ON FUNCTIONAL CENTRAL LIMIT THEOREMS FOR LINEAR RANDOM FIELDS WITH DEPENDENT INNOVATIONS

MI-HWA KO¹, HYUN-CHULL KIM² and TAE-SUNG KIM[⊠]³

(Received 24 August, 2006; revised 1 July, 2008)

Abstract

For a linear random field (linear p-parameter stochastic process) generated by a dependent random field with zero mean and finite qth moments (q > 2p), we give sufficient conditions that the linear random field converges weakly to a multiparameter standard Brownian motion if the corresponding dependent random field does so.

2000 Mathematics subject classification: 60F17, 60G15.

Keywords and phrases: functional central limit theorem, random field, associated, linear random fields, martingale difference, decomposition.

1. Introduction and preliminary results

Define a linear random field by

$$u(t_1, \dots, t_p) = \sum_{i_1=0}^{\infty} \dots \sum_{i_p=0}^{\infty} a(i_1, \dots, i_p) \xi(t_1 - i_1, \dots, t_p - i_p),$$

$$(t_1, \dots, t_p) \in \mathbb{Z}^p, \qquad (1.1)$$

where $\{\xi(t_1,\ldots,t_p)\}$ is a random field with $E\xi(t_1,\ldots,t_p)=0$ and $E|\xi(t_1,\ldots,t_p)|^q<\infty$ for q>2p, and $\sum_{i_1=0}^{\infty}\cdots\sum_{i_p=0}^{\infty}\sum_{k_1=i+1}^{\infty}\cdots\sum_{k_p=i_p+1}^{\infty}|a(k_1,\ldots,k_p)|^q<\infty$. Functional central limit theorems for mixing and martingale-difference fields were presented in [5, 7] and [10]; in [2, 4, 6], functional central limit theorems for associated random fields were also proved.

¹Department of Mathematics, WonKwang University, Jeonbuk, 570-749, Korea; e-mail: songhack@wonkwang.ac.kr.

²Department of Mathematics Education, Daebul University, 526-720, Korea; e-mail: kimhc@mail.daebul.ac.kr.

³Department of Mathematics, WonKwang University, Jeonbuk, 570-749, Korea; e-mail: starkim@wonkwang.ac.kr.

[©] Australian Mathematical Society 2008, Serial-fee code 0334-2700/08

Marinucci and Poghosyan [8] generalized a result for p=1, known as the Beveridge–Nelson decomposition (see [9]), to the $p \ge 2$ case. A functional central limit theorem was then derived for a linear random field generated by the independent and identically distributed innovations $\{\xi(t_1,\ldots,t_p)\}$; this was done by exploiting the generalized decomposition result to decompose a partial sum of linear fields into a partial sum of independent components, together with a remainder which is shown to be uniformly of smaller order on \mathbb{Z}_+^p . By applying this technique, we shall derive sufficient conditions for $\sum_{t_1=1}^{\lceil nr_1 \rceil} \cdots \sum_{t_p=1}^{\lceil nr_p \rceil} u(t_1\ldots,t_p)$ to converge weakly to a multiparameter standard Brownian motion if $\sum_{t_1=1}^{\lceil nr_1 \rceil} \cdots \sum_{t_p=1}^{\lceil nr_p \rceil} \xi(t_1\ldots,t_p)$ does so. We will also consider functional central limit theorems for linear random fields those are generated by dependent random fields such as associated random fields and martingale-difference random fields.

We now introduce the decomposition of multivariate polynomials presented in [8] as the main tool in our subsequent arguments: consider the multivariate polynomial

$$A(x_1, \dots, x_p) = \sum_{i_1=0}^{\infty} \dots \sum_{i_p=0}^{\infty} a(i_1, \dots, i_p) x_1^{i_1} \dots x_p^{i_p}, \quad (x_1, \dots, x_p) \in \mathbb{R}^p, \quad (1.2)$$

where it is assumed that $|x_i| \le 1$ for i = 1, ..., p and

$$\sum_{i_1=0}^{\infty} \cdots \sum_{i_p=0}^{\infty} \sum_{k_1=i+1}^{\infty} \cdots \sum_{k_p=i_p+1}^{\infty} |a(k_1,\ldots,k_p)| < \infty.$$
 (1.3)

Assumption (1.3) implies that

$$A(1, \ldots, 1) = \sum_{i_1=0}^{\infty} \cdots \sum_{i_p=0}^{\infty} |a(i_1, \ldots, i_p)| < \infty.$$

In [8], a result known as the "Beveridge–Nelson decomposition" in the p = 1 case (see [9]) was generalized as follows.

LEMMA 1.1. Let Γ_p be the class of all 2^p subsets γ of $\{1, 2, ..., p\}$. Let $y_i = x_i$ if $j \in \gamma$ and $y_i = 1$ if $j \notin \gamma$. Then

$$A(x_1, \dots, x_p) = \sum_{\gamma \in \Gamma_p} \left\{ \prod_{j \in \gamma} (x_j - 1) \right\} A_{\gamma}(y_1, \dots, y_p),$$
 (1.4)

where it is assumed that the product over $j \in \phi$ is 1, and

$$A_{\gamma}(y_1, \dots, y_p) = \sum_{i_1=0}^{\infty} \dots \sum_{i_p=0}^{\infty} a_{\gamma}(i_1, \dots, i_p) y_1^{i_1} \dots y_p^{i_p},$$
 (1.5)

$$a_{\gamma}(i_1, \dots, i_p) = \sum_{s_1 = i_1 + 1}^{\infty} \dots \sum_{s_n = i_n + 1}^{\infty} a(s_1, \dots, s_p),$$
 (1.6)

with the sums being taken over indices s_j such that $j \in \gamma$, whereas $s_j = i_j$ if $j \notin \gamma$.

Marcinucci and Poghosyan [8] also introduced the partial back shift operator which satisfies

$$B_i\xi(t_1,\ldots,t_i,\ldots,t_p) = \xi(t_1,\ldots,t_i-1,\ldots,t_p), \quad i=1,2,\ldots,p.$$

This enables us to write (1.1) more compactly as

$$u(t_1, \dots, t_p) = \sum_{i_1=0}^{\infty} \dots \sum_{i_p=0}^{\infty} a(i_1, \dots, i_p) B_1^{i_1} \dots B_p^{i_p} \xi(t_1, \dots, t_p)$$

= $A(B_1, \dots, B_p) \xi(t_1, \dots, t_p),$ (1.7)

where

$$A(B_1, \ldots, B_p) = \sum_{i_1=0}^{\infty} \cdots \sum_{i_p=0}^{\infty} a(i_1, \ldots, i_p) B_1^{i_1} \cdots B_p^{i_p}.$$

The above ideas will be exploited in this paper to establish functional central limit theorems for linear random fields. With this goal in mind, we write

$$\xi_{\gamma}(t_1, \dots, t_p) = A_{\gamma}(L_1, \dots, L_p)\xi(t_1, \dots, t_p),$$
 (1.8)

where the operator L_i is defined as $L_i = B_i$ for $i \in \gamma$, and $L_i = 1$ otherwise; for instance, when p = 2,

$$\xi_1(t_1, t_2) = A_1(B_1, 1)\xi(t_1, t_2), \quad \xi_2(t_1, t_2) = A_2(1, B_2)\xi(t_1, t_2)$$

and

$$\xi_{12}(t_1, t_2) = A_{12}(B_1, B_2)\xi(t_1, t_2).$$

Before proving the theorems, let us introduce some notation. Let \mathcal{A} be a family of parallelepipeds in \mathbb{R}^p_+ of the form V=(a,b]; that is, $V=(a_1,b_1]\times\cdots\times(a_p,b_p]$, where $a_i,b_i\in N\cup\{0\}$ with $0\leq a_i\leq b_i<\infty$ for $i=1,\ldots,p$. For $V\in\mathcal{A}$, we write $|V|=\prod_{i=1}^p(b_i-a_i)$ and

$$S(V) = \sum_{(t_1, \dots, t_p) \in V} \xi(t_1, \dots, t_p), \quad M(V) = \max\{|S(Q)| : Q = (a, q] \subset V\}.$$
 (1.9)

Let C denote a positive constant which may vary from line to line, and let $[\cdot]$ denote the integer part of a real number.

2. Functional central limit theorems

Let $W(\cdot, \ldots, \cdot)$ denote multiparameter standard Brownian motion; that is, a zeromean Gaussian process with covariance function satisfying

$$EW(t_1, \dots, t_p)W(s_1, \dots, s_p) = \prod_{j=1}^p \min(t_j, s_j).$$
 (2.1)

Also, let D_p be the space of "cadlag" functions from $[0, 1]^p$ to \mathbb{R} . It is possible to endow D_p with a metric topology which makes it complete and separable; indeed, D_p is the multi-dimensional analogue of the Skorohod space D[0, 1]; see [11] or [1] for details.

We are now in a position to prove the main result of this section.

THEOREM 2.1. Let $u(t_1, \ldots, t_p)$ satisfy model (1.1), where

$$\sum_{i_1=0}^{\infty} \cdots \sum_{i_p=0}^{\infty} \sum_{k_1=i_1+1}^{\infty} \cdots \sum_{k_p=i_p+1}^{\infty} |a(k_1, \dots, k_p)| < \infty$$
 (2.2)

and $\{\xi(t_1,\ldots,t_p), (t_1,\ldots,t_p) \in \mathbb{Z}^p\}$ is any stationary random field such that $E\xi(t_1,\ldots,t_p) = 0, E|\xi(t_1,\ldots,t_p)|^q < \infty$ for q > 2p, and

$$0 < \sigma^2 = \sum_{(t_1, \dots, t_p) \in \mathbb{Z}^p} \text{Cov}(\xi(0, \dots, 0), \xi(t_1, \dots, t_p)) < \infty.$$
 (2.3)

Assume that

$$E|\xi_{\gamma}(t_1,\ldots,t_p)|^q < \infty \quad for \, \gamma \in \Gamma_p$$
 (2.4)

and

$$E(M(V))^q \le C|V|^{q/2}$$
 for some constant C and all $V \in \mathcal{A}$. (2.5)

Then

$$\frac{1}{\sigma n^{p/2}} \sum_{t_1=1}^{[nr_1]} \cdots \sum_{t_p=1}^{[nr_p]} \xi(t_1, \ldots, t_p) \quad \Rightarrow \quad W(r_1, \ldots, r_p)$$

implies

$$\frac{1}{\sigma n^{p/2}} \sum_{t_1=1}^{[nr_1]} \cdots \sum_{t_p=1}^{[nr_p]} u(t_1, \dots, t_p) \quad \Rightarrow \quad A(1, \dots, 1) W(r_1, \dots, r_p) \quad as \ n \to \infty,$$

where \Rightarrow denotes weak convergence in D_p .

PROOF. We start with the case p = 2, for which we give full details; the extension to p > 2 will be discussed later.

If we apply Lemma 1.1 to the back shift polynomial $A(B_1, \ldots, B_p)$, we find that the following almost-sure equality holds:

$$u(t_1, t_2) = A(1.1)\xi(t_1, t_2) + (B_1 - 1)A_1(B_1, 1)\xi(t_1, t_2)$$

+ $(B_2 - 1)A_2(1, B_2)\xi(t_1, t_2) + (B_1 - 1)(B_2 - 1)A_{12}\xi(t_1, t_2).$

This equality implies that

$$\sum_{t_1=1}^{[nr_1]} \sum_{t_2=1}^{[nr_2]} u(t_1, t_2) = \sum_{t_1=1}^{[nr_1]} \sum_{t_2=1}^{[nr_2]} A(1, 1) \xi(t_1, t_2) - \sum_{t_2=1}^{[nr_2]} \xi_1([nr_1], t_2) + \sum_{t_2=1}^{[nr_2]} \xi_1(0, t_2)$$

$$- \sum_{t_1=1}^{[nr_1]} \xi_2(t_1, [nr_2]) + \sum_{t_1=1}^{[nr_1]} \xi_2(t_1, 0) - \xi_{12}(0, [nr_2]) + \xi_{12}(0, 0)$$

$$- \xi_{12}([nr_1], 0) + \xi_{12}([nr_1], [nr_2])$$

$$= \sum_{t_1=1}^{[nr_1]} \sum_{t_2=1}^{[nr_2]} A(1, 1) \xi(t_1, t_2) + R_n(t_1, t_2). \tag{2.6}$$

From Markov's inequality and assumption (2.5), we find that for $0 \le r_1$, $r_2 \le 1$ and q > 2,

$$P\left\{\max_{0 \le r_1, r_2 \le 1} n^{-1} \sum_{t_2 = 1}^{[nr_2]} \xi_1([nr_1], t_2) > \delta\right\} \le \frac{E \max_{0 \le r_1, r_2 \le 1} \left|\sum_{t_2 = 1}^{[nr_2]} \xi_1([nr_1], t_2)\right|^q}{n^q \delta^q}$$

$$\le Cn^{-q/2} = o(1)$$
(2.7)

as $n \to \infty$. We can apply exactly the same argument to establish also that

$$P\left\{\max_{0 \le r_1, r_2 \le 1} n^{-1} \sum_{t_1 = 1}^{\lfloor nr_1 \rfloor} \xi_2(t_1, \lfloor nr_2 \rfloor) > \delta\right\} = o(1) \quad \text{as } n \to \infty.$$
 (2.8)

From assumption (2.4) it follows that for $0 \le r_1, r_2 \le 1$,

$$E|\xi_{12}([nr_1], [nr_2])|^q < \infty$$

and hence

$$P\left\{\max_{0 \le r_1, r_2 \le 1} n^{-1} \xi_{12}([nr_1], [nr_2]) > \delta\right\} = o(1) \quad \text{as } n \to \infty.$$
 (2.9)

Thus,

$$n^{-1} \sum_{t_1=1}^{[nr_1]} \sum_{t_2=1}^{[nr_2]} u(t_1, t_2) = n^{-1} \sum_{t_1=1}^{[nr_1]} \sum_{t_2=1}^{[nr_2]} A(1, 1) \xi(t_1, t_2) + n^{-1} R_n(t_1, t_2)$$
where
$$\sup_{0 \le r_1, r_2 \le 1} |n^{-1} R_n(t_1, t_2)| = o_p(1),$$

which implies that

$$(\sigma n)^{-1} \sum_{t_1=1}^{[nr_1]} \sum_{t_2=1}^{[nr_2]} u(t_1, t_2) \quad \Rightarrow \quad A(1, 1)W(r_1, r_2) \quad \text{as } n \to \infty.$$

When p > 2, the argument is analogous. In this case,

$$\sum_{t_1=1}^{[nr_1]} \cdots \sum_{t_p=1}^{[nr_p]} u(t_1, \dots, t_p)$$

$$= A(1, \dots, 1) \sum_{t_1=1}^{[nr_1]} \cdots \sum_{t_p=1}^{[nr_p]} \xi(t_1, \dots, t_p) + R_n(t_1, \dots, t_p)$$
 (2.10)

where

$$R_{n}(r_{1}, \dots, r_{p}) = \sum_{\gamma \in \Gamma_{p}, \gamma \neq \phi} \left\{ \prod_{j \in \gamma} (B_{j} - 1) \right\} \sum_{t_{1}=1}^{[nr_{1}]} \cdots \sum_{t_{p}=1}^{[nr_{p}]} A_{\gamma}(L_{1}, \dots, L_{p}) \xi(t_{1}, \dots, t_{p}), \quad (2.11)$$

with L_i defined as in (2.2). Note that for $j \in \gamma$,

$$\sum_{t_{j}=1}^{\lfloor nr_{j} \rfloor} (B_{j} - 1) A_{\gamma}(L_{1}, \dots, L_{p}) \xi(t_{1}, \dots, t_{p})$$

$$= \sum_{t_{j}=1}^{\lfloor nr_{j} \rfloor} A_{\gamma}(L_{1}, \dots, L_{p}) \xi(t_{1}, \dots, t_{j} - 1, \dots, t_{p})$$

$$- \sum_{t_{j}=1}^{\lfloor nr_{j} \rfloor} A_{\gamma}(L_{1}, \dots, L_{p}) \xi(t_{1}, \dots, t_{p}) + R_{n}(t_{1}, \dots, t_{p})$$

$$= A_{\gamma}(L_{1}, \dots, L_{p}) \xi(t_{1}, \dots, t_{p})$$

$$- A_{\gamma}(L_{1}, \dots, L_{p}) \xi(t_{1}, \dots, t_{p}). \qquad (2.12)$$

Thus the right-hand side of (2.11) can be written more explicitly as

$$\sum_{t_2=1}^{[nr_2]} \sum_{t_3=1}^{[nr_3]} \cdots \sum_{t_p=1}^{[nr_p]} A_1(B_1, \dots, 1) \xi(0, \dots, t_p)$$

$$- \sum_{t_2=1}^{[nr_2]} \sum_{t_3=1}^{[nr_3]} \cdots \sum_{t_p=1}^{[nr_p]} A_1(B_1, \dots, 1) \xi(n_1, \dots, t_p)$$

$$+ \sum_{t_1=1}^{[nr_1]} \sum_{t_3=1}^{[nr_3]} \cdots \sum_{t_p=1}^{[nr_p]} A_2(1, B_2, \dots, 1) \xi(0, \dots, t_p)$$

where, in view of (2.12), the sums corresponding to each $A_{\gamma}(\cdot, \ldots, \cdot)$ range over t_i such that $i \notin \gamma$. Now

$$\frac{1}{\sigma n^{p/2}} A(1, \dots, 1) \sum_{t_1=1}^{[nr_1]} \dots \sum_{t_p=1}^{[nr_p]} \xi(t_1, \dots, t_p) \quad \Rightarrow \quad A(1, 1, \dots, 1) W(r_1, \dots, r_p)$$

as in [1], so it is sufficient to prove that

$$\sup_{0 \le r_1, \dots, r_p \le 1} |n^{-p/2} R_n(r_1, \dots, r_p)| = o_p(1).$$
 (2.14)

Let us consider, for instance, the first term on the right-hand side of (2.13) for $0 \le r_1, \ldots, r_p \le 1$ and q > 2p; then assumption (2.5) and the same argument as for p = 2 give

$$P\left\{\max_{0 \le r_1, \dots, r_p \le 1} n^{-p/2} \sum_{t_1 = 1}^{[nr_1]} \dots \sum_{t_p = 1}^{[nr_p]} \xi([nr_1], \dots, t_p) > \delta\right\}$$

$$\le C n^{-pq/2} n^{(p-1)q/2} = n^{-q/2} = o(1) \text{ as } n \to \infty.$$
(2.15)

More generally, let $\sharp(\gamma)$ denote the cardinality of γ ; every other term in (2.14) is $n^{-p/2}$ times a partial sum of $n^{p-\sharp(\gamma)}$ elements, and we can apply the same argument iteratively to complete the proof.

COROLLARY 2.2. Let $u(t_1, \ldots, t_p)$ satisfy model (1.1). Assume that $a(i_1, \ldots, i_p) > 0$, $\sum_{i_1=0}^{\infty} \cdots \sum_{i_p=0}^{\infty} \sum_{k_1=i_1+1}^{\infty} \cdots \sum_{k_p=i_p+1}^{\infty} a(i_1, \ldots, i_p) < \infty$, and $\{\xi(t_1, \ldots, t_p), (t_1, \ldots, t_p) \in \mathbb{Z}^p\}$ is an associated wide-sense stationary mean-zero random field such that:

- (a) $M_q = \sup_{(t_1,...,t_p) \in \mathbb{Z}^p} E\xi(t_1,...,t_p)^q < \infty \text{ for some } q > 2p;$
- (b) $u(m) = \sup_t \sum_{s: ||t-s|| \ge m} \text{Cov}(\xi(t), \xi(s)) = o(m^{-\nu})$ for some $\nu > 0$, where $t = (t_1, \ldots, t_p)$, $s = (s_1, \ldots, s_p)$, and $||\cdot||$ is defined by $||a|| = \max_{1 \le i \le p} |a_i|$ for any $a = (a_1, \ldots, a_p) \in \mathbb{R}^p$;
- (c) $E|\xi_{\gamma}(t_1,\ldots,t_p)|^q < \infty$ for $\gamma \in \Gamma_p$.

Then

$$\frac{1}{\sigma n^{p/2}} \sum_{t_1=1}^{[nr_1]} \cdots \sum_{t_n=1}^{[nr_p]} u(t_1, \dots, t_p) \quad \Rightarrow \quad A(1, \dots, 1) W(r_1, \dots, r_p), \quad (2.16)$$

where $\sigma^2 = \sum_{(t_1, ..., t_p) \in \mathbb{Z}^p} \text{Cov}(\xi(0, ..., 0), \xi(t_1, ..., t_p)) < \infty$.

PROOF. From a theorem in [2] and assumptions (a) and (b), it follows that

$$\frac{1}{\sigma n^{p/2}} \sum_{t_1=1}^{[nr_1]} \cdots \sum_{t_p=1}^{[nr_p]} \xi(t_1, \dots, t_p) \quad \Rightarrow \quad W(r_1, \dots, r_p), \tag{2.17}$$

which yields (2.16) by Theorem 2.1.

LEMMA 2.3. Let $u(t_1, ..., t_p)$ satisfy model (1.1). Assume that

$$\sum_{i_1=0}^{\infty}\cdots\sum_{i_p=0}^{\infty}\sum_{k_1=i_1+1}^{\infty}\cdots\sum_{k_p=i_p+1}^{\infty}|a(i_1,\ldots,i_p)|<\infty$$

and $\{\xi(t_1,\ldots,t_p),(t_1,\ldots,t_p)\in\mathbb{Z}^p\}$ is a translation-invariant, ergodic, martingale-difference random field with $\sigma^2=E\xi(t_1,\ldots,t_p)^2<\infty$ and $E|\xi(t_1,\ldots,t_p)|^q<\infty$ for q>2p. Then, for $\gamma\in\Gamma_p$, we have $E|\xi_\gamma(t_1,\ldots,t_p)|^q<\infty$.

PROOF. First, note that because \mathbb{Z}^p is countable, there exists a one-to-one correspondence $\phi: \mathbb{Z} \to \mathbb{Z}^p$. Hence,

$$\xi_{\gamma}(0, \dots, 0) = \sum_{i_{1}=0}^{\infty} a_{\gamma}(i_{1}, \dots, i_{p})\xi(-i_{1}, \dots, -i_{p})$$
$$= \sum_{i_{1}=0}^{\infty} a_{\gamma}(\phi(i))\xi(-\phi(i)),$$

where $\xi(-\phi(i))$ is a sequence of translation-invariant, ergodic, martingale-difference variables. Now

$$E|\xi_{\nu}(t_1,\ldots,t_n)|^q = E|\xi_{\nu}(0,\ldots,0)|^q$$

and therefore

$$\begin{split} E|\xi_{\gamma}(t_{1},\ldots,t_{p})|^{q} &= E\left|\sum_{i_{1}=0}^{\infty}a_{\gamma}(\phi(i))\xi(-\phi(i))\right|^{q} \\ &\leq CE\left|\sum_{i_{1}=0}^{\infty}[a_{\gamma}(\phi(i))\xi(-\phi(i))]^{2}\right|^{q/2} \\ &\leq C\left\{\sum_{i_{1}=0}^{\infty}a_{\gamma}^{2}(\phi(i))[E|\xi(-\phi(i))|^{q}]^{2/q}\right\}^{q/2} < \infty, \end{split}$$

where the first bound follows from Burkholder's inequality [3] and the second from Minkowski's inequality.

COROLLARY 2.4. Under the conditions of Lemma 2.3, (2.16) holds.

PROOF. By [10, Theorem 3],

$$\frac{1}{\sigma n^{p/2}} \sum_{t_1=1}^{[nr_1]} \cdots \sum_{t_p=1}^{[nr_p]} \xi(t_1, \ldots, t_p) \quad \Rightarrow \quad W(r_1, \ldots, r_p).$$

Then (2.5) follows from the definition of martingale difference (see [10]). Hence, by Theorem 2.1, we obtain the desired result.

References

- [1] P. J. Bickel and M. J. Wichura, "Convergence criteria for multiparameter stochastic processes and some applications", *Ann. Math. Statist.* **42** (1971) 1650–1670.
- [2] A. V. Bulinski, "Invariance principle for associated random fields", J. Math. Sci. 81 (1996) 2905– 2911.
- [3] D. L. Burkholder, "Distribution function inequalities for martingale", Ann. Probab. 1 (1973) 19–42.
- [4] R. M. Burton and T. S. Kim, "An invariance principle for associated random fields", Pacific J. Math. 132 (1988) 11–19.
- [5] D. Chen, "A uniform central limit theorem for nonuniform ϕ -mixing random fields", *Ann. Probab.* **19** (1991) 636–649.
- [6] J. T. Cox and G. Grimmett, "Central limit theorem for associated random variables and the percolation model", Ann. Probab. 12 (1984) 514–528.
- [7] C. M. Goldie and P. E. Greenwood, "Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes", Ann. Probab. 14 (1986) 817–839.
- [8] M. Marinucci and S. Poghosyan, "Asymptotics for linear random fields", Statist. Probab. Lett. 51 (2001) 131–141.
- [9] P. C. B. Phillips and V. Solo, "Asymptotics for linear processes", Ann. Statist. 20 (1992) 971–1001.
- [10] S. Poghosyan and S. Roelly, "Invariance principle for martingale-difference random fields", Statist. Probab. Lett. 38 (1998) 235–245.
- [11] M. L. Straf, "Weak convergence of stochastic processes with several parameters", in *Proc. Sixth Berkeley Symp. on mathematical statistics and probability*, Volume 11 (University of California Press, 1970) 187–221.