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We present a detailed analysis on the extent of the errors in the intensity measurements 
of low signal-to-noise narrow emission lines. Our first goal is to determine a model for the 
probability distribution function (p.d.f.) associated with the measured intensities of a line 
characterized by its signal-to-noise ratio. Our final purpose is to provide an error domain: - for 
the measured signal-to-noise ratio of an observed line; - for the ratio of two lines in terms of 
their signal-to-noise ratios, and eventually (with the knowledge of the noise energy) to get 
errors on the corresponding intensities and intensity ratios. 

To reproduce a real emission line intensity measurement process, we have designed a 
program based on a Monte-Carlo simulation procedure. For the purposes of this simulation, 
the knowledge of the true line parameters (the Intensity - imposed by the true signal-to-noise 
( S / N ) t m e , the position, and width) and the noise characteristics were necessary. Each spectrum 
was modeled by the sum of an emission line plus a continuum of a known constant level, this 
sum being considered as the mean of a certain stochastic process. The line was a Gaussian 
profile. To this model was added a non-correlated noise ("white noise") following the Student 
distribution. 

Our simulation was divided in two main parts: the first, called detection, tells if a line is 
suspected to be present in a specific segment of the spectra; the second tries to measure the 
detected line, that is, to give estimates of the intensity, position and width of the suspected line. 
Once a line is suspected in one of the samples, the program proceeds to a fitting algorithm. The 
line model is also a Gaussian, the parameters of which are known only to lie within reasonable 
bounds. The adjustment is made through a standard X 2 minimizing routine. Once the minimum 
is attained a X 2 rejection test is performed on the residuals of the fit. If the test is satisfied, a 
Gaussian line is detected. 

We made at least 1000 simulations for each ( S / N ) t m e . For each signal-to-noise (S /N) t r u e , we 
calculated the intensity of each line in the detected lines sample. We call it "observed" intensity 
and denote it by S o b s . These intensities are then normalized to the known true intensity, S t r u e , 
and we call this normalised intensity, i, i.e., i = S o b s / S t r u e . Fits made for each (S /N) t r u e led us to 
consider the log-normal distribution as a possible model for S o b s / S t r u e , which proved to give very 
reasonable results. We computed, for each normalised sample, a few statistics, the "true" signal-
to-noise ratio, the mean of the sample (normalised to the true intensity), its variance and the 
square-root of the mean quadratic error calculated relative to one (the true normalised intensity 
value). Our results show clearly that for (S /N) t r u e up to three, there is a strong bias ( > 50%) 
towards overestimation of the values of the "observed" intensities. 
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In practice, the observer's interest is to determine from the knowledge of ( S / N ) o b s a 
plausible range where (S /N) t r u e may be found. In other words, one would like to know what 
are the limits which contain S t m e with probability of 7. These error bars can be easily calculated 
since we know for each value of ( S / N ) t m e the distribution followed by (S /N) o b s . By a change 
of variable it is easy to derive the distribution followed by (S /N) o b s , which is also a log-normal. 
This parameter has the advantage of being a non-dimensional universal one. By integrating the 
( S / N ) o b s p.d.f. corresponding to each (S /N) t n i e up to a confidence level 7 we obtain the chart 
presented in Fig. 1, where the continuous thick line delimits the confidence intervals for 7 = 
0.683 (or one σ), and the thin line, the one for 7 = 0.954 (or two σ). This chart was 
constructed horizontally, but must be used vertically with the following reasoning: an observer 
measures a line of (S /N) o b s and obtains vertically the range on the (S /N) t r u e values determined 
with confidence level 7. This chart shows clearly that, for example, at the one σ confidence 
level (or 7 = 0.683), a line measured with (S /N) o b s = 4 is compatible with 0 < ( S / N ) o b s < 5. 
One cannot then rule out the possibility that a noise fluctuation was mistaken for a line. 

O b s e r v e d S / N 

Fig. 1. Chart for the interval estimation of the (S /N) t r u e , given an observed value (S /N) o b s . 

Furthermore, we calculated that a ratio of measured intensities or signal-to-noise ratios 
also follows a log-normal distribution and as such is subject to strong biases. Additionally, we 
determined the error domain on the ratio of a signal-to-noise ratios, which can be converted 
in an intensities ratio with the knowledge of the rrespondent noise energy ratio. 
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