extension existed, then for any 
ju G Irr(N'M/N'), we have that ôju is irreducible and if ujuj = uju,2 

for /i,- G \TT(N'M/N'\ then /A, = /x2 by Gallagher's theorem (6.17 of [7] ). 
Now N % ker ô and N' 2 ker(u/x) for /x G ITT(N'M/N') and so by the first 
paragraph, / / fixes both v and ô/x. If h G / / , we have 

U/X = (ULt) = V ft = Uft 

and thus ft = f/*. We conclude that / / fixes all of the irreducible characters 
of NM/N and therefore (by 3.2 (b) ) H acts trivially on this group. Thus, 
since ( | // | , |iV| ) = 1, we have 

[N, H] = [N, / / , H] = [M, / / ] c [N'M, H] Q N 

and H acts trivially on N/N and so fixes all linear characters of N. It 
follows that H fixes all irreducible characters of N and so acts trivially on 
TV, a contradiction. Therefore, v is not extendible to NM, as claimed. 
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Now N'I(N' n M) is a direct factor of N'MI(N' n M) and it fol
lows that every v G Irr(TV') with N' n M Q ker v extends to N'M. By 
the previous paragraph, the only possibility is that v = \N, and thus 
N' n M = N' and N' Q M. Finally, if u e Irr(i\T) with M ç ker y, then u 
extends to M = N'M since Ml M is an abelian group. Again, the only 
possibility is v = lN, and this shows that M' = N', proving (a). 

If a is any nonlinear irreducible character of M, then N' = M' <£ ker a 
and so a is //-invariant by the first paragraph. If, on the other hand, a is 
a linear character of M, we claim that a cannot be fixed by H unless 
a = 1M. If a is fixed, then a(mh) = <x(m) for m G M and h G H and 
thus m~lmh G ker a. Therefore, [M, H] Q ker a. Recall, however, that 

[M, 77] = [N, H, H] = [TV, H] = M 

and s o a = 1M, as claimed. It follows that the number of irreducible 
characters of M which are not fixed by H is precisely \M\M'\ — 1 and by 
3.2 (a), this must also be the number of conjugacy classes of M not fixed 
by H. 

Now let K be a class of M. Since Ml M is abelian, AT is contained in a 
single coset M'x of M' in M. If ^ is //-invariant, then M'x is invariant and 
so M'x G CM/Mr(H). This centralizer is trivial, however, since MIM' is 
abelian and [ (MIM'), H] = MIM'. It follows that every //-invariant class 
of M is contained in M' and so none of the classes of M not contained in 
M' is invariant and hence there are at most \M:M'\ — 1 of these classes. 
Since each nontrivial coset of M' in M is a union of such classes, we 
conclude that each such coset is a single class. 

At this point, we have nearly established the hypotheses of Theorem 2.1, 
with M and M' in place of G and K. What we are missing are the 
conditions M' > 1 and M' < M. If M' = 1, there is nothing we need to 
prove, and so we simply assume that M' > 1. If M' = M, then H fixes all 
irreducible characters of M and thus M = [M, H] = 1 by 3.2 (b) and this 
contradicts the nontriviality of the action of H on N. All of the hypotheses 
of 2.1 are thus satisfied. 

If M is a Frobenius group with kernel M', then N' = M' is nilpotent by 
Thompson's theorem and there is nothing more we need to prove. By 
Theorem 2.1, therefore, we may assume that MIM' is a /?-group for some 
prime p, that M has a normal /^-complement Q Q M' and that if 
P G Sylp(M) and 1 ^ x G g, then CP(x) Q P n M'. 

We claim that [M\ H] Q Q. To see this, work in the semidirect product 
G = MH and consider a chief factor UIVoî G with Q Q V Q U Q M'. 
Since M/Q is a /?-group, UIV Q Z(MI V). Now let X be a nontrivial linear 
character of U with V Q ker X and let x e Irr(M | \ ) . Then Xu is a multiple 
of X and we have M' <£ ker x and thus x is nonlinear and so is fixed by H. 
It follows that X is //-invariant and thus H fixes all elements of Irr(UIV) 
and hence H acts trivially on £// V and [£/, 7/] Q V. Since / / centralizes all 
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chief factors of G between Q and M and since [M\ H, H] = [M\ H], it 
follows that [M', H] Q Q as claimed. 

We now have [M\ H, M] Q [Q, M] Q Q and [M, M\ H] Q [M\ H] Q Q. 
It follows by the three-subgroups lemma (since Q < G) that [//, M, M'] Q Q. 
We have, however, [//, M] = M, and thus [M, M'] Q Q. It follows that 
[P, P'] = 1 and P has class ^ 2 . 

If <2 = 1, then M = P and we have nothing further to prove, and so we 
assume Q > 1. We know that for 1 # je G g, we have CP(x) c p n M. 
Since MIP'Q is abelian, we have M' ç P'Q and thus P n Mr = P' and we 
are in the situation of Lemma 3.1. It follows that the action of P on Q is 
Frobenius and either P is cyclic or P = g 8 . 

If P is cyclic, then M' Q Q and we have that M' = Q and M is a 
Frobenius group with kernel M and we are done. We assume, therefore, 
that P = g8 . 

We may assume that H acts faithfully on N. Then H acts faithfully on 
MIM since if C = CH(M/M'\ then C fixes all linear characters of M and 
hence fixes all irreducible characters of M and so acts trivially on M. 
Thus 

1 = [M, C] = [JV, if, C] 3 [#, C, C] = [N, C] 

and so C = 1 by our assumption that H acts faithfully on N. Since MIM' 
is noncyclic of order 4 and is acted on faithfully by the nontrivial group H 
of odd order, we conclude that \H\ = 3 and G/Q = SX(2, 3) (where 
G = M//, the semidirect product). 

Now let Q/L be a chief factor of G. Since the action of P on g is 
Frobenius, we have that CP(Q/L) = 1 and also, by Thompson's theorem, 
Q is nilpotent and Q/L is thus elementary abelian. Thus Q/L is a faith
ful irreducible module for G/Q. We may view Q/L as being abso
lutely irreducible as a module for SL(2, 3) over some (possibly not prime) 
field and so \Q/L\ = q where q is a power of some prime > 3 . (Since 
\H\ = 3, the prime 3 cannot divide \Q\.) 

Let X G Irr(g) be nontrivial with L Q ker X. If x e Irr(Af|A), then 
M % ker x and so x is //-invariant and Xn n a s a n //-invariant irreducible 
constituent which is conjugate to X in M. It follows that X is fixed by one 
of the four Sylow 3-subgroups of G/Q = SX(2, 3). Each such Sylow 
subgroup, however, fixes exactly q — 1 nontrivial linear characters of Q/L 
and we conclude that 4(q — I) ^ q2 — I and thus 4 ^ q 4- 1. This is a 
contradiction since g > 3. 

4. Construction. We begin work now toward the proof of Theorem B. 
We will show how to construct Frobenius groups TV with kernels S which 
are/7-groups of arbitrarily large derived length and such that N is acted on 
nontrivially by some group H of coprime order such that H fixes all of 
the nonlinear irreducible characters of N. These groups generalize an ex-
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ample which appears in [6] (where the derived length of the Frobenius 
kernel is 2). Ultimately, they are motivated by G. Higman's "Suzuki 
2-groups" in [4]. 

We construct N as a subgroup of the group of units of a ring R and H as 
a subgroup of Aut(,R). This "ring theoretic" construction was suggested by 
E. C. Dade after he read an earlier version of this paper in which S was 
constructed as a certain group of upper triangular matrices over a field F 
and N was a semidirect product of S with a subgroup of Fx. Although 
Dade's construction is essentially equivalent to my earlier one, I agree 
with him that his version is an improvement and I thank him for 
suggesting it and allowing me to use it here. 

We begin with a fairly standard result. 

(4.1) LEMMA. Let R be a ring {with 1) and suppose J = J(R) is its 
Jacobson radical. 

(a) The coset S = 1 + J is a subgroup of the group of units of R. 
(b) If x e Ju and y e Jv where u and v are positive integers, then the 

group commutator [ (1 4- x), (1 + y) ] = 1 + (xy — yx) mod Ju+V + X. 

Proof. Part (a) is completely standard. For (b), note that 

[(1 + x),(\ + y)] - 1 

= (1 + x ) - ' ( l + y)-\(\ + x)(l + y) - (1 + y)(\ + x)) 

= (1 + z)(xy - yx) 

= xy - yxmodJu+v+l 

where we have written (1 + JC)— '(1 + y~l) = 1 + z for some z G / 
by (a). 

Now we construct a specific ring R. Fix a prime p and a positive integer 
m and let F = GF(q) where q = pm. Let 6 e Aug(F) be the map a i—» ap 

and let F{X} denote the corresponding "twisted polynomial ring" in the 
indeterminate X. In other words, the elements of F{X) are "polynomials" 
of the form a0 + axX + . . . + akX

k with at G F. We do not assume that 
X commutes with the coefficents and instead we impose the relation 

Xa = aeX for a e F. 

(It is well known that this does define a ring.) 
Next, fix an integer n and note that 

Xn + XF{X} = F{X}Xn+x 

so that this object is a (two-sided) ideal which we denote (Xn+ ). Let 

R = F{X}/(Xn+l) 

and let x denote the image of X in R under the natural homomorphism. 
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Then every element of R is uniquely of the form a0 4- axx 4- . . . + anx
n 

and \R\ = qn+x. Also, 

x" + 1 = 0 and xa = a°x for a e F. 

Note that x# = ito is a nilpotent ideal and R/xR = F. Thus xR == J(R) 
and we write xR = J. We have Jk = **/* = JRjt* and so Jn ¥= 0 and 
/ " + 1 = 0. In this situation, the group of Lemma 4.1 is 

S = {1 + axx + a2x2 4- . . . + anx
n\at e F} 

and so |S | = qn and 5 is a /?-group. 
For integers u == 1, write »SM = 1 4- / " so that Su Q S is a subgroup 

and 

5 = 5! > S 2 > . . . > S „ > S I I + 1 = 1. 

Each element s e SM is uniquely of the form j = 1 4 ax" 4- j> with a G F 
and }> G / " + 1 . Let \pu:Su —» F be the map defined by ipM(s) = a where 
s = 1 4- axu 4- ^ as above. In fact, \pu is a homomorphism from Su onto 
the additive group of F. To see this, let s, t G SU and write 

5 SE 1 4- axu and / = 1 + fixu mod / M + 1 . 

Then 

^ = 1 4- (a 4- p)xumodJu+x 

and so 

*M(5/) = a 4- £ = *„(*) 4- *„(/). 

Note that ker(;pM) = Su+X and so, in particular, Su+X < SM. 
We will compute the derived length of S by examining commutators of 

the form [Su, Sv] for u, v ê 1. 

(4.2) COROLLARY. Suppose u, v i= 1. 7%ew [5M, Sv] Q Su+V. Furthermore, 
if u + v tik n and s e Su and t e Sv with 

*Pu(s) = a and if,v(t) = jB, 

then 

Proof. We have 

s = 1 + ax" mod / " + 1 and / = 1 4 j8xv mod / v + 1 

and so by 4.1 (b), 

[s9 t] = 1 4- (ax")Sxv - £xvax") m o d / M + v + 1 . 

In particular [s, t] e SW+V. Also, 
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xu/3 = fxu and xva = ae\v 

and so 

[s, /] = 1 + (af - Pae)xu+V mod J " + v + 1 . 

If u 4- v ^ n, this says that 

^ u + v ( [s, t] ) = aff - jB</ 

as claimed. 

Clearly, we need to study the map (• , -):F X F —> F defined by 

<a, j8> = aflT - /?</ for fixed u, v ^ 1. 

Note that this map is F0-bilinear where F0 is the prime subfield of 
F = GF(pm). 

(4.3) LEMMA. Assume the previous notation and suppose that m is prime 
with m > u + v. 

(a) If a e F wzY/z a ¥> 0, //*e« //*e F0-subspace (a, i7) q/" F contains a 
hyperplane. 

(b) 77zere OT^ nonzero a, /i e F with (a, F) ¥^ (/?, F). 
(c)Ifm ¥* p and a e F0, then FQ <jL (a, F). 

Proof. Since (a, •) is i^-linear, (a) will follow if we prove that its 
nullspace is of dimension at most 1. If (a, /?) = 0 = (a, y) with fi ¥= 0, 
therefore, we want to show that y e F0fi. We have 

afT - fia6* = 0 = ay*" - y</ 

and so if y T̂  0, we get 

and hence 

(Y^"'f = (Y/S-'). 

Since m is prime and m > w, we see that 0" generates the group (0) 
of order ra. It follows that y /? - 1 is fixed by (0) = G a l ^ / i ^ ) and so 
y/? - 1 G F0 as desired. This proves (a). 

To prove (b) we use the trace map T:F —> F0. Taking a = 1, we have 

<1, y) = / - y 

and so 

r((l ,y>) = T(f) - T(y) = 0. 

The proof of (b) will be complete, therefore, if we can find /?, y e F 
with T{ (fi, y> ) * 0. We have 
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T( (fi, y) ) = T(pye") - T(yf) 

= T(fy6"+V) - T(yf) 
nv ûU + v 

= T{ff(ye - y ) ) . 

Since m \ (u + v), we can choose y so that 

y e " + V - y * 0 

and then we can choose /? so as to make 
/jv nil + v 

^V -Y) 
an arbitrary element of F. In particular, it can be made to have nonzero 
trace. 

Finally for (c), we note that if a G F0, then (a, F) Q (1 , F) and so 
T( (a, F) ) = 0. For y G .FQ, however, we have T(y) = my. Since m ¥= p, 
it follows that T(y) ¥> 0 for y ^ 0 and so y £ <a, F ) . 

The next result includes a simplification of the original version for 
which I would like to thank A. Mann. 

(4.4) COROLLARY. Assume the previous notation and let m be a prime 
number of m > n. Then [Sw Sv] = Su+V. 

Proof. By (4.2), [Su, Sv] Q Su+V and if u + v > n, then Su+V = 1 and 
nothing remains to be proved. Suppose then that u + v ^ n and work by 
downward induction on u + v. 

Now \pu+v([Su, Sv]) is a subgroup (i.e., i^-subspace) of F contain
ing all elements of the form (a, /?) with a, /} e F. Since m > «, we have 
m > w -f- v and so by 4.3 (a), (b), ^M+v( [Sw Sv] ) contains two different 
hyperplanes and so is all of F. Thus 

^u + v([Su> Sv]) = ^u + v(Su + v) 

and the result follows since ker(^M+v) Q [Su, Sv]. This is so since 

k e r W ^ + v) = ^u + v+l = [Su+\> Sv] 

by the inductive hypothesis. 

(4.5) COROLLARY. If m is prime and m > n, then the derived length 
dl(S) > log2(n). 

Proof. Write S^ to denote the A>th term of the derived series of S with 
S<°> = ^ = Sp It follows by induction on k that S(k) = S2k since 

S(k) = [ S(^-D9 5(*-D] = ^ ^ 5^.,] = 52 , . 

If k = dl(S), we have 

1 = s(k) = S2k 

and thus 2k > n. 
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The multiplicative group F is cyclic of order divisible by p — 1 and so 
there is a unique subgroup C Q Fx of index p — 1. 

(4.6) LEMMA. Assume the above notation and suppose m is prime with 
m > p. Then F is the direct product C X F0 . 

Proof. Since \C\ - \FQ\ = |F X | , it suffices to show that \C\ = (q - 1)/ 
(p — 1) is coprime to | F ^ | = p — 1. Suppose d\(p — 1) and note that 
\C\ = 1 + p 4- . . . + j p

w - 1 since # = pm. Because p = 1 (mod J) , this 
yields 

|C| = m (mod d). 

If also d\\C\9 we have |C| = 0 (mod d) and thus d|ra. Since m is prime, 
either d = 1 or of = m. It is not possible that d = m, however, since that 
would yield m\(p — 1), contradicting m > p. 

We identify C with the subgroup C • 1 of the unit group Rx of R and we 
work inside Rx. 

(4.7) LEMMA. Assume the previous notation. Then C Q N(5). Further
more, if m is a prime with m > p and m > n, then N = SC is a Frobenius 
group with kernel S and complement C. 

Proof. Let s G S and y G C and assume s ¥= 1. Then 

j = 1 + axu + y 

for some unique nonzero a G F, integer w with \ ^ u ^ n and element 
j G / w + 1 . Since 

we have 

y_1^y = 1 + ay~ y xu 4- y~ ^y. 

We see that y - ^ y G 1 4 - / = S and the first assertion follows. If 
y - 1 ^ = s, this forces 

r" 1 / = i 
(since y~lyy G / w + 1 ) and thus y is fixed by 8U. Since (0U) = (S) (because 
u = n < m and m is prime) it follows that y e f0. By 4.6, y = 1. 

Next, we consider the subgroup A Q S defined by 

A = 1 + XFQ[X]. 

In other words 

A = {1 + ctjjc + . . . 4- eye" |a,- G F0}. 

Since xa = a x = ax for a G FQ, it is clear that A is abelian. 
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(4.8) LEMMA. Assume the previous notation and suppose that m is prime, 
m > p and m > n. Then every conjugacy class of N in S meets A. 

Proof. Given an TV-class K Q S, suppose K n A = 0. Let s e K and 
write 

5 = 1 4 - axx + a2x -h . . . + anx
n. 

Since s & A, there exists a subscript w ^ 1 such that aw £ F0 and ai e F0 

for all / < w. Choose s e K so that w is as large as possible. 
Now let w ̂  1 be the subscript such that <xu ¥= 0 but a, = 0 for all / < u. 

Then u ^ w and s G SU. Suppose u = w and write au = Se where 
8 G i ^ and € G C. (We are using 4.6 here.) Since au £ F0, we have 
€ * 1 . 

Because « ^ « < w, we have (0M) = (6) and thus 0" has no nontrivial 
fixed points on C (since C n F0 = {1} by 4.6). It follows that the map 

maps C onto itself and so we can choose y G C such that 

- l 0U - l 

y y = « . 
We have 

y~ sy = 1 + 2 «/Y-1y xl 

i = u 

and thus the coefficient of xu in y~ xsy is awe~] = 8 e FQ. NOW y~lsy G Â  
and the "w-value" of this element exceeds u = w. This contradicts the 
choice of s. 

It follows that w > u. Set v = w — w ^ 1 use the notation 

as in 4.2 and 4.3. By 4.3 (a), (aM, F ) contains an F0-hyperplane of i7 but by 
4.3 (c), it does not contain F0. It follows that (au, F) + F0 = F and so the 
coset (au, F) + aw contains some element of F0 and we can choose ft G F 
such that 

Now write / = 1 + fîxv G S' and compute 

sf = s[s, t] = (l + 2 a,*')(l + <aM, )8>JCW) m o d / w + 1 . 

It follows that 

s* = 1 + 2 « ^ + (aw + <aM, j8> )xw mod JrVV+1. 
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Since aw + (au, fî) e F0, the "w-value" of s* exceeds w. This is a 
contradiction and 4.8 is proved. 

The automorphism 0 of F can be extended to an automorphism of the 
ring R (which we continue to call 6) by setting JC == x. Let H Q Aut(R) be 
the subgroup generated by 6 so that \H\ = m. Note that H acts on the unit 
group Rx and fixes (setwise) the subgroups S and C. In particular, H acts 
on N. 

(4.9) THEOREM. Given a prime number p and an integer n = 1, choose a 
prime number m > max(/>, n). Let N and H be as above so that H acts on N. 
Then 

(a) \H\ = m and \N\ = pmn(pm - \)/(p - 1) are coprime. 
(b) N' is a p-group with derived length exceeding log2(«). 
(c) H fixes all of the pn — 1 nonlinear irreducible characters of N. 
(d) H fixes none of the (pm — \)/{p — 1) — 1 nontrivial linear characters 

ofN. 

Proof That ( \H\, \N\ ) = 1 follows since 

pm - 1 = p - 1 ^ 0 (mod m) 

since m is prime and m > p. This establishes (a). 
Since TV is a Frobenius group with kernel S and cyclic complement C, 

we see that N' = S and (b) holds 4.5. Also, the linear characters of N 
are essentially the linear characters of C. Since CC(H) = C n F^ = 1 
by 4.6, statement (d) follows. 

The conjugacy classes of N are of two types: those contained in S and 
the \C\ — 1 nontrivial cosets of S in N. Each class of the first type contains 
an element of A = CS(H) by 4.8 and so is fixed by H. None of the class
es of the second type is fixed by H since CC(H) = 1. Therefore, all but 
\C\ — 1 of the classes of N are //-invariant and since H is cyclic, it follows 
that all but \C\ — 1 of the irreducible characters of N are fixed by H. It 
follows (in view of (d) ) that H fixes all of the nonlinear irreducible 
characters of N. 

At this point, we have proved enough of the result to yield Theorem B of 
the introduction. To complete the proof of (c), we need to show that there 
are exactly pn classes of N contained in S. Since each such class meets A 
and \A \ = pn, it suffices to show that each class of N in S meets A in a 
single element. 

Since CN/S(H) is trivial, we see that CN(H) = CS(H) = A. By general 
facts about coprime actions, each //-invariant class of iV meets A in a class 
of A and since A is abelian, this is a single element, as required. 

(4.10) COROLLARY. Let r(G) be the fraction of the irreducible characters 
of the solvable group G which are nonlinear. Given e > 0, there exist groups 
G with arbitrarily large derived length such that r(G) < e. 
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Proof. Take n large and m very much larger than n in 4.9. 
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