
11
Reggeon branchings

We considered strong interactions in the framework of the Regge poles;
this picture applies, by the way, to weak and electromagnetic interactions
as well.

It turns out, however, that the Regge poles are not enough to describe
consistently the high-energy behaviour of scattering amplitudes. To see
why and how more complicated singularities – branch cuts – emerge in
the �-plane, let us recall, what we learned about the possible energy de-
pendence of two-particle scattering amplitudes at various t.

At t > 0 the elastic amplitude may grow as a power sα(t) with α(t) > 1.
What do we know about the vacuum trajectory α(t)? Below the t-channel
threshold, t = 4μ2, the trajectory is real and decreases with t decreasing.
Moreover, the Froissart theorem taught us that at t = 0 the ampitude
cannot grow with energy faster than

A(s, t = 0) = < s ln2 s.

What happens at negative t? In non-relativistic quantum mechanics
α(t) passes through integer points −1,−2, . . . and decreases indefinitely
with t decreasing. Thus, in quantum mechanics we see no restrictions on
the rate of the energy falloff of the amplitude: for large angles, |t| ∼ s, it
can fall arbitrarily fast with s increasing.

How about relativistic theory?
Recall that in fact we have already faced some difficulty with the Regge-

pole picture. Indeed, we expected that the corrections to the leading vac-
uum pole (pomeron, P) will be coming from other Regge poles and will be
relatively suppressed as a power of s. However, having analysed contribu-
tions to the total cross section of various particle production topologies,
we found in the r.h.s. of the equation for ImP logarithmically behaving
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288 Reggeon branchings

contributions due to production processes of a few particles with large
rapidity intervals between them:

const

+ . . .++

[n ~ ln s nlnl] s/ ln s1/ ln s

One cannot state a priori that these logarithmic terms will not sum up
into a power. Still, this discrepancy is worrisome and worth bearing in
mind.

Strangely enough, the apparent logarithmic nature of the corrections
and the question of the possible falloff of the elastic amplitude turned out
to be closely related.

11.1 �=−1 and restriction on the amplitude
falloff with energy

Let us return to the partial wave amplitude with positive signature:

ϕ�(t) =
2
π

∫ ∞

z0

dz

(t− 4μ2)�
Q�(z)A1(z, t).

We found simple analytic properties in t for ϕ�(t) at t > 4μ2; when t < 0,
an additional complexity appeared:

Δϕ� = −
∫ −1

z0

dz

(t− 4μ2)�
P�(z)A1(z, t) ; t1 < t < 0.

t 

t1 t = 4μ2

ϕ (t) 

Moving further down in t we hit the
third spectral function, where the ‘imagi-
nary part’ A1 became itself complex (see
Fig. 7.3 on page 167). Then the expression
for the discontinuity changed:

Δϕ� = −
∫ −1

z0

dz

(t−4μ2)�
P�(z)A∗

1(z, t) +
2
π

∫ z2

z1

dz

(t−4μ2)�
Q�(z)ρsu.

(11.1)

11.1.1 Partial waves have poles at � = −n

At the first glance the additional term that appeared in the r.h.s. of (11.1)
looks innocent. Indeed, although Q� has poles at negative integer � = −n,
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11.1 � = −1 and restriction on the amplitude falloff with energy 289

n > 0, in the expression for the amplitude A,

A(s, t) =
i

4

∫
d�

sinπ�
ϕ�(t) · (t− 4μ2)�[P�(−z) + P�(z)], (11.2)

the Legendre function P� has zeros in the same points,

P�(z) �
Γ(� + 1

2)√
πΓ(� + 1)

(2z)�, |z| → ∞. (11.3)

In fact, if we chose the Mellin transformation instead of the Legendre
one (with z� in place of P�), the poles would not appear at all. So these
poles look to be artefacts of the passage from the amplitude A(s, t) to the
partial wave, ϕ�(t). It would have been the case if not for the t-channel
unitarity: recall that the Legendre transformation was special in the sense
that it diagonalized the two-particle unitarity condition.

11.1.2 Such poles contradict unitarity

In the interval between two- and four-pion thresholds, 4μ2 < t < 16μ2,
the partial wave is bounded from above by the unitarity condition:

Δϕ� = ρ� ϕ�ϕ
∗
� =⇒ |ϕ�| <

1
2ρ�

. (11.4)

How could its discontinuity then become infinite?
In order to appreciate that it is not easy for the amplitude to do so, let

us turn to the dispersion relation

ϕ�(t) =
1
π

∫ ∞

4μ2

dt′

t′ − t
Imϕ�(t′) +

1
π

∫ t0

−∞

dt′

t′ − t
δϕ�(t′). (11.5)

If δϕ� → ∞ at some �, the same is true for ϕ�(t) together with its dis-
continuity (unless there are special cancellations in the second integral in
(11.5)).

Note that the contribution of the right cut (the first integral) is finite.
Moreover, it could not possibly cancel the contribution of the left cut
identically in t, since their analytic properties are different.

What could be a way out?

(1) In principle, the integral of ρ(s, u) could turn to zero at � = −n.
This is, however, not the case, since the double spectral function is
positively definite, at least near the edge of the hyperbola.

(2) Taking into account multiparticle unitarity conditions would not
help us either since, once again,the contribution coming from the
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290 Reggeon branchings

next threshold at t = 16μ2 has specific analytic features, and there-
fore it cannot cancel the pole identically, at arbitrary t, in the in-
terval 4μ2 < t < 16μ2.

Thus, the pole is there. Although the amplitude A itself is finite, the
corresponding partial wave ϕ acquires the pole which would have been
but an artefact of rewriting (P� in place of z�) if not for the unitarity
condition.

How could we resolve this real contradiction with unitarity?

11.1.3 Condensing poles (quantum-mechanical analogy)

Let us recall the meaning of the singularities of the amplitude. As we
have discussed in Lecture 7, singularities of t-channel particle exchange
amplitudes determined the s-channel ‘potential’,

t

s

Correspondingly, singularities in s (and u)

s
t

have to be understood as determining the interaction potential in the
t-channel. The existence of the third spectral function ρsu reflects the
relativistic nature of the t-channel ‘potential’. It is because of ρsu that
our ‘potential’ becomes infinitely large when � → −1.
In NQM, potential scattering in the t-channel
is described by the diagrams with successive
particle exchange. The lines do not cross since
the non-relativistic interaction is instantaneous;
there is no retardation. There is only elastic
scattering so at positive t we will have a single
cut starting from t = 4μ2. The partial wave

t

f�(t) will have a left cut too, with a rather complicated structure, reflecting
multiple singularities of the amplitude in s, mimicking the ‘potential’.
However, the term with Q� in Δϕ� will be absent since in non-relativistic
quantum mechanics ρsu ≡ 0, so that the pole in � will be absent as well.
In spite of this, we shall stick to NQM and try to imitate the catastrophic
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11.1 � = −1 and restriction on the amplitude falloff with energy 291

growth of the contribution of the left cut in the � → −1 limit simply by
increasing the magnitude of the non-relativistic potential. In so doing, the
contradiction has to disappear, since a potential in quantum mechanics
is arbitrary, and the answer must remain reasonable.

When V increases (attraction), sooner or later a level (bound state)
appears from beneath the right cut. With the increase of the potential
the number of levels and their binding energies are growing. In general,
to the expression (11.5) for ϕ� a sum over bound states has to be added:

ϕ� =
1
π

∫
Imϕ� +

1
π

∫
δϕ� +

∑ Cn

tn − t
.

It is this sum that compensates the growing contribution of the left cut
(δϕ�) while the contribution of the right cut (Imϕ�) and ϕ� itself stay
finite. In the limit V → ∞ the number of poles becomes infinite, and they
eventually fill the t-axis below the threshold (t < t0). Replacing the sum
over poles by an integral,

∑
n

Cn

tn − t

V→∞−→
∫ t0

−∞

χ(t′) dt′

t′ − t
,

we will have, in the main part, χ(t′) ≈ −δϕ(t′) as V → ∞.
This would have been the solution of the problem of infinitely large

potential (which is our model for the singularity at � → −1 of the left-cut
contribution) if there were no multiparticle thresholds and related cuts.

11.1.4 Another possibility: moving branch points

In the relativistic theory there are inelastic sheets. Their existence pro-
vides another way out of the contradiction with unitarity. Instead of accu-
mulating infinitely many poles, inelastic sheets may allow us to change the
very analytic properties of the partial wave ϕ� instead. Indeed, we have
arrived at the conclusion that the partial wave is bounded from above by
equating in (11.4) its discontinuity Δϕ� with the imaginary part, Imϕ�:

Δtϕ�(t) = ρ�|ϕ�(t)|2; (11.6)

Δtϕ�(t) = Imϕ�(t) =⇒ |Imϕ�| ≤ |ϕ�| < const.

Imagine now that from beneath
a multiparticle sheet a branch point
singularity emerged and moved to
the left along the real axis. Then in

t 16μ2 4μ2 

ϕ (t)

the two-particle threshold region 4μ2 < t < 16μ2 the discontinuity does
not coincide with the imaginary part anymore, Δϕ �= Imϕ, and no re-
striction on the magnitude of ϕ� would follow from (11.6).
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292 Reggeon branchings

We shall explore this possibility later and will see that in the interesting
cases it is moving branchings that resolve our contradiction. For the time
being let us return to the first – pole – scenario: with � → −1 we have
more and more poles emerging on the physical sheet and passing through
a given point t,

tn(�) < t , n = 1, 2, . . . , N ; N → ∞ with � → −1.

In the �-plane this picture corresponds to the poles condensing towards
� = −1 for any fixed t:

Thus, due to the unitarity condition, the pole in the partial wave ϕ�

at � = −1 transforms into an essential singularity. I have demonstrated
this, using quantum-mechanical analogy. Instead, one could just solve the
integral equation for the unitarity condition (presuming that the inelastic
cuts are not ‘catastrophic’) to come to the same conclusion rigourously.

From the fact that the point � = −1 is an essential singularity in the
Sommerfeld–Watson integral,

A(s, t) ∝
∫

d�

sinπ�
ϕ�(t)

[
(−s)� + (s)�

]
,

it immediately follows that for any t

|A(s, t)| > s−1−ε , ε > 0. (11.7)

We conclude that the amplitude A(s, t) cannot decrease faster than 1/s.

11.1.5 The origin of the � = −1 singularity

Let us have a closer look: how did it happen that � = −1 turned out to
be a singular point and what was the rôle of the third spectral function
ρsu in this.

Consider the original amplitude A(s, t) at negative t-values. Since I am
interested in the possibility of A decreasing, I can write the dispersion
relation without subtractions:

A(s, t) =
1
π

∫ ∞

4μ2

ds′

s′ − s
A1(s′, t) +

1
π

∫ ∞

4μ2

du′

u′ − u
A2(u′, t). (11.8)
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Let us consider a ‘good’ amplitude such that

A1, A2, A3 <
1
s
.

For t > t1 the imaginary part ImA was due to (iε) in the denominators
in (11.8): ImA = A1 for s > 4μ2 (ImA = A2 for u > 4μ2).

Decreasing t, we reach t1 where A1 and A2 become complex and our
amplitude seems to acquire an additional complexity

δ ImA(s, t) =
1
π

∫
ds′

s′ − s
ρsu(s′, t) +

1
π

∫
du′

u′ − u
ρsu(u′, t). (11.9)

How could this be? Isn’t A1, by definition, the full imaginary part of the
amplitude in the physical region of the s-channel? There is no contradic-
tion, of course, since (s′ − s) + (u′ − u) = 0.

At the same time we observe that, taken separately, neither of the
contributions of the right and left cuts decreases faster than 1/s:

ImAright =
1
π

∫
ds′

s′ − s
ρsu(s′) = − 1

π

∫
ds′ρsu(s′)

s
∼ 1

s
. (11.10)

Let us recall that we were forced to treat separately the contributions
of the right and left cuts when we continued partial waves ϕ� onto the
complex �-plane. Hence, the nature of the pole in Q� is related to the 1/s
falloff of the contribution of each cut.

The most important point remains to be understood.
Namely, where did the essential singularity come from,
when the pole itself seemed to be of “kinematical” nature?
It is t-channel unitarity which is responsible.

Unitarity means that repetitions are needed. Let us take
a scattering block f = (which does not include a
two-particle intermediate state in the t channel) and see
how the amplitude will behave when we start repeating
it in the t-channel. We are going to demonstrate that the
contributions of the right and left cuts of the block f enter separately,
one by one, the asymptotics of the iterated amplitude.

Consider the high-energy limit of the amplitude

A =
s2 

k 
s1 

p1 

p2 − q 

p1 + q 

p2
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294 Reggeon branchings

In terms of the Sudakov vectors,

k = αp1 + βp2 + k⊥ (p+ � p1, p− � p2),

we may write

A ∼
∫

d4k

(2π)4i
f(s1; k⊥, q⊥)f(s2; k⊥, q⊥)

[m2 − αβs + k2
⊥−iε] [m2 − αβs + (q−k)2⊥−iε]

. (11.11)

For simplicity we omitted in the second propagator, (α−αq)(β−βq), the
small longitudinal Sudakov components of the total momentum transfer,
αq, βq ∼ m2/s; as always, we consider small momentum transfer −q2 �
q2
⊥ = O

(
m2

)
. (In fact we have already analysed this integral when we

calculated the box diagram in Section 9.2.3, see page 224.) The block
energies are

s1 � 2p1k � βs, s2 � −2p2k � −αs.

Consider first the integral over α. In the α plane we have cuts of the lower
block amplitude f(s2),

α β < 0 

β > 0

Depending on the sign of β, the poles of the propagators in α are either
both below (β > 0) or above (β < 0) the real axis. If β > 0, the contour
can be closed on the left, that is around the right cut in the invariant
energy s2 = −αs of the lower block:

A =
∫

d2k⊥
(2π)2

∫ ∞

0
dβf(βs)

∫ ∞

s0

ds2

2π
Im fright(s2)

[ ] [ ]
+

∫
β<0

{
Im fleft(s2)

}
.

Each integral is complex due to a (right/left) cut of f(βs). Evaluating the
imaginary part we have

ImA =
∫

d2k⊥
2π s

∫ ∞

s0

ds1

2π

∫ ∞

s0

ds2

2π
Im f(s1) Im f(s2)

[ ] [ ]
+

{
s1 → −s1

s2 → −s2

}
.

While the integrand of A in (11.11) contains the full block amplitudes,
symbolically,

A ∼ f ⊗ f ∼ (fright + fleft) ⊗ (fright + fleft), (11.12a)
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in the imaginary part the cross-terms between right and left cuts cancel:

ImA ∼ 1
sm2

[(∫
ds′ Im fright(s′)

)2

+
(∫

ds′ Im fleft(s′)
)2

]
. (11.12b)

We see that although each block amplitude in (11.12a) may be falling
fast with energy due to cancellation between its two cuts, the imaginary
part of the iterated amplitude (and therefore A(s) itself) cannot decrease
faster than 1/s.

The expectation that an amplitude can fall arbitrarily fast owing to the
cancellation between right- and left-cut contributions (each of which falls
as 1/s) turns out to be incorrect: it does not stand confrontation with the
t-channel unitarity relation.

To understand better what is so special about the point � = −1 in
the unitarity relation, let us return to the representation (11.2) for the
amplitude and redefine, once more, the partial wave by embedding into it
the �-dependent normalization factor from the asymptotic expression for
the Legendre function (11.3):

A(s, t) � i

4

∫
d�

sinπ�
ψ�(t) ·

[
(−s)� + s�

]
, s → ∞; (11.13a)

ψ�(t) =
Γ(� + 1

2)√
πΓ(� + 1)

· ϕ�(t). (11.13b)

Now that (11.13a) is ‘clean’, the normalization will reappear in the uni-
tarity relation. Expressed in terms of new partial waves ψ� it now reads

Δψ�(t) = ρ�(t) · ψ�(t)(ψ�(t))
∗ , 4μ2 < t < 16μ2,

ρ�(t) =
√
π Γ(� + 1)
Γ(� + 1

2)
C�(t), C� =

1
8π

k2�+1
t√
t

,
(11.14)

with C� given in (7.30). The factor ρ� can be looked upon as the phase
space volume, continued to non-integer �. We see that at negative inte-
ger values of � it turns to infinity, making them singular points for the
unitarity condition.

Conclusion: if there are only poles,

(1) the amplitude cannot fall faster than s−1; and

(2) in the �-plane the poles get closer and closer to each other as they
approach � = −1.

This itself does not contradict the Regge-pole hypothesis, but in fact, as
we will see now, the solution lies elsewhere.
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11.2 Scattering of particles with non-zero spin

Up to now, we considered spinless particles; including spins does not mod-
ify essentially our previous considerations. The conclusion, however, turns
out to be far more dramatic.

11.2.1 Energy behaviour of scattering amplitudes

Consider the scattering of a vector and a scalar particles:

k1 k s = 1

s = 0

2

p1 p2

= Aμν(p1 + p2, k1, k2).

The amplitude now carries vector indices and is built of Lorentz tensors,

Aμν = A0p
μpν + A1g

μν + A2(pμkν1 − kμ2 pν) + · · · (p ≡ p1 + p2)

(we have taken into account the symmetry with respect to k1 ↔ −k2).
Now we have to write dispersion relations for each invariant amplitude
Ai (one has only to be careful not to include artificial singularities which
may emerge while rewriting momenta in terms of each other). Repeating
the above analysis, we would obtain again

Aright
0 ∼ Aleft

0 ∼ s−1.

Let us see, e.g. what gives the longitudinal polarization vector,

e(0)
μ (k) = (kz; k0,0⊥)

1√
k2

,

for the invariant matrix element

Mλ1λ2 = eλ1
μ1
eλ2
μ2
Aμ1μ2 .

For forward scattering, k1 =k2, in the laboratory frame (p1 = p2 =
(m0; 0,0⊥)) we obtain

M00 = (A0p
μpν + · · · )e0

νe
0
μ ∼ A0

(
2m0

k1z

m1

)2

� A0
s2

m2
1

. (11.15)

This means that considering, as before, contributions of each cut, M00
left

and M00
right, separately, we will come to the conclusion that the scalar–

vector scattering amplitude must grow in the large-s limit at least as
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M >∼ s! It is easy to arrive at the same conclusion
analysing an interaction of spinless particles via vector par-
ticle exchange, A = O(s). That is, introducing particles
with spin σ and following the same path, we can prove that the amplitude
cannot be smaller than

A > s−1−ε+2σ .

Already for σ=2 this contradicts the Froissart bound. (In principle, some
tricky cancellations cannot be excluded, but so far there are no indica-
tions for that.) One can interpret this conclusion as an observation of the
contradictory character of the hypothesis of the existence of Regge poles
only.

11.2.2 Azimov shift in terms of spiral amplitudes

This phenomenon known as ‘the Azimov shift’ can be explicitly seen in
the t-channel as well. To parametrize the amplitude of the transition
between two scalar and two vector particles, it is convenient to employ
the formalism of spiral amplitudes. These are amplitudes with definite
values of helicities of participating particles with σ �= 0. Helicity is the
projection of spin onto the direction of the particle momentum. In the
cms of the t-channel, momenta of two vector particles are opposite, so
that the difference of their helicities represents the projection of the total
spin. The generalization of the t-channel partial-wave expansion reads

== Aλ1λ2 =
∑
j

(2j+1)Yjλ(θ, ϕ)fjλ(t); λ = λ1−λ2. (11.16)

The total angular momentum vector, j = � + σ, is a sum of the orbital
momentum � and the total spin σ. Since � = [r × p] is orthogonal to the
direction of the cms momentum z, the helicity parameter λ in (11.16)
equals λ = σz = jz. Physically, the angular momentum projection is re-
stricted, |jz| ≤ j. Indeed, the boundary |λ| ≤ j is contained in the nor-
malization of the spherical harmonics:

Yjλ(θ, ϕ) ≡
√

Γ(j − λ + 1)
Γ(j + λ + 1)

Pjλ(z) eiλϕ, z = cos θ, (11.17a)

where Pjλ are the associated Legendre functions. At large |z| we have

Yjλ � Γ(j + 1
2)√

πΓ(j + λ + 1)Γ(j − λ + 1)
(2z)j , (11.17b)
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where we have dropped the trivial dependence on the azimuth angle by
setting ϕ = 0. We see that indeed, owing to the Γ factors, Y = 0 for
|λ| > j. Mark that for λ = 0 the normalization factor in (11.17b) coincides
with that of the spinless case, (11.13b).

The continuation of the series (11.16) to complex j with the help of the
Sommerfeld–Watson integral does not pose difficulties:

Aλ(s, t) � i

4

∫
dj

sinπj
ψjλ(t) ·

[
(−s)j + sj

]
, s → ∞; (11.18a)

ψjλ(t) =
Γ(j + 1

2)√
πΓ(j + λ + 1)Γ(j − λ + 1)

· k−2j
t · fjλ(t). (11.18b)

The changes will affect the unitarity condition.

Im                 =                    +

The first term in the r.h.s. with exchange of scalar particles will stay as
before, so we concentrate on the new contribution describing particles
with spins σ1 and σ2 in the intermediate state:

Δ fj(t) = · · · +
∑
λ

τ(t)fjλ(t + i0)fjλ(t− i0).

The sum over λ has emerged since for a given j we can still have different
helicities in the intermediate state. The sum runs up to λmax = σ1 + σ2.
Due to conservation of parity, it is sufficient to sum over λ ≥ 0, doubling
the contributions of λ ≥ 1.

Let us express the unitarity relation in terms of the partial waves ψj

and ψjλ defined by (11.13b) and (11.18b), correspondingly. Collecting the
normalization factors, we get

Δψj =
σ1+σ2∑

λ

Cj(t)
√
π Γ(j − λ + 1)Γ(j + λ + 1)

Γ(j + 1)Γ(j + 1
2)

ψjλψ
∗
jλ. (11.19)

In the spinless case, σ1 = σ2 = 0, we recover (11.14).
Decreasing j, we hit the first pole at j = σ1 + σ2 − 1,

Δψj ∝ ψjλ
1

j + 1 − σ1 − σ2
ψ∗
jλ, λ = σ1 + σ2. (11.20)

In the first unphysical point in j (when the angular momentum is taken
smaller than its projection), j = λ− 1, the phase space volume of the
intermediate state becomes infinite. As we have discussed, this results in
the lower limit of the high-energy behaviour of the scattering amplitude,
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A(s) ∝ sσ1+σ2−1. Taking vector particles in the intermediate state, σ1 =
σ2 = 1, we obtain A ∝ s, the result that we have explicitly derived before.
In general, (11.20) permits elementary particles to have spins 0, 1

2 and 1,
and no more.

What to do with particles with higher spins which exist, can be pro-
duced in a t-channel reaction and therefore participate in the unitarity re-
lation? The problem was solved by Mandelstam. It turns out that when a
reggeized particle is present in the intermediate state, a new singularity –
a moving branch cut – appears from an unphysical sheet related to a
multi-particle threshold, which exactly compensates the pole (11.20).

Imagine that we have a particle with spin σ which is a bound state of
two scalar particles (with mass μ) and lies on the Regge trajectory α(t).
Let m denote its mass, α(m2) = σ.

As we will demonstrate shortly, the position of the Mandelstam branch
cut derives from the trajectory of the pole and reads

j = j2(t) = 2α
(
t

4

)
− 1. (11.21)

The unitarity condition (11.20) holds above the two-particle threshold, t ≥
4m2. Let us show that the contribution of this branching to the unitarity
relation,

Δψj(t) = ψj,2σ
c

j + 1 − 2σ
ψ∗
j,2σ + δbranchψj(t),

fully screens the unphysical pole due to exchange of two particles.

j = 2σ −1f jλ(t)

16μ24μ2 4m2

t

The trajectory α(t) is complex above the two-particle threshold, t >
4μ2. Therefore Im j2(t) > 0 for t > 16μ2. This means that for real j larger
than j∗ ≡ 2α(4μ2) − 1, the position t2(j) of the branch singularity (11.21)
in the t-plane is complex. The branching then is on the unphysical sheet,
since complex singularities on the physical one are forbidden by causal-
ity. It emerges on the physical sheet through the tip of the four-particle
threshold, t = (4μ)2, and moves to the left with j decreasing. When we
approach the troubling point j = 2σ − 1, the branching arrives precisely
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300 Reggeon branchings

to t = 4m2,

j = 2α
(
t

4

)
− 1 → 2σ − 1 =⇒ α

(
t

4

)
→ σ = α(m2),

covers fully the two-particle cut due to the σσ exchange and cancels the
unphysical pole at j < |jz|.

At the same time, in the physical integer values of j the branch cut
contribution vanishes, leaving the two-particle exchange unperturbed. So,
the Mandelstam branching is rather sophisticated. It is interesting that
all this occurs automatically as soon as we suppose that the particle is
reggeized.

11.2.3 A model for a moving branch-point singularity

Before we turn to the derivation of the reggeon branchings, let us try to
guess the answer. Near the pole due to the exchange of particles with
spins σ1 and σ2, the unitarity relation has the form

2 Im fj = + τ(t)
c

j + 1 − σ1 − σ2
f̃jσf̃

∗
jσ, (11.22)

where we have extracted the singularity from the partial wave amplitudes
fjσ describing the 0 + 0 → σ1 + σ2 transition, fjσ → f̃jσ. It contains the
phase space volume τ(t) which for particles with masses m1 and m2 reads

τ(t,m2
1,m

2
2) =

kc
16πωc

=

√
t2 − 2t(m2

1 + m2
2) + (m2

1 −m2
2)2

16π
√
t

. (11.23)

When the particles are reggeized, σi = σi(m2
i ), their masses become ‘vari-

able’, suggesting to include into (11.22) integrals over masses, t1 = m2
1

and t2 = m2
2: ∫

dt1 dt2 τ(t, t1, t2)
j + 1 − σ1(t1) − σ2(t2)

f̃jσf̃
∗
jσ. (11.24)

Given the additional integrations, (11.24) would no longer be a pole but
a branch cut in j. Adding the propagators of reggeized particles, either
[sin π

2σi(ti)]
−1, or [cos π

2σi(ti)]
−1, depending on the signature, we would

get a natural model of a moving branching. Included into the unitarity
relation (11.22), this expression could compensate the ‘elementary’ pole.
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11.3 Multiparticle unitarity and Mandelstam singularities

To understand how the reggeon branchings appear, we have to study for
the first time multi-particle unitarity conditions.

11.3.1 Three-particle unitarity condition for partial waves

Let us consider the simplest example of 2 → 2 scattering of scalar particles
above the three-particle threshold, 9μ2 < t < 16μ2.

2 Im fj =
σ

+ + (11.25)

We suppose that a particle with spin σ shown by the dashed line is a
bound state of two scalar ones and can be produced in the intermediate
state together with a scalar. First of all, let us write the three-particle term
in the unitarity condition. We can describe a three-particle system in two
steps. First we group two particles and treat them as a composite object
with an invariant mass t12 = (k1 + k2)2 and an internal orbital momentum
� = �12 and its projection, λ = λ12. Then we combine the pair, which looks
as a particle with an arbitrary ‘mass’ and ‘spin’, with the remaining scalar
particle k3 into the system with the total angular momentum j and energy
t. Such a representation can be rigorously derived by parameterizing by
Euler angles the internal geometry and the orientation of the plane formed
by three particles in the t-channel cms.

2 

1 

1 2 3 

t, j 

t t12 

12, λ12

3 

This makes five independent variables characterizing a five-point ampli-
tude, The structure of the three-particle term is rather similar to that of
the case of the unitarity condition with spin,

Δf
(3)
j =

∑
�,λ

∫
dt12 K(t, t12)fj�λ(t, t12)f∗

j�λ(t, t12), (11.26a)

with the only difference that now the ‘mass’ t12 of the composite particle
(12) varies in the interval

4μ2 < t12 < (
√
t− μ)2. (11.26b)
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The function K in (11.26a) is given by the product of the phase space
volume functions (11.23),

K(t, t12) = τ(t, t12, μ2)τ(t12, μ2, μ2). (11.26c)

Introducing the partial waves ψj and ψjλ in order to extract the angular
momentum singularities as before, we get

Δψ
(3)
j =

∑
�,λ

∫
dt12 K(t, t12)

c2

j + 1 − λ
ψj�λψ

∗
j�λ, (11.27)

where we have explicitly extracted the main singularity from the Γ factors,
cf. (11.19). Unlike (11.19), the sum over λ in (11.27) is not limited from
above since the ‘spin’ � of the composite object (12) can be arbitrary. We
must replace the sum by an integral; otherwise we have poles at arbitrarily
large j and the continuation to complex j is impossible. Let us write

Δψ
(3)
j =

∫
dt12

K(t, t12)
(2i)2

∫
Cλ

dλ

tanπλ

∫
C�

d�

tanπ(�−λ)
c2ψj�λψ

∗
j�λ

j + 1 − λ
. (11.28)

To correspond to the physical sum,
∑∞

λ=0

∑∞
�=λ, the contours have to be

drawn as follows,

C 

λ 

λ Cλ

We will discuss the question of convergence of this representation later.
In any case, as soon as the integration contours are deformed as in the
standard Sommerfeld–Watson case, there are no problems with the poles
at large j values anymore and the continuation can be carried out. Un-
fortunately, it is not unique. We could have added a function vanishing in
integer points (for example, we could put sin instead of tan in the denom-
inator). Let us suppose, nevertheless, that this continuation is reasonable
and see what will be the structure of singularities in j. The pole is there
in (11.28); it could not just disappear. However, some other singularities,
not so apparent at the first glance, may emerge.

Let us examine the three-particle system in the intermediate state.

2 
1 

3

Particles 1 and 2 will interact in the
final state and can give a resonance
which will manifest itself as a pole in � =
�12 of the partial wave amplitude f (2→3)

j�λ .
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How can this possibility be extracted in a model-independent way?
The 2 → 3 amplitude has to satisfy the unitarity condition not only in

t but also in t12:

Δ12f
(2→3)
j�λ ≡ 1

2i
[f (2→3)(t + iε, t12 + iε) − f (2→3)(t + iε, t12 − iε)]

= = f
(2→3)
j�λ (t+, t12)τ(t12, μ2, μ2)f (2)∗

� (t12). (11.29)

In the region 4μ2 < t12 < 9μ2 the two-particle unitarity condition in t12
is valid. This makes (11.29) a linear equation for f (2→3). Its solution is
simple:

f
(2→3)
j�λ = Gj�λ(t, t12)f

(2)
� (t12),

where G does not have a two-particle cut in t12 (two-particle irreducible
amplitude). Indeed, evaluating the discontinuity in t12 and using the two-
particle unitarity condition for the elastic amplitude f

(2)
� we have

Δf (2→3) = G · Δf
(2)
� (t12) = G · (f (2)

� τ f
(2)∗
� ) = f (2→3) · τf (2)∗

� ,

which coincides with (11.29).
We know that f

(2)
� can have a Regge pole,

f
(2)
� (t12) �

g2(t12)
�− α(t12)

;

f
(2→3)
j�λ (t, t12) �

[
Gj�λ(t, t12)g(t12)

]
· 1
�− α(t12)

· g(t12).
(11.30)

This expression has a clear diagrammatical meaning:

G g  g 

= 

elastic 

= 

amplitude

with the combination N = Gg playing the rôle of the reggeon production
amplitude, and g – the amplitude of its decay.

Before we substitute the Regge pole (11.30) into the unitarity relation
(11.28) let us make the following simplifying observation. When we single
out the final state interaction,

ψj�λ =⇒ Gj�λ · f (2)
� (t12),
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¯t12

( √t − μ)2 ( √t − μ)24

(a) (b)

μ2

Ct Ct

m 2

Fig. 11.1

the r.h.s. of (11.28) acquires the following structure,

Kψj�λψ
∗
j�λ → τ(t, t12, μ2)GG∗ ·

(
f

(2)
� τ(t12, μ2, μ2) f (2)∗

�

)
.

Here we have extracted from (11.26c) the phase space volume factor τ(t12)
to form the discontinuity of the elastic scattering amplitude,

Kψψ∗ = τ(t, t12, μ2)G ·
{

Δ12f
(2)
� (t12)

}
·G∗

= Δ12

{
τ(t, t12, μ2)Gf

(2)
� (t12)G∗

}
.

(11.31)

This allows us to replace the integral over t12 along the real interval
(11.26b) by a contour integration as shown in Fig. 11.1(a) and write

∫ (
√
t−μ)2

4μ2

dt12 Δ12

{
τGf

(2)
� (t12)G∗} =⇒

∫
Ct

dt12
2i

{
τGf

(2)
� (t12)G∗}.

Now we can substitute the Regge pole (11.30) in the elastic final state
scattering amplitude,

Δψ
(3)
j =

∫
Ct

dt12
2i

τ(t, t12, μ2)
(2i)2

∫
Cλ

dλ

tanπλ

1
j + 1 − λ

∫
C�

d�

tanπ(�−λ)
N2

�−α(t12)
.

λ

a(t12)
First we look at the integral over �.
Since t12 > 4μ2, the trajectory α(t12) has
an imaginary part. When we change λ,
the integral becomes singular when λ hits
the point α(t12) and the two poles pinch the
contour:

Δψ
(3)
j =

∫
Ct

dt12
2i

τ(t, t12, μ2)
tanπα(t12)

N(t+)N(t−)
j − α(t12) + 1

. (11.32a)
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This is just our model for a branching singularity (11.24), only for one
spinless particle, and one with spin,

.

This three-particle contribution has to be compared with the second term
in the unitarity condition (11.25), due to the exchange of two particles, one
of which, σ, we suppose to be a bound state belonging to the trajectory,

Δψ
(σ)
j = τ(t,m2, μ2)

ψ(t+)ψ(t−)
j − σ + 1

. (11.32b)

In fact, the latter is nothing but the residue of the former integral (11.32a)
at the pole tanπα = 0, α(t12) = σ. Therefore, we can take into account
both contributions (11.32) by simply modifying the integration contour
to include the particle pole, as shown in Fig. 11.1(b). By derivation, the

t12

( t− μ)2
m 2

j = α− 1
C̄t

pole at α(t12) = j + 1 lies inside the con-
tour C̄t. As a result, the point j = σ − 1
where the two poles collide, turns out
to be a regular point in the j-plane:
the three-particle singularity compen-
sates the two-particle one.

The integral (11.32a) develops a singularity in j at j = j0 such that
the pole of the integrand hits the immobile endpoint of the integration
contour:

t12 = (
√
t−μ)2, α(t12) = j + 1 =⇒ j0(t) = α((

√
t−μ)2) − 1.

(11.33)

This is the new branching singularity we are looking for. Actually, for
t above the three-particle threshold, t > (3μ)2, the argument of α in
(11.33) exceeds (2μ)2, so that the trajectory is complex, and the new
singularity is hidden on the unphysical sheet beneath the three-particle
unitary cut. For t < 9μ2 it emer-
ges on the physical sheet. Its
position in the t-plane, t0(j),
moves on the left with j decreas-
ing. If we take j = σ − 1, then
from (11.33) follows σ = α((

√
t−

μ)2), t = (m + μ)2, showing that

t0( j ) 
t 

9μ2 (m + μ)2

the branching arrives at the tip of the two-particle threshold, to rescue
the unitarity relation for the partial wave in spite of the ‘� = −1’
singularity phenomenon.

https://doi.org/10.1017/9781009290227.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.012


306 Reggeon branchings

11.3.2 Four-particle unitarity

The analysis of the four-particle unitarity condition proceeds along the
same lines. We group intermediate state particles into two pairs,

A A∗ t1  1λ1 

L 
t2  2λ2 

and get the singularity 1/((j + 1 − λ1 − λ2) at the first unphysical value
of their orbital angular momentum L = −1. Introducing Regge poles into
the elastic final state rescattering amplitudes, we arrive at the integration
over the pair masses,∫ ∫

dt1 dt2 τ(t, t1, t2)
j − α(t1) − α(t2) + 1

ψ(t1, t2)ψ∗(t1, t2)
tanπα(t1) tanπα(t2)

. (11.34)

To extract singularities from the double integral is more difficult. In fact,
there can be many singularities. Among them there is, however, one that
does not depend on specific features of the Regge pole trajectory and
does not contain masses explicitly. Let us outline the main steps of the
derivation of this singularity which is the one we are looking for.

The integral over t2 is singular in t1 when the pole collides with the
endpoint t2 ≤ (t2)max = (

√
t−√

t1)2, as before:

=⇒ j = α(t1) + α((
√
t−

√
t1)2) − 1. (11.35)

This is a non-linear equation for t1. A singularity in j will appear when
two solutions of (11.35) coincide, pinching the integration contour in the
t1-plane. The condition for having a multiple zero,

0 =
d

dt1

[
α(t1) + α((

√
t−

√
t1)2)

]
= α′(t1) − α′((

√
t−

√
t1)2) ·

√
t−√

t1√
t1

,

has an obvious solution
√
t−√

t1 =
√
t1 = 1

2

√
t. Substituting it into

(11.35) we get the branch singularity in the j-plane appearing at

j2(t) = 2α
(
t

4

)
− 1. (11.36)

Restoring the signature factors that we have ignored in the preceding
discussion, the discontinuity across the branch cut of the partial wave
amplitude can be derived,

δjf
(2)
j (t) =

π

2

∫
dt1 dt2

2i
τ(t, t1, t2)N

(2)
+ δ

(
j + 1 − α1 − α2

)
N

(2)
− ξ̄j ,

ξ̄j = ξj ξα1(t1)ξα2(t2).

(11.37)
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We supposed that there was only one reggeon in the two-particle scat-
tering amplitude. A generalization is straightforward. An inclusion of dif-
ferent Regge poles does not make the analysis much more complicated. If
we insert two Regge poles α and β in the four-particle unitarity condition
(11.34), the position of the two-reggeon branch-cut singularity,

j + 1 − α(t1) − β(t2) = 0,
√
t1 +

√
t2 =

√
t,

will be determined by the extremum of the function

α(t1) + β(t2) + κ[
√
t1 +

√
t2 ]

(with κ the Lagrange multiplier), resulting in

j2 = α

([ β′

α′ + β′

]2
t

)
+ β

([ α′

α′ + β′

]2
t

)
− 1.

Taking α to be the pomeron, α(0) = 1, in the linear approximation we
have

jR+P(t) � β(0) +
α′β′

α′ + β′ · t � β(t) − β′2

α′ + β′ · t, (11.38)

showing that the branch point lies between β(t) and β(0).
Even if the trajectory is unique, there appear many singularities in the

j-plane. Indeed, having obtained the branching singularity j2 of (11.36),
we can iterate it anew,

j2 

j2 
− N N+ =⇒ j4(t) = 2j2

(
t

4

)
− 1 = 4α

(
t

4

)
− 3.

This way an infinite series of Mandelstam branchings is generated by a
single Regge pole,

jn(t) = nα

(
t

n2

)
− n + 1. (11.39)

The corresponding discontinuity across the n-reggeon branch is given by

δjf
(n)
j (t) =

π

n!

∫
dΓτ N (n)

+ δ

(
j − 1 −

n∑
i=1

[α(ti) − 1]

)
N

(n)
− γ

(n)
j . (11.40)

As we have discussed in the previous lecture, the reggeon branchings are
essential for the high-energy asymptotics in one case only, namely, that of
the Pomeranchuk poles P with αP(0) = 1, when the branchings condense
to the point jn(t) = 1 in the n → ∞ limit. In the physical region of the
s-channel, t < 0, this puts pomeron branchings in the dominant position,
on the right of the pole αP(t), changing the asymptotic character of the
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elastic diffraction,

sα(t) → s · fα(ln s, t).

Analogously, high pomeron branching corrections to non-vacuum poles,

jR+nP(t) � β(0) +
α′β′

α′ + nβ′ · t,

accumulate towards jn(t) → β(0), and slow down the energy falloff of the
‘charge exchange’ cross sections,

sβ(t) → sβ(0) · fβ(ln s, t).

We see that in order to describe these phenomena we need to know
how to calculate and take into account multi-pomeron branchings. The
problem is complicated by the fact that, according to (11.39), all the
branch-point singularities are sitting at small t in one place, near j = 1.
In this situation we cannot approximate the reggeon production block N
by a constant since near j = 1 all the amplitudes are changing rapidly.
We must localize and iterate all singular contributions which will lead us
to the picture of interacting reggeons,

(2)N

(2)N

For ordinary hadrons all singularities were separated,

t = 4m2 t = 9m2
t = m2

This permitted us to use the unitarity as a tool for calculating the inter-
action amplitudes in the case of a small coupling constant. Even if the
coupling is large, iterating the unitarity conditions allowed us to extract
some valuable information. Now the situation looks much more difficult.
From the unitarity viewpoint, our reggeons behave rather as massless
objects (like photons).

In fact such an analogy can be drawn explicitly. The emerging reggeon
picture is similar to a non-relativistic multi-body problem of statistical
physics. Imagine a system of particles with the ‘dispersion law’ ωi = ε(ki)
describing the dependence of the particle energy on the momentum. The
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amplitude of scattering via, e.g. a two-particle intermediate state n will
have the structure

fa,b(ω,k2) ∝
∑
n

Va,nVn,b

ε1 + ε2 − ω
.

It has a cut in energy running from the point

ω2(k2) = min
k1+k2=k

{ε(k1) + ε(k2)}.

The discontinuity in energy reads

δωfa,b(ω,k2) =
∫

dΓ(k1,k2)fa,nδ
(
ε(k1) + ε(k2) − ω

)
f∗
b,n .

It resembles the two-reggeon unitarity condition (11.37) if we identify

j − 1 = ω, α(t) − 1 = ε(k).

The pomeron case corresponds to massless excitations (like phonons in
a solid state) with the dispersion law without a ‘mass-gap’: ε(0) = 0.
Such multi-phonon thresholds accumulate to ω=0 as the pomeron branch-
ings do.

There is, however, one but essential difference between the two prob-
lems, namely the signature factor ξ̄j in (11.37). To have a complete anal-
ogy with a quantum-mechanical system, we would like the amplitude to
be real below its singularities in energy. To try to get rid of ξ̄j by simply

absorbing
√

ξ̄j into the reggeon production factors N is dangerous: ξ̄j
may be negative and this would introduce an unwanted singularity into
the vertex function.

In non-relativistic quantum mechanics the discontinuity of the forward
amplitude (a = b) is given by the product f × f∗ and is positive. What
about our problem? Near the most interesting point α1 ≈ α2 ≈ j ≈ 1 we
have ξ̄j = ξj ξα1 ξα2 � (i)3, producing in the unitarity condition (11.37)

δjf
(2)
j ∝ 1

i
ξ̄j � −1.

This means that, contrary to common particles, the contribution of a
two-reggeon branching is negative. (We shall see shortly that in fact every
additional reggeon introduces (−1), and thus the signs are alternating.)

Still, except for the signs, the reggeon branching is similar to usual
branching in a system of particles, only in an unusual space, with t-channel
angular momentum j in the rôle of ‘energy’ ω.

We already remarked more than once that when t < 0 the branching of
two pomerons is positioned on the right from the pole. Now that we have
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established an analogy with the non-relativistic theory, this observation
becomes quite dramatic, since in NQM a pole cannot sit on top of a cut.

A multi-reggeon state in the t-channel, looks from s-channel as a rep-
etition of the one-reggeon exchange, and repetitions is the domain of the
unitarity. In the next lecture we start to construct the field theory of in-
teracting reggeons using unitarity in the s-channel. This will allow us, in
particular, to bypass the problem of non-uniqueness of the analytic con-
tinuation (11.28). We will also fix the signature factors γj in the reggeon
unitarity conditions (11.40) which, as we have mentioned before, must
vanish for physical integer values of j of the proper signature.
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