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We investigate the continuity and differentiability of the Hardy constant with
respect to perturbations of the domain in the case where the problem involves the
distance from a boundary submanifold. We also investigate the case where only the
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1. Introduction

Suppose Ω ⊂ R
n is a bounded domain (open, connected) with boundary ∂Ω, and

let Σ ⊂ ∂Ω be a subset of the boundary. If there exists a positive constant C > 0
such that the inequality∫

Ω

|∇u|2dx � C

∫
Ω

u2

d2
Σ

dx, u ∈ H1
0 (Ω), (1.1)

with dΣ = dist(·, Σ) is valid, we say that the Hardy inequality is satisfied for the
pair (Ω, Σ). Such inequalities are known to hold in a variety of settings, and for the
particular cases Σ = {σ} (point singularities) and Σ = ∂Ω (the entire boundary)
the relevant literature is quite extensive (especially for the latter case).

An important aspect of the theory of Hardy inequalities is to specify the best
constant for a particular pair (Ω, Σ), that is, the quantity

H(Ω,Σ) = inf
u∈H1

0 (Ω)

∫
Ω
|∇u|2dx∫

Ω
u2/d2

Σ dx
, (1.2)

which is called the Hardy constant.
The particular case Σ = ∂Ω has been studied extensively and, apart from the well-

known convexity condition, other conditions have been introduced which guarantee
that the Hardy constant assumes the critical value 1/4, see [1, 3, 9, 13, 16] and
references therein.
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Shape sensitivity of the Hardy constant 409

The case of the point singularity has also been studied in recent years. Sufficient
conditions to have H(Ω, {σ}) = n2/4 (again, the critical value) have been obtained
in [4, 10], see also [7, 8, 12] for results within this context.

The intermediate case where Σ is a part of the boundary which is larger than
a single point and smaller than the entire boundary has been addressed in [11],
in which the authors discuss the smooth case where ∂Ω is smooth and Σ is a
submanifold of ∂Ω of dimension dim Σ = s.

In this paper, we are primarily concerned with the behaviour of the Hardy con-
stant under perturbations of the domain and the subset Σ. In particular, if ϕ is a
diffeomorphism, we get a map

ϕ �−→ H(ϕ(Ω), ϕ(Σ)), (1.3)

and our task is to investigate questions of continuity and differentiability of that
map in an appropriate sense which is made precise in the next section. This problem
has already been studied in a more general Lp setting for the special case Σ = ∂Ω
in [5], so our work here is a natural continuation of that work.

We also concern ourselves with the problem where only the submanifold is per-
turbed. This is expressed in a very neat way in the case of a point singularity: if
we regard the Hardy constant as a function H : ∂Ω → R,

H(σ) = H(Ω, {σ}),
then this function is differentiable on ∂Ω, under some reasonable assumptions.

As a final remark, let us note that to extend this theory for p �= 2, results similar
to those of [11] which relate the value of the best constant with the existence of
minimizers (which we use in the sequel) would be required. This leaves an important
open problem, which is in fact very interesting in its own right. Another issue is
the regularity of the domain: in the results concerning differentiability of the Hardy
constant, smoothness is assumed, since it is assumed in the results of [11], that are
an important part of our approach. A conjecture is that these results can probably
go as low as C1,α in regularity, see for example [15] for similar results for the case
Σ = ∂Ω.

2. Diffeomorphism groups

In this section we offer a quick review of finite-order diffeomorphism groups in R
n.

For details, see [2]. A Ck-diffeomorphism of R
n is a homeomorphism ϕ : R

n → R
n

that is k-times bi-differentiable. The set of all such maps is denoted by Diffk(Rn).
It is obviously a group under composition. For our purposes, it is sufficient to work
with the subgroup Diffk

c (Rn) of Ck-diffeomorphisms with compact support; the
support of a diffeomorphism is defined to be the closure of the set of points that
the diffeomorphism acts upon non-trivially, i.e.

supp(ϕ) = {x ∈ Rn : ϕ(x) �= x}.
Since we work on bounded domains, this is done without loss of general-
ity, and spares us some technical considerations that are consequence of the
non-compactness of R

n.
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We now equip Diffk
c (Rn) with the weak Ck topology (or compact-open topol-

ogy). To describe this topology, it suffices to describe the basic open sets that
generate it. These are the ‘balls’:

Nϕ(K, ε) = {ψ ∈ Diffk
c (Rn) : ‖ψ − ϕ‖Ck(K) < ε}

of centre ϕ ∈ Diffk
c (Rn), radius ε > 0 and domain K, which is a compact subset

of R
n. Here, we assume

‖ϕ‖Ck(K) =
∑

0�|α|�k

‖∂αϕ‖L∞(K).

In this topology, Diffk
c (Rn) is a topological group, which is in fact locally home-

omorphic to the Banach space of Ck vector fields of compact support Xk
c (Rn) ∼=

Ck
c (Rn, R

n), thus assuming the structure of an infinite dimensional Lie group.
The directional derivative of a continuous function H : Diffk

c (Rn) → R at ϕ ∈
Diffk

c (Rn) in the direction of ξ ∈ Xk
c (Rn) is given by the limit

DϕH(ξ) =
d
dt

∣∣∣
t=0

H(ϕ+ tξ),

provided it exists. Note that the compact support assumption guarantees that ϕ+
tξ is always a diffeomorphism provided that t is small enough. If this is defined for
all ϕ ∈ Diffk

c (Rn) and all ξ ∈ Xk
c (Rn), we say that H is (Gateaux) differentiable.

3. Continuity of the Hardy constant

Here we discuss some continuity results. By co(Ω) we denote the convex hull of Ω.

Theorem 3.1. Let Ω ⊂ R
n be an open set with non-empty boundary, and let Σ ⊂

∂Ω be an arbitrary subset of the boundary. Then there exist ε > 0 and c > 0 such
that for every C1 diffeomorphism ϕ with ‖Dϕ− I‖ < ε,

|H(ϕ(Ω), ϕ(Σ)) −H(Ω,Σ)| � cH(Ω,Σ)‖Dϕ− I‖L∞(coϕ(Ω)), (3.1)

where coϕ(Ω) = co(Ω) ∪ ϕ−1(co(ϕ(Ω))).

Proof. Let u ∈ H1
0 (Ω) be normalized by

∫
Ω
u2/d2

Σdx = 1. For v = u ◦ ϕ−1, consider
the Rayleigh quotient

R(ϕ(Ω), ϕ(Σ))[v] =

∫
ϕ(Ω)

|∇v|2dy∫
ϕ(Ω)

v2/d2
ϕ(Σ)dy

=

∫
Ω
|(Dϕ)−�∇u|2|detDϕ|dx∫

Ω
(u2/d2

ϕ(Σ) ◦ ϕ)|detDϕ|dx,

where the last equality follows from the change of variables y = ϕ(x). After some
elementary calculations, it follows that

R(ϕ(Ω), ϕ(Σ))[v] − R(Ω, Σ)[u]

=

∫
Ω(|(Dϕ)−�∇u|2|det Dϕ|−|∇u|2)dx−∫Ω |∇u|2dx

( ∫
Ω((u2| det Dϕ|)/(d2

ϕ(Σ)
◦ ϕ))dx − 1

)
∫
Ω((u2|det Dϕ|)/(d2

ϕ(Σ)
◦ ϕ))dx

.
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In order to get an estimate for the expression

|(Dϕ)−�∇u|2|detDϕ| − |∇u|2,

we first note that ‖A�‖ = ‖A‖ as operator norms. To get an upper bound for the
operator norm of the inverse, we also make the assumption that ϕ is a ‘small’
diffeomorphism in the sense that Dϕ(x) = I + ε(x) where ‖ε(x)‖ < 1. In this case
it is known that

‖(Dϕ)−1(x)‖ � 1
1 − ‖ε(x)‖ .

Besides, for such ε there is a constant κ = κ(n) such that

|det(I + ε) − 1| � κ‖ε‖,

so eventually we have the estimate

|(Dϕ)−�∇u|2|detDϕ| − |∇u|2 � C|∇u|2‖Dϕ− I‖

for some constant C > 0 provided that ‖Dϕ− I‖ is small.
Next, for x ∈ Ω, we obtain an estimate of dϕ(Σ)(ϕ(x)) in terms of dΣ(x). Since

dΣ = dΣ̄, we may assume that Σ is closed. Then there exists σ(x) ∈ Σ such that
dΣ(x) = |x− σ(x)|. Consider the straight line segment γ : [0, 1] → R

n,

γ(t) = (1 − t)σ(x) + tx

joining these two points. Then clearly dΣ(x) = l(γ) (the arc length of γ). Then, by
definition, we have that

dϕ(Σ)(ϕ(x)) � l(ϕ ◦ γ) =
∫ 1

0

|(ϕ ◦ γ)′(t)|dt � ‖Dϕ‖L∞(co(Ω))dΣ(x),

thus

dϕ(Σ)(ϕ(x)) � dΣ(x)(1 + ‖Dϕ− I‖L∞(co(Ω))).

It follows that∫
Ω

u2|detDϕ|
d2

ϕ(Σ) ◦ ϕ
dx � infΩ |detDϕ|

(1 + ‖Dϕ− 1‖L∞(co(Ω)))2

∫
Ω

u2

d2
Σ

dx

�
1 − κ‖Dϕ− I‖L∞(Ω)

(1 + ‖Dϕ− 1‖L∞(co(Ω)))2
,

the last inequality being valid due to normalization, thus∫
Ω

u2|detDϕ|
d2

ϕ(Σ) ◦ ϕ
dx � 1 − C‖Dϕ− I‖L∞(co(Ω))

for some constant C provided that ‖Dϕ− I‖ is small.
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Using all these estimates we obtain

R(ϕ(Ω), ϕ(Σ))[v] −R(Ω,Σ)[u] � cR(Ω,Σ)[u]‖Dϕ− I‖L∞(co(Ω))

for some c > 0. Passing to the appropriate limit of minimizers, we get

H(ϕ(Ω), ϕ(Σ)) −H(Ω,Σ) � cH(Ω,Σ)‖Dϕ− I‖L∞(co(Ω))

Replacing Ω and Σ by ϕ(Ω) and ϕ(Σ) and ϕ by ϕ−1, it follows that

H(Ω,Σ) −H(ϕ(Ω), ϕ(Σ)) � cH(ϕ(Ω), ϕ(Σ))‖(Dϕ)−1 − I‖L∞(ϕ−1(co(ϕ(Ω)))).

Since

‖(Dϕ)−1 − I‖ � ‖Dϕ− I‖
1 − ‖Dϕ− I‖ ,

it follows that there is c > 0 such that the reverse inequality

H(Ω,Σ) −H(ϕ(Ω), ϕ(Σ)) � cH(Ω,Σ)‖Dϕ− I‖L∞(ϕ−1(co(ϕ(Ω))))

also holds for small ‖Dϕ− I‖. The result follows. �

For small ‖ϕ− id‖C1 , we have that if Ω is relatively compact, so is coϕ(Ω), so we
immediately deduce the following.

Corollary 3.2. Let Ω ⊂ R
n be open and bounded, and let Σ ⊂ ∂Ω. Then the map

ϕ �−→ H(ϕ(Ω), ϕ(Σ)) is continuous with respect to the weak C1 topology.

A few remarks are in order. First, the result does not hold for the case k = 0
(homeomorphisms), as it is essential to be able to control first derivatives. Next,
note that estimate (3.1) holds independent of the boundedness of Ω or compactness
of supp(ϕ), and is therefore substantially more general than the corollary.

Although of no use to the sequel, we now present a collateral result that
is obtained without extra effort. Instead of the standard Euclidean distance
dist(x, y) = |x− y|, for x, y ∈ Ω one could use the alternative ‘interior’ distance

d̃ist(x, y) = inf{l(γ) : γ ∈ C1([0, 1],Ω), γ(0) = x, γ(1) = y},
and consider the Hardy problem

H̃(Ω,Σ) = inf
u∈H1

0 (Ω)

∫
Ω
|∇u|2dx∫

Ω
u2/d̃2

Σ dx
, (3.2)

where d̃Σ(x) = d̃ist(x, Σ). For that case, we obtain the almost identical result

Theorem 3.3. Let Ω ⊂ R
n be open set with non-empty boundary, and let Σ ⊂ ∂Ω

be an arbitrary subset of the boundary. Then there exist ε > 0 and c > 0 such that
for every C1 diffeomorphism ϕ with ‖Dϕ− I‖ < ε,

|H̃(ϕ(Ω), ϕ(Σ)) − H̃(Ω,Σ)| � cH̃(Ω,Σ)‖Dϕ− I‖L∞(Ω). (3.3)
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Proof. The proof is almost identical to that of estimate (3.1). The only difference
is that instead of picking γ to be the straight line segment joining x and σ(x), one
chooses a sequence of curves γn such that l(γn) → d̃Σ(x). �

Note that taking convex hulls is unnecessary here, since all distances are
compared inside Ω.

4. Differentiability of the Hardy constant

Now we present our main results regarding differentiability. Our methodology is sim-
ilar to the one developed in [5] (which concerns the case Σ = ∂Ω), with appropriate
modifications.

Lemma 4.1. Suppose that Ω ⊂ R
n is open with non-empty boundary and let Σ ⊂ ∂Ω

be closed. Let ϕ ∈ Diff1
c(R

n), ξ ∈ X1
c(R

n) and let t0 > 0 be such that

ϕt = ϕ+ tξ

is a C1 diffeomorphism for all t ∈ [−t0, t0]. Then:

(i) There exists a constant c = c(Ω, ϕ, ξ, t0) such that

|d2
ϕt(Σ)(ϕt(x)) − d2

ϕ(Σ)(ϕ(x))| � cd2
ϕ(Σ)(ϕ(x))|t| (4.1)

for all x ∈ Ω and all t ∈ [−t0, t0].
(ii) If dϕ(Σ) is differentiable at ϕ(x) and σ(x) ∈ Σ is the single point such that

dϕ(Σ)(ϕ(x)) = |ϕ(x) − ϕ(σ(x))|, then

d

dt

∣∣∣
t=0

d2
ϕt(Σ)(ϕt(x)) = 2(ϕ(x) − ϕ(σ(x))) · (ξ(x) − ξ(σ(x))). (4.2)

Proof. (1) Let x ∈ Ω. Since Σ is closed, there exists a σ ∈ Σ such that dϕ(Σ)(ϕ(x)) =
|ϕ(x) − ϕ(σ)|. It follows that

d2
ϕt(Σ)(ϕt(x)) � |ϕt(x) − ϕt(σ)|2 = |ϕ(x) − ϕ(σ) + t(ξ(x) − ξ(σ))|2

= d2
ϕ(Σ)(ϕ(x)) + 2t(ϕ(x) − ϕ(σ)) · (ξ(x) − ξ(σ)) + t2|ξ(x) − ξ(σ)|2.

Moreover, we have that

|ξ(x) − ξ(σ)| =

∣∣∣∣∣
∫ 1

0

d
ds

(ξ ◦ ϕ−1)(sϕ(σ) + (1 − s)ϕ(x))ds

∣∣∣∣∣
� ‖D(ξ ◦ ϕ−1)‖L∞(co(ϕ(Ω)))|ϕ(x) − ϕ(σ)|
= ‖D(ξ ◦ ϕ−1)‖L∞(co(ϕ(Ω)))dϕ(Σ)(ϕ(x)).

Likewise, let σt ∈ Σ be such that dϕt(Σ)(ϕt(x)) = |ϕt(x) − ϕt(σt)|. Then

d2
ϕt(Σ)(ϕt(x)) = |ϕ(x) − ϕ(σt)|2+2t(ϕ(x)−ϕ(σt)) · (ξ(x)−ξ(σt))+t2|ξ(x) − ξ(σt)|2

� d2
ϕ(Σ)(ϕ(x)) + 2t(ϕ(x) − ϕ(σt)) · (ξ(x) − ξ(σt)) + t2|ξ(x) − ξ(σt)|2,
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and as before we have

|ξ(x) − ξ(σt)| � ‖D(ξ ◦ ϕ−1
t )‖L∞(co(ϕt(Ω)))dϕt(Σ)(ϕt(x)).

As [−t0, t0] is compact, ‖D(ξ ◦ ϕ−1
t )‖L∞(co(ϕt(Ω))) attains a finite maximum value

in it, and so follows the existence of a constant so that the conclusion holds.

(2) Assume that dϕ(Σ) is differentiable at ϕ(x). Thus there exists a unique σ =
σ(x) ∈ Σ such that dϕ(Σ)(ϕ(x)) = |ϕ(x) − ϕ(σ(x))|. From (4.1), we know that

lim
t→0

dϕt(Σ)(ϕt(x)) = dϕ(Σ)(ϕ(x)). (4.3)

Now we claim that limt→0 σt = σ (σt as defined in the previous step). To this
end, it suffices to show that

lim
t→0

ϕt(σt) = ϕ(σ).

Assume, by contradiction, that there exists σ′ ∈ Σ, σ′ �= σ, such that, possibly
passing to a subsequence,

lim
t→0

ϕt(σt) = ϕ(σ′).

Then

|ϕ(x) − ϕ(σ′)| > dϕ(Σ)(ϕ(x)) + ε

for some ε > 0. In particular,

lim
t→0

|ϕt(σt) − ϕ(x)| = |ϕ(σ′) − ϕ(x)| > dϕ(Σ)(ϕ(x)) + ε.

Moreover,

|ϕt(σt) − ϕ(x)|2 = |ϕt(σt) − ϕt(x) + tξ(x)|2

= d2
ϕt(Σ)(ϕt(x)) + 2t(ϕt(σt) − ϕt(x)) · ξ(x) + t2|ξ(x)|2,

and by (4.3) we deduce that

lim
t→0

|ϕt(σt) − ϕ(x)| = dϕ(Σ)(ϕ(x)),

a contradiction.
From the estimates of the previous step and the claim we deduce that

d

dt

∣∣∣
t=0

d2
ϕt(Σ)(ϕt(x)) = 2(ϕ(x) − ϕ(σ(x))) · (ξ(x) − ξ(σ(x))). �

From this point on, we will assume that Ω is bounded and Lipschitz (in the sense
of being locally the subgraph of a Lipschitz continuous function). By the results of
[9], we know that the Hardy inequality holds in Ω for some positive constant for
Σ = ∂Ω. Since dΣ � d∂Ω, the same is true if we choose any Σ ⊂ ∂Ω.
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Lemma 4.2. Suppose that Ω ⊂ R
n is a bounded Lipschitz domain and let Σ ⊂ ∂Ω be

closed. Let also u ∈ H1
0 (Ω) and ρ ∈ L∞(Ω). Then the function G : Diff1

c (Rn) → R

(k � 1) given by

G(ϕ) =
∫

Ω

u2ρ

d2
ϕ(Σ) ◦ ϕ

dx

is Gateaux differentiable and, for ξ ∈ X1
c(R

n)

DϕG(ξ) = −2
∫

Ω

u2(x)ρ(x)(ϕ(x) − ϕ(σ(x))) · (ξ(x) − ξ(σ(x)))
d4

ϕ(Σ)(ϕ(x))
dx.

Proof. Let ϕ ∈ Diff1
c (Rn) and ϕt = ϕ+ tξ as before. Then

G(ϕt) −G(ϕ)
t

= −
∫

Ω

u2ρ(d2
ϕt(Σ) ◦ ϕt − d2

ϕ(Σ) ◦ ϕ)

t(d2
ϕt(Σ) ◦ ϕt)(d2

ϕ(Σ) ◦ ϕ)
dx.

By estimate (4.1), there is a constant c > 0 such that

u2ρ(d2
ϕt(Σ) ◦ ϕt − d2

ϕ(Σ) ◦ ϕ)

|t|(d2
ϕt(Σ) ◦ ϕt)(d2

ϕ(Σ) ◦ ϕ)
� c

u2ρ

d2
ϕ(Σ)

for t sufficiently small. Since ρ ∈ L∞(Ω) and Ω is bounded, and since u ∈ H1
0 (Ω) and

the Hardy inequality holds (the latter is true because C1 diffeomorphisms preserve
the Lipschitz property1), it follows that the integrand is absolutely bounded by an
L1 function and the dominated convergence theorem applies.

Since dϕ(Σ)(ϕ(x)) is differentiable for almost all x ∈ Ω, the unique point σ(x) ∈ Σ
is defined for almost all x ∈ Ω and the result follows by (4.2). �

We wish to prove that the Hardy constant H(ϕ(Ω), ϕ(Σ)) is Gateaux differ-
entiable with respect to ϕ, which is equivalent to proving that the map t �→
H(ϕt(Ω), ϕt(Σ)) is differentiable with respect to t for any ξ ∈ X1

c(R
n), where

ϕt = ϕ+ tξ.

Doing so will be possible provided that there are actual minimizers to the constants
H(ϕt(Ω), ϕt(Σ)), and that these actually behave ‘well’ as t varies, i.e. they are
stable.

Here we draw some important facts coming from other works that are vital in
order to proceed. Note that since these results are stated for smooth (meaning C∞)
domains, we also adopt this assumption from now on, as stated in the Introduction.

Lemma 4.3. Suppose that Ω ⊂ R
n (n � 2) is a smooth bounded domain, and let

Σ ⊂ ∂Ω be a closed submanifold of dimension s ∈ {0, 1, . . . , n− 1}. Consider the

1For a rigorous proof of this fact, see lemma 3.5 of [6].
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Hardy problem

H(Ω,Σ) = inf
u∈H1

0 (Ω),
u�=0

∫
Ω
|∇u|2dx∫

Ω
u2/d2

Σdx
. (4.4)

Then precisely one of the following alternatives is true:

(i) The problem has a minimizer and H(Ω, Σ) < (n− s)2/4.

(ii) The problem does not have a minimizer and H(Ω, Σ) = (n− s)2/4.

Proof. This is corollary 1.3 in [11]. The case s = 0 was treated separately in [12],
and the case s = n− 1 is well known (see [16]). �

So in order to proceed we need from now on the additional assumption that
H(ϕ(Ω), ϕ(Σ)) < (n− s)2/4 in order to guarantee the existence of minimizers. This
assumption is not terribly restrictive, since ϕ �→ H(ϕ(Ω), ϕ(Σ)) is a continuous map
and the inverse image of (−ε, (n− s)2/4) with respect to that map is an open set
of Diff1

c (Rn). This means That if H(Ω, Σ) is less than the critical value, there is
always an open neighbourhood of the identity to conduct a local analysis. The case
where H(Ω, Σ) attains the critical value remains an open problem, as in [5].

Next we provide some estimates for these minimizers.

Lemma 4.4. Let Ω and Σ be as in the previous lemma, and suppose that v ∈ H1
0 (Ω)

is a minimizer of (4.4). Then there is a constant C = C(Ω, Σ) > 0 such that

v < Cd∂Ωd
α
Σ,

where

α =
s− n+

√
(n− s)2 − 4H(Ω,Σ)

2

Proof. This was proved in [17] for the eigenfunction corresponding to the first
eigenvalue of the relevant Schrödinger operator (lemmas 2.1 and 2.2). The same
steps can be repeated for λ = 0, which simplifies the proof even further. �

Theorem 4.5. Suppose that Ω ⊂ R
n (n � 2) is a smooth bounded domain, and let

Σ ⊂ ∂Ω be a closed submanifold of dimension s. Let v ∈ H1
0 (Ω) be a minimizer of

(4.4) (and so H(Ω, Σ) < (n− s)2/4). Then the following estimates are satisfied:

v � Cdα+1
Σ ,

|∇v| � Cdα
Σ,

where C = C(Ω, Σ).

Proof. The first estimate is obvious from the previous lemma and the fact that
d∂Ω � dΣ.
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For the second one we proceed as follows. Let x ∈ Ω and let R = d∂Ω(x)/3. Then
for every y ∈ B(x, R) we have that

2R � d∂Ω(y) � 4R.

At this point we invoke a gradient estimate such as

|∇v(x)| � C(n)

(
1
R

sup
∂B(x,R)

|v| +R sup
B(x,R)

|f |
)
,

where f = H(Ω, Σ)v/d2
Σ, see for example [14] (paragraph 3.4) for an analogue with

cubes. Thus, after some elementary calculations, we get

|∇v(x)| � C sup
B(x,R)

dα
Σ � C(dΣ(x) +R)α � Cdα

Σ(x),

where in each step constant factors are absorbed in C. �

Theorem 4.6. Let Ω ⊂ R
n (n � 2) be a smooth bounded domain, and let Σ ⊂ ∂Ω

be a closed submanifold of dimension s. Suppose that H(Ω, Σ) < (n− s)2/4. Thus
for any ξ ∈ X1

c(R
n), ϕt = id+ tξ ∈ Diff1

c (Rn) and H(ϕt(Ω), ϕt(Σ)) < (n− s)2/4
for t small enough.

Let vt be a one-parameter family of positive minimizers for H(ϕt(Ω), ϕt(Σ)),
normalized by ∫

ϕt(Ω)

v2
t

d2
ϕt(Σ)

dx = 1,

and let ut = vt ◦ ϕt : Ω → R. Then

ut → u0 in H1
0 (Ω). (4.5)

Proof. By the normalization condition on the minimizers, it follows that
‖∇vt‖L2(ϕt(Ω)) = H(ϕt(Ω), ϕt(Σ)), thus ‖vt‖H1

0 (ϕ(Ω)) and ‖ut‖H1
0 (Ω) are uniformly

bounded. Hence, possibly passing to a subsequence, there is a ũ0 such that

ut → ũ0 weakly in H1
0 ,

ut → ũ0 in L2.

We will show that ũ0 satisfies the same normalization condition, i.e.∫
Ω

ũ2
0

d2
Σ

dx = 1.

This is actually a consequence of the dominated convergence theorem applied on∫
Ω

u2
t

d2
ϕt(Σ)(ϕt(x))

|detDϕt(x)|dx = 1,
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provided it is applicable. Indeed, from the previous estimates, we have that there
are C > 0 and α such that 2α+ n− s > 0 such that

ut(x) � Cdα+1
ϕt(Σ)(ϕt(x))

uniformly in t for t small enough. It follows that

u2
t

d2
ϕt(Σ)(ϕt(x))

|detDϕt(x)| � Cd2α
ϕt(Σ)(ϕt(x)).

Choosing a tubular neighbourhood Σε(t) = {x ∈ Ω : dϕt(Σ)(ϕt(x)) < ε} and passing
to coordinates given by exponential mapping, for r(x) = dϕt(Σ)(ϕt(x)) we have that∫

Σε(t)

d2α
ϕt(Σ)(ϕt(x))dx � C

∫ ε

0

r2α+n−s−1dr,

where the integral of the right-hand side is convergent since 2α+ n− s− 1 > −1.
Hence the integrand is uniformly bounded in t by an integrable function, and the
claim follows.

From vector inequality |a|2 � |b|2 + 2b · (a− b), it follows that

H(ϕt(Ω), ϕt(Σ)) =
∫

Ω

|(Dϕt)−�∇ut|2|detDϕt|dx

�
∫

Ω

|∇ũ0|2|detDϕt|dx

+ 2
∫

Ω

∇ũ0 · ((Dϕt)−�∇ut −∇ũ0)|detDϕt|dx.

By the dominated convergence theorem and the continuity of H, it follows that

H(Ω,Σ) �
∫

Ω

|∇ũ0|2dx,

so ũ0 must be a positive normalized minimizer, and by the uniqueness of such
minimizers it follows that ũ0 = u0.

Moreover, also by the dominated convergence theorem, we have that

lim
t→0

(
H(ϕt(Ω), ϕt(Σ)) −

∫
Ω

|∇ut|2dx
)

= lim
t→0

∫
Ω

(
|(Dϕt)−�∇ut|2|detDϕt| − |∇ut|2

)
dx = 0,

so it follows that

lim
t→0

∫
Ω

|∇ut|2dx = H(Ω,Σ) =
∫

Ω

|∇u0|dx.

Since weak convergence and convergence in norm imply strong convergence, the
proof is complete. �
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Theorem 4.7. Let Ω ⊂ R
n (n � 2) be a smooth bounded domain, and let Σ ⊂ ∂Ω

be a closed submanifold of dimension s. Suppose that H(Ω, Σ) < (n− s)2/4 and let
v be a minimizer that achieves H(Ω, Σ) normalized by∫

Ω

v2

d2
Σ

dx = 1.

Then the map H : ϕ �→ H(ϕ(Ω), ϕ(Σ)) is Gateaux differentiable at idRn and

DidH(ξ) =
∫

Ω

[|∇v|2div(ξ) − 2(Dξ)∇v · ∇v]dx

+H(Ω,Σ)
∫

Ω

[
2
v2

d3
Σ

∇dΣ · (ξ − ξ ◦ σ) − v2

d2
Σ

div(ξ)

]
dx,

where σ(x) is the (a.e. unique) point in Σ such that dΣ(x) = |x− σ(x)|.
Proof. Let ϕt = id+ tξ and vt a sequence of positive normalized minimizers as
before. By the definition of the Hardy constant and change of variables, we have
that

H(Ω,Σ) = min
u∈H1

0\{0}
Rt[u],

where Rt[u] = Nt[u]/Dt[u],

Nt[u] =
∫

Ω

|(Dϕt)−�∇u|2|detDϕt|dx,

Dt[u] =
∫

Ω

u2

dϕt(Σ) ◦ ϕt
|detDϕt|dx.

Since vt achieves H(ϕt(Ω), ϕt(Σ)), we have that H(ϕt(Ω), ϕt(Σ)) = Rt[ut], where
ut = vt ◦ ϕt as before.

It follows, by the definition of the Hardy constant, that

Rt[ut] −R0[ut] � H(ϕt(Ω), ϕt(Σ)) −H(Ω,Σ) � Rt[u0] −R0[u0].

Now, Rt[u] is a function of two arguments, a real number t and a function u. The
partial derivative of this function with respect to t is denoted by R′

t[u]. The last
inequality together with the mean value theorem on the first argument of R imply
that there are numbers ξ(t) and η(t) such that |ξ(t)|, |η(t)| < |t| and

R′
ξ(t)[ut]t � H(ϕt(Ω), ϕt(Σ)) −H(Ω,Σ) � R′

η(t)[u0].

If we show that R′
ξ(t)[ut]t and R′

η(t)[u0] converge to the same number as t→ 0,
differentiability at t = 0 is established. Some basic calculations reveal that

d
dt

|(Dϕ)−�∇u|2 = −2(Dϕt)−1Dξ(Dϕt)−1(Dϕt)−�∇u · ∇u,
d
dt

|detDϕt| =
div(ξ)

|detDϕ−1
t ◦ ϕt|

.

https://doi.org/10.1017/prm.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.15


420 M. Paschalis

It follows that

N ′
t [u] =

∫
Ω

|(Dϕt)−�∇u|2 div(ξ)
|detDϕ−1

t ◦ ϕt|
dx

− 2
∫

Ω

(Dϕt)−1Dξ(Dϕt)−1(Dϕt)−�∇u · ∇u|detDϕt|dx,

and

D′
t[u] =

∫
Ω

u2

dϕt(Σ) ◦ ϕt

div(ξ)
|detDϕ−1

t ◦ ϕt|
dx

− 2
∫

Ω

u2∇dϕt(Σ) ◦ ϕt · (ξ − ξ ◦ σt)
dϕt(Σ) ◦ ϕt

|detDϕt|dx.

By the dominated convergence theorem, it follows that

lim
t→0

R′
η(t)[u0] = R′

0[u0],

and by the dominated convergence theorem together with the previous stability
result, we also have

lim
t→0

R′
ξ(t)[ut] = R′

0[u0]

and the claim is proved.
It remains to compute the derivative. We have

d

dt

∣∣∣
t=0

H(ϕt(Ω), ϕt(Σ)) =
N ′

0[u0]D0[u0] −N0[u0]D′
0[u0]

D2
0[u0]

= N ′
0[u0] −H(Ω,Σ)D′

0[u0],

the last equality being valid due to normalization. The result immediately fol-
lows from the previous calculations, putting t = 0 and taking into account that
u0 = v. �

5. Differentiability with respect to boundary diffeomorphisms

Finally, we turn our attention to the matter of differentiability of the map

ϕ �−→ H(Ω, ϕ(Σ)),

for ϕ ∈ Diff1(∂Ω), where Diff1(∂Ω) is the group of diffeomorphisms of class C1

of the smooth manifold ∂Ω2. Note that in the case where s = n− 1, this prob-
lem is irrelevant since the boundary as a whole remains invariant under boundary
diffeomorphisms, so in this sense it is new.

First we establish a continuity result. In particular, if ϕ ∈ Diff1(∂Ω), the map
ϕ �→ H(Ω, ϕ(Σ)) is shown to be continuous with respect to the C1 topology.

2Note that since ∂Ω is compact, those diffeomorphisms are already of compact support. The
topology of Diff1(∂Ω) is given locally as in the Euclidean case, by covering ∂Ω with a finite
number of charts. For details, see [2].
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Theorem 5.1. Let Ω ⊂ R
n be a bounded open set with smooth non-empty boundary,

and let Σ ⊂ ∂Ω be an arbitrary subset of the boundary. Then there exist ε > 0 and
c > 0 such that for any ϕ ∈ Diff1(∂Ω) satisfying ‖ϕ− id‖C1(∂Ω) < ε, the estimate

|H(Ω, ϕ(Σ)) −H(Ω,Σ)| � cH(Ω,Σ)‖ϕ− Id‖C1(∂Ω) (5.1)

holds.

Proof. This can actually be reduced to the first case. One simply needs to extend
diffeomorphisms of the boundary to diffeomorphisms of the ambient space. This
cannot be done for an arbitrary diffeomorphism, but for small diffeomorphisms
it is achievable since Diff1(∂Ω) is locally contractible. Indeed, for ‖ϕ− id‖C0 <
inj(∂Ω) (the injectivity radius of ∂Ω is a positive number since ∂Ω is compact),
define a homotopy h : ∂Ω × [0, 1] → ∂Ω,

h(x, t) = expx(t exp−1
x (ϕ(x))),

where exp stands for the exponential map3 of ∂Ω as a Riemannian submanifold of
R

n, while the assumption above ensures that h(·, t) remains a diffeomorphism for
all t.

We now pick a neighbourhood of ∂Ω that is diffeomorphic to ∂Ω × (−ε, ε), and a
cut-off function f : (−ε, ε) → R, 0 � f � 1 that is 1 in a neighbourhood of 0. Then
for (x, y) ∈ ∂Ω × (−ε, ε)

Φ(x, y) = h(x, 1 − f(y))

is a diffeomorphism of R
n with compact support that extends ϕ (extend trivially

outside the neighbourhood by the identity). We then apply (3.1) for Φ and the
result follows from the fact that

‖Φ − IdRn‖C1 � c‖ϕ− Id∂Ω‖C1 ,

which is obvious by the construction. �

Similar to the Euclidean case, Diffk(∂Ω) has a differential structure that is
locally homeomorphic to the Banach space Xk(∂Ω) (note that here we need not
take vector fields with compact support since ∂Ω is by assumption compact). The
differential of a map h : Diffk(∂Ω) → R at ϕ ∈ Diffk(∂Ω) along ξ ∈ Xk(∂Ω) is
given by

Dϕh(ξ) =
d

dt

∣∣∣
t=0

h(exp(tξ) ◦ ϕ),

provided that the limit exists, where exp(tξ) ∈ Diffk(∂Ω) is the map obtained by
exponential mapping along ξ, which is always a diffeomorphism for t small enough
due to compactness.

3Recall that the exponential map at a point x ∈ M is defined in a neighbourhood of 0 ∈ TxM

and is given by exp(ξ) = γξ(1), where γξ is the unique geodesic such that γξ(0) = x and γ′
ξ(0) = ξ.

Moreover we have exp(tξ) = γξ(t). The injectivity radius of x is then the largest number inj(x)
such that for |ξ| < inj(x), the exponential map at x is injective. This is always a positive number,
and a continuous function of x. Thus on a compact manifold M , its value can be taken to be
uniform, denoted inj(M).
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We finally show that the Hardy constant is Gateaux differentiable with respect
to such boundary diffeomorphisms.

Theorem 5.2. Let Ω ⊂ R
n be bounded and of smooth boundary. Then the

map h : Diff1(∂Ω) → R, ϕ �→ H(Ω, ϕ(Σ)) is differentiable at all points where
H(Ω, ϕ(Σ)) < (n− s)2/4.

Proof. Without loss of generality, let ϕ = id∂Ω, and let ξ ∈ X1(∂Ω). Then one can
extend ξ to a Ξ ∈ X1

c(R
n) (e.g. using a standard argument involving partitions of

unity). One can also assume that the support of Ξ lies within a neighbourhood of
the form ∂Ω × (−ε, ε), equipped with a metric such that ∂Ω is a totally geodesic
submanifold4 . Then we have that

Did∂Ωh(ξ) =
d
dt

∣∣∣
t=0

h(exp(tξ)) =
d
dt

∣∣∣
t=0

H(Ω, exp(tξ)(Σ)).

Since exp(tξ)(Ω) = Ω and exp(tΞ)|∂Ω = exp(tξ), it follows that

Did∂Ωh(ξ) =
d
dt

∣∣∣
t=0

H(exp(tΞ)(Ω), exp(tξ)(Σ))

= DidRnH

(
d
dt

∣∣∣
t=0

exp(tΞ)
)

= DidRnH(Ξ),

where in the last equalities we regard H as the function ϕ �→ H(ϕ(Ω), ϕ(Σ)) as
discussed in the previous section. �

There is a particularly neat way to express this form of differentiability in the
special case s = 0 (a point boundary singularity).

Corollary 5.3. Let Ω ⊂ R
n be bounded and of smooth boundary. Then the map

H : ∂Ω → R, σ �→ H(Ω, {σ}) is differentiable at every σ ∈ ∂Ω where H(Ω, {σ}) <
n2/4.

Proof. The differential DσH(Ω, {·})(ξ) for ξ ∈ Tσ∂Ω is

DσH(Ω, {·})(ξ) =
d
dt

∣∣∣
t=0

H(Ω, {γξ(t)}),

where γξ is a curve such that γξ(0) = σ and γ′ξ(0) = ξ. From now on assume that
γξ is the unique geodesic with these properties. Choose a vector field Ξ ∈ X(∂Ω)
that extends ξ. Then {γξ(t)} = exp(tΞ)({σ}). It follows that

DσH(Ω, {·})(ξ) = Did∂Ωh(Ξ),

where h(ϕ) = H(Ω, ϕ({σ})) as before. �

4This is a submanifold whose geodesics with respect to the restricted metric are geodesics on
the entire manifold. For example choose the product metric on ∂Ω × (−ε, ε) that makes it into
a ‘cylinder’ of base ∂Ω and height 2ε. The reason we introduce this is because we want the
exponential map of the submanifold to coincide with the exponential map of the entire manifold.
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8 H. Chen and L. Véron. Schrödinger operators with Leray–Hardy potential singular on the
boundary. J. Differ. Equ. 269 (2020), 2091–2131.

9 E. B. Davies. The Hardy constant. Q. J. Math. 46 (1995), 417–431.
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