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Abstract

For a linear random field (linear p-parameter stochastic process) generated by a
dependent random field with zero mean and finite gth moments (¢ > 2p), we give
sufficient conditions that the linear random field converges weakly to a multiparameter
standard Brownian motion if the corresponding dependent random field does so.
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1. Introduction and preliminary results

Define a linear random field by

o0 o0
w(tn, . tp) =D Y alin ... ipEt =it .ty — i),

i1=0  i,=0

(t1, ..., tp) €ZP, (1.1)

where {£(t1, . . ., tp)}is arandom field with E&(ty, ..., t)) =0and E|§(zy, ..., tp)|?
<oo for ¢>2p, and Y77 Z?;):o D Rimidl Zl?j:ipﬂ latk, ..., kp)l
< 0o. Functional central limit theorems for mixing and martingale-difference fields
were presented in [5, 7] and [10]; in [2, 4, 6], functional central limit theorems for
associated random fields were also proved.
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Marinucci and Poghosyan [8] generalized a result for p =1, known as the
Beveridge—Nelson decomposition (see [9]), to the p > 2 case. A functional central
limit theorem was then derived for a linear random field generated by the independent
and identically distributed innovations {&£(¢1, ..., f,)}; this was done by exploiting
the generalized decomposition result to decompose a partial sum of linear fields
into a partial sum of independent components, together with a remainder which is

shown to be uniformly of smaller order on Zﬁ. By applying this technique, we shall

nri]l [l

derive sufficient conditions for Ztl:l =1 u(ty ..., tp) to converge weakly to

a multiparameter standard Brownian motion if 221111] e Ejr_pl] E(t1 ..., 1p) does
= o=

so. We will also consider functional central limit theorems for linear random fields
those are generated by dependent random fields such as associated random fields and
martingale-difference random fields.

We now introduce the decomposition of multivariate polynomials presented in [8]
as the main tool in our subsequent arguments: consider the multivariate polynomial

o0 o0 .
AL oxp) =Y Y alin i xl L (. xp) €RPL(12)

i1=0  i,=0

where it is assumed that |x;| < 1fori =1, ..., p and
o0 o0 o0 [e.¢]
DT D s D atky .. k)| < oo (1.3)
i1=0 i,,:O ki=i+1 kp=ip+1

Assumption (1.3) implies that

o0 o0
AQ, . =) Y alin, . dp)] < oo
i1=0  i,=0

In [8], a result known as the “Beveridge—Nelson decomposition” in the p = 1 case
(see [9]) was generalized as follows.

LEMMA 1.1. Let T"), be the class of all 2P subsets y of {1, 2, ..., p}. Let y; = x; if
jeyandy, =1ifj ¢ y. Then
A= 2T = Dja,00 v, (1.4)
velp jey

where it is assumed that the product over j € ¢ is 1, and

00 00 .
Ayiseeoyp) =D Y@yl iy vy (1.5)
i1=0  ip=0
o0 o0
ay(it, ....ip)= D o D alsi....sp), (1.6)
s1=i1+1 sp=ip+1

with the sums being taken over indices s such that j € y, whereas s;j =1i; if j & y.
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Marcinucci and Poghosyan [8] also introduced the partial back shift operator which
satisfies

Bl‘f(tl,...,ti,...,tp)ZE(ll,...,ll‘—l,...,tp), i=1,2,...,p.

This enables us to write (1.1) more compactly as

o [.¢] .
w(ty, ... tp) =Y - > alin,....ip)B) - BYEM, ... . 1p)

i1=0  i,=0

=A(By, ..., Bpé(ty, ..., tp), (1.7)
where

o0 o0 .
ABi,....B))=)Y Y alir.....ip)B' - By.

i1=0  i,=0

The above ideas will be exploited in this paper to establish functional central limit
theorems for linear random fields. With this goal in mind, we write

E (t1, .. tp) =Ay (L1, ..., LE(t, ..., 1)), (1.8)

where the operator L; is defined as L; = B; for i € y, and L; =1 otherwise; for
instance, when p =2,

§1(t1, ) = A1(B1, DE(t1, 1), &1, 1) = Ax(1, Bo)&(1y, 1)
and
E1n(t1, ) = A12(B1, B)é(t, ).

Before proving the theorems, let us introduce some notation. Let A be a family of
parallelepipeds in Rfr of the form V = (a, b]; thatis, V = (a1, b1] x - - - X (ap, bp],
where a;, b e NU {0} with0<a; <b; <ocofori=1,..., p. For V € A, we write
\VI=T1"_,(bi —a;) and

SV) = Z Ety, ..., tp), MEV)=max{|S(Q)|:Q=(a,qlCV} (1.9

Let C denote a positive constant which may vary from line to line, and let [ - ] denote
the integer part of a real number.

2. Functional central limit theorems

Let W(., ..., -) denote multiparameter standard Brownian motion; that is, a zero-
mean Gaussian process with covariance function satisfying

)4
EW(t1, ..., t))W(s1,...,sp) = ]_[ min(z;, 5). 2.1)
j=1
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Also, let D, be the space of “cadlag” functions from [0, 1]” to R. It is possible to
endow D, with a metric topology which makes it complete and separable; indeed, D,
is the multi-dimensional analogue of the Skorohod space D[0, 1]; see [11] or [1] for
details.

We are now in a position to prove the main result of this section.

THEOREM 2.1. Letu(ty, ..., tp) satisfy model (1.1), where
(0.¢] o o0 o0
DOREE Z Z © Y atky, ... kp)| <00 2.2)
i1=0  ip=0kj=ii+1  kp=i,+1
and {§(t1, ..., tp), (t1,...,tp) €LP} is any stationary random field such that

E&(ty, ..., 1p) =0, E|&(t1, ..., 1) <00 forq >2p, and

0<o’= > Cov(£(,...,0), &, ..., 1p)) < oo. 2.3)

Assume that

Elg, (11, ..., 1p)|" <oo0 foryeTl, 2.4)
and
EM(V))? < C|V|2? for some constant C and all V € A. (2.5)
Then
1 [nr] [nrp]
D D ) = W)
on =1 t,,:l
implies
[nr] [nrp]
onP/2 Z Z u(ty, ..., tp) = AQA,...,DW(@y,...,rp) asn— 0o,
H=1 tp =1

where = denotes weak convergence in D .

PROOF. We start with the case p = 2, for which we give full details; the extension to
p > 2 will be discussed later.

If we apply Lemma 1.1 to the back shift polynomial A(Bj, ..., Bp), we find that
the following almost-sure equality holds:

u(ty, n) = A1.DE@, 1) + (Br — DA(By, DE(1, 1)
+ (B — DAL, Bo)é(t1, o) + (Br — 1)(By — 1)A126(11. 12).
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This equality implies that

[nr1] [nr] [nr1] [nr] [nra] [nra]
Dultn) =Y > AL DEH. ) — Y E(nrl. )+ Y &0, 1)
=1 =1 =1 n=1 Hh=1 nh=1
[nry] [nry]
— Y &, )+ Y &, 0) — £1(0, [nr2]) + £12(0, 0)
n=1 =1

—&1([nr1], 0) + &12([nr1 ], [nr2])
[nry] [nra]

=YY AL DE(t. 1) + Ra(t1, 12). (2.6)

=1 n=1

From Markov’s inequality and assumption (2.5), we find that for 0 <ry, 7, <1 and

q > 2,
[nra] E maxo<y, r,<1 |Z[m2] &1([nr1], l2)|q
p _ o st < =ri,rn= =1
{Osrrrll,ar)z(sl " zzgl fiflnl )= } B nié4
<Ccn1? =0(1) 2.7)

as n — 0o. We can apply exactly the same argument to establish also that
0<ry,rp=1

[nr]
P{ max n”! Z £ (11, [nra]) > 5} —o(l) asn— oo. (2.8)
t1=l

From assumption (2.4) it follows that for 0 <ry, rp <1,

E|&12([nr1], [nra])]? < 00

and hence

P{ max nilélg([nrl], [nra]) > 8} =o0(l) asn— oo. (2.9)

0<ry,rn=<1

Thus,

[nr1] [nr2] [nry] [nr]

YT u, )y =n"" Y Y AQL DE@, )+ 0T R, 1)
t1=1 =1 =1 n=1
where  sup  [n7'R, (11, )| = 0,(1),
0=<ry,rp<1

which implies that

[nr1] [nrp]

(on)! Z Z utl, ) = A, DW(r1, r) asn— oo.

t1=1 =1
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When p > 2, the argument is analogous. In this case,

[nr] [nrp]
u(ty, ..., l‘p)
=1 tp=1
[nry] [nrp]
=A(L ..., D)) Y EML ) F Ryt ) (210)
=1 tp=1

where

Ry(ri, ..., 1p)

- > {Mw-v

} [nr{] [nrp]
velp,y#¢ *jey

D Y ALy LpEL . ty), (210)

=1 tp=1

with L; defined as in (2.2). Note that for j € y,

[nr;]
> (Bj = DAL, ... L&t ... 1))
l‘j:]
[nr;]
=Y ALy, .. LpEm. ..t =1ty
Ij:]
[nrj]
=Y ALy LpE(t. . tp) + Ru(tr, 1)
lj:l
=Ay(Ly, ..., L&, ..., 0,... 1)
—Ay(Ly, oo, LY)EL, ... [nrj], oo tp). (2.12)

Thus the right-hand side of (2.11) can be written more explicitly as

[nry] [nrs3] [nrp]
DD ABL L DEO, 1)
=1 =1 tp=1
[nrp] [nr3] [nrp]
=YD Y ANBL L DEGML 1)
=1 13=1 tp=1
[nr1] [nr3] [nrp]
+Y ) ) A1 By DEO, 1)
t1=1 =1 l‘/,=l
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[nry] [nr3] [nrp]

=Y Y AL By DEGL )

n=ln=1  f,=1
+A12...p(B1,...,BP)S(O,...,0)—A12...p(B1,...,BP)S(O,...,np)
—A12‘..p(Bl,...,Bp)é(nl,...,())-i-"'
+Ap..p(By, ..., Bp)&ny, ..., np) (2.13)

where, in view of (2.12), the sums corresponding to each A, (-, ..., -) range over ¢
such that i ¢ y. Now

1 [nr1] [nrp]
— A 1)2 Y EML .t = AL DW(r, L Ty)
1p=1

as in [1], so it is sufficient to prove that

sup  |n PRy (r1, .. ) = 0p(1). (2.14)

0=<ry,...,rp=1

Let us consider, for instance, the first term on the right-hand side of (2.13) for
0<ry,...,rp, <1and g > 2p; then assumption (2.5) and the same argument as for
p =2 give

[nry] (nrp]
P{ max nl’/zz Z"g‘([nrl] ,t,,)>3}

0<ry,....,rp<l1
=Mheelp= 1p=1

<CnPi/%y P—Uq/z =n"1? =0(1) asn — oo. (2.15)

More generally, let #(y) denote the cardinality of y; every other term in (2.14) is
n~P/? times a partial sum of n?~#() elements, and we can apply the same argument

iteratively to complete the proof. O
COROLLARY 2.2. Let u(ty, ..., tp) satisfy model (1.1). Assume that a(iy, . .., ip)
>0, 3o Zz,,_o ki1 Z/fj=ip+1 a(iy, ..., ip) <oo, and {§(11, ...,
tp), (t1, ..., tp) € ZP} is an associated wide-sense stationary mean-zero random field
such that:

(@) My =sup, ., ezr EE(, ..., 1p)? < 00 for some g > 2p;

(b) u(m) = sup, Zs:nz—suzm Cov(&(t), £(s)) =o(m™") for some v >0, where

t=(t,...,tp), s=(s1,...,5p), and || - || is defined by ||a|| = maxi<;<p |a;|

foranya=(ay, ..., ap) eRP;
© El§y(t1,...,1p)|? <oofory el

Then
[nr] [nrp]
nP/2 Z Z u(ty,....tp) = Ad,...,DW(,...,rp), (2.16)
1p=1

where 02 = Z(zl 1,)EZP Cov(£(0,...,0),&(1, ..., 1)) <o00.

,,,,,
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PROOF. From a theorem in [2] and assumptions (a) and (b), it follows that

[nry] (nrp]

1
WZ"'Zs(n,‘..,zp) = Wi, ..., rp), (2.17)
=1 tp=1
which yields (2.16) by Theorem 2.1. O
LEMMA 2.3. Letu(ty, ..., tp) satisfy model (1.1). Assume that
o.¢] o.¢] [o¢] [o¢]

YIRS DD DI SRR

i1=0  ip=0ki=ij+1 kp=ip+1
and {§(ty, ..., tp), (t1, ..., tp) € ZP} is a translation-invariant, ergodic, martingale-
difference random field with 6> = E£(ty, . . ., tl,,)2 <ooand E|E(ty, ..., 1p)|1 <00
forq > 2p. Then, for y €', we have E|§,(t, ..., t,)]|9 < oc.

PrROOF. First, note that because ZP is countable, there exists a one-to-one
correspondence ¢ : Z — ZP. Hence,

£,0,....0) =Y ay(it,....ip&(=it, ... —ip)

i1=0

= Y ay@)E-$ ().

i1=0

where £(—¢ (7)) is a sequence of translation-invariant, ergodic, martingale-difference
variables. Now

Elg, (t1, ..., tp)|"=E|§,,..., 0]
and therefore

00 q
> ay(@)E(— ()

i1=0

Elgy @, ... tp)"=E

00 q/2
S lay (@ @)Ep NP

i1=0

<CE

00 q/2
< c{ > ai(¢(i))[E|s<—¢(i)>|‘f]2/q} < oo,

i1=0

where the first bound follows from Burkholder’s inequality [3] and the second from
Minkowski’s inequality. O

COROLLARY 2.4. Under the conditions of Lemma 2.3, (2.16) holds.
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PROOF. By [10, Theorem 3],

1 [nri] [nrp]
onp/? Z Zg(lly---,lp) = W, ..., rp).
t1=1 tp=1

Then (2.5) follows from the definition of martingale difference (see [10]). Hence, by

Theorem 2.1, we obtain the desired result. d
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